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by 41%. The reduction in travel time explains 33% of the increase in knowledge diffusion as measured
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United States.
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1. Introduction

“If I have been able to see further, it was only because I stood on the shoulders of giants”

Isaac Newton (1676)1

“(...) if one man starts a new idea, it is taken up by others and combined with suggestions of

their own; and thus becomes the source of further new ideas.”

Alfred Marshall (1890)2

In their famous quotations Isaac Newton and Alfred Marshall illustrate that access to

knowledge is key for the creation of new knowledge. Understanding the process of

creation of new knowledge is crucial as it has been characterized as one of the main

causes of economic growth (Lucas (1993), Aghion and Howitt (1997) and Jones (2002)).

Access to knowledge spurs the creation of new knowledge (Furman and Stern (2011),

Acemoglu et al. (2016)). Physical proximity, by facilitating face to face interactions, is a

key driver of the diffusion of knowledge and hence of access to knowledge (Storper

and Venables (2004), Glaeser (2011)).

Providing evidence of the effect of knowledge access on the creation of new knowl-

edge is an empirical challenge. Agents for whom access to knowledge is relevant may

endogenously sort towards locations where they receive knowledge spillovers, leading

to reverse causality. Additionally, access to knowledge is correlated with other drivers

of innovation as access to markets, resulting in a potential omitted variable bias due to

confounding factors.

This paper provides new causal evidence on this question by exploiting as a quasi-

natural experiment the beginning of the Jet Age in the United States. During the 1950s

the introduction of jet engines into civil aviation led to a large reduction in travel time.

We exploit changes in travel time to identify changes in knowledge diffusion, which

1Quoted from Furman and Stern (2011), page 1933.
2Quoted from Duranton and Puga (2004), page 2066.
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are further translated into changes in access to knowledge. Then, we exploit changes in

access to knowledge to study the impact on the creation of new knowledge. The results

provide evidence that jet airplanes led to innovation convergence across locations and

contributed to the shift in innovation activity towards the South and the West of the

United States.

We start by constructing a new dataset of the flight network in the United States

during 1950s and 1960s. We digitize historical flight schedules of the major interstate

airlines operating in the period3 and obtain the fastest route between every two airports

in the network. We document that between 1951 and 1966 travel time decreased on

average by 29%, and the decrease is on average of 41% for airports located more than

2,000km apart.4

This nation-wide shock was arguably exogenous as it happened in a strictly regulated

environment. We decompose the change in travel time and find that 90% of the change

is due to the improvement in aircrafts’ speed, while 10% is due to a change in the flight

routes. This is consistent with the fact that during this period the Civil Aeronautics

Board (CAB) was imposing strong regulation in the interstate airline market. With the

objective to promote a stable airline industry, the CAB determined ticket prices and

restricted entry of airlines into new or existing routes.

Additionally, during the 1950s and 1960s airplanes were predominantly used to

transport people and not goods. Hence, the change in travel time represented a shock

to the mobility of people while not significantly affecting shipping costs.

To study knowledge creation and diffusion we use patent data. We follow Jaffe

et al. (1993) and use patent citations as our observable measure of knowledge flow. We

3The 6 domestic airlines in our data accounted for 75% of total air passenger transport.
4New York and Boston are about 300km apart, while New York and San Francisco are located about 4,130

km apart. Between 1951 and 1966 we observe a reduction of travel time of 23% (13 minutes reduction)
between New York and Boston, while the reduction is of 50% (5 hours 30 minutes reduction) between
New York and San Francisco.

2



assemble one dataset with all corporate patents granted by the United States Patent

and Trademark Office (USPTO) with filing year between 1949 and 1968, which includes

for each patent: filing year, technology classification, location (Metropolitan Statistical

Area, MSA) of the inventors when they applied for the patent, owner of the patent and

citations to other patents which were granted by the USPTO.

We document three facts of patenting activity during our sample period. First, patent

growth was stronger both in initially less innovative MSAs and in MSAs in the South

and the West of the US. Second, over time multi-establishment firms expanded geo-

graphically and accounted for a larger share of patents. Third, the mass of citations

shifted towards longer distances. Our results show that the decrease in travel time

contributed to all three facts.

We do our analysis in three steps. In the first step, we estimate a gravity equation

to obtain the elasticity of citations to travel time. We identify the elasticity exploiting

only within establishment-pair across-time variation in citations and travel time. The

estimated elasticity implies that citations increased on average 2.4% due to the decrease

in travel time between 1951 and 1966. We find that the absolute value of the elasticity

is increasing with the distance between the citing and cited establishments. At a dis-

tance of more than 2,000km, the change in travel time implies an increase in citations of

6.9%. This accounts for 32.7% of the observed increase in citations in this distance range.

In order to rule out the possibility that the opening of new routes or the timing of

adoption of jets at the route level was driven by variables that also affected knowledge

flows, we perform an instrumental variables estimation. We instrument the observed

travel time with a fictitious travel time computed by fixing routes to the initial time

period and in each year all routes are operated with the year’s average airplane. Hence,

travel time changes only due to the nationwide roll out of jets and is thus independent

of decisions at the route level. The results do not change significantly, reflecting the

reduced scope for endogeneity of travel time. In addition, the results are robust to
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controlling for potential confounding factors such as changes in highway travel time,

telephone connectivity and flight ticket prices. Finally, the results also remain after

restricting the sample of establishment that existed in the initial time period.

In the second step, using the estimated elasticity of diffusion of knowledge, we

compute a measure of access to knowledge that is specific to each location-technology.

The measure captures changes in access to knowledge that are only consequence of the

change in travel time. We use access to knowledge as an input to produce new patents

and estimate the elasticity of patents to knowledge access. We identify the elasticity at

the establishment level comparing only across time variation in patents and knowledge

access across establishments within a location, conditional on aggregate technological

trends. Thus, the identification is independent of location specific changes in local

population or R&D subsidies. The estimated elasticity implies that the amount of new

patents filed increased at a yearly growth rate of 3.5% due to the increase in knowledge

access, which accounts for 79.5% of the observed yearly growth rate.

Given the nature of the reduction in travel time, the increase in knowledge access was

stronger in locations geographically far from the initial innovation centers located in the

Midwest and the Northeast. Hence, by increasing access to knowledge, the reduction

in travel time led to a shift in the distribution of innovative activity towards the South

and the West of the US. The South and the West had an average yearly growth rate

of patenting 2.1 percentage points higher than the Northeast and the Midwest during

our sample period. The change in travel time explains 41% of the observed differential

growth.

We find that the value of the elasticity of patents to knowledge access is bigger in

magnitude for establishments located in initially less innovative locations. Within each

technology class, we rank locations according to the amount of patents in the initial time

period and split them into four quartiles. We find that the increase in knowledge access

predicts a 4.5% yearly growth rate of patenting in locations in the lowest quartile of
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initial innovativeness, while it predicts a 3.4% yearly growth rate in the highest quartile.

The difference in growth rates indicates that the increase in knowledge access acted

as a convergence force between locations, and it can explain 21% of the convergence

observed in the data. Results go in the same direction if we rank locations in terms of

patents per capita.

Our results are robust to controlling for changes in market access by highway, changes

in market access by airplanes and time changing telephone connectivity. Results do

not change if we compute knowledge access using only knowledge located at long

distances. Additionally, we present suggestive evidence that the results are not driven

by a decrease in financial frictions.

In the third step, we uncover the sources of the increase in patenting. We find that

most of the effect of knowledge access on new patents happens through two entry mar-

gins: entry of establishments of new firms and entry of subsidiaries of firms that expand

from other locations. The two entry margins are stronger in initially less innovative

locations, meaning that convergence comes both from new firms and the geographic

expansion of multi-establishment firms.

To more directly test the firm expansion channel, we study if a firm’s subsidiary’s

location decision depends on travel time to headquarters. We estimate a probability

model to analyze if the locations in which firms have inventors applying for patents

depends on travel time to the firm’s headquarters. We identify the change in the proba-

bility only from changes in travel time and locations in which the firm starts patenting

or stops patenting. We find that the probability that a firm has inventors applying for

patents in a certain location goes up when then travel time from that location to the

firm’s headquarters reduces. In addition, the change in the probability is stronger for

potential recipient locations that were initially less innovative, again highlighting the

importance of this channel for convergence.
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This paper contributes to multiple branches of literature. First, it contributes to

the literature on agglomeration and knowledge spillovers. Agglomeration forces are

usually understood as happening in a geographically localized manner (Glaeser (2011),

Arzaghi and Henderson (2008)). The literature on tech clusters also documents this fact

(Duranton et al. (2009), Kerr and Robert-Nicoud (2020), Moretti (2021)). The seminal

paper Jaffe et al. (1993) finds that patent citations decay rapidly with distance. Our

results show that jet airplanes allowed long distance knowledge spillovers, facilitating

the development of tech clusters in other regions. The literature that provides evidence

of knowledge spillovers usually focuses on changes in the supply of knowledge (Bloom

et al. (2013), Acemoglu et al. (2016)). In our case we fix the supply of knowledge and

focus on changes in the degree of accessibility.

We contribute to the literature on transportation by studying a new quasi-natural

experiment that isolates a shock to the mobility of people. To do so we construct a

new dataset that could be used to answer many other questions.5 Other papers have

studied the impact of transportation improvements on innovation. Agrawal et al. (2017)

study the impact on innovation of a region’s stock of highways, while Perlman (2016)

uses 19th century data on locations’ density of railroads. Andersson et al. (2017) and

Tsiachtsiras (2021) do so using the historical railroad expansion in Sweden and France.

Relative to them, we contribute by exploiting a natural experiment that allows us to

isolate a channel of face to face interaction, with little scope for a trade channel. In

contemporaneous work Bai et al. (2021) estimate the elasticity of patent citations to air

travel time using the introduction of new airline routes in a more recent period, post

deregulation of the airline market. Relative to them, we contribute by exploiting a set

up in which the risk for endogeneity of travel time is limited. Our work is related to

other literature which found that business travel affects innovation (Hovhannisyan

and Keller (2015)), trade (Söderlund (2020)) and industrial activity (Coscia et al. (2020)).

Also, air travel shapes collaboration between researchers (Catalini et al. (2020)).

5Our dataset also includes international flights. We are currently digitizing more airlines to increase
coverage both inside the US and internationally.
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The impact of transportation improvements in economic outcomes has long been

a subject of study (Fogel (1963), Baum-Snow (2007), Michaels (2008), Donaldson and

Hornbeck (2016), Jaworski and Kitchens (2019) and Herzog (2021)). Our convergence

result contrasts with previous studies on improvements in other means of transport.

Pascali (2017) finds that the introduction of steam engine vessels in the second half

of the 19th led to an increase in international trade which contributed to economic

divergence between countries. Faber (2014) finds that the expansion of the highway

system in China led to a reduction of GDP growth of peripheral counties, with evidence

suggesting a trade channel. While both papers emphasize a trade channel, in our set

up the trade channel would not be of first order. Hence, we uncover a new effect of

improved connectivity.

Finally, we contribute to the literature on firm’s location decision. Our result about

firms deciding their establishments’ locations based on travel time to headquarters

is comparable to the one found by Giroud (2013), who finds that a reduction in air

travel time to headquarters increases plant level investment and total factor productiv-

ity. Similarly, Campante and Yanagizawa-Drott (2017) finds that firms’ cross country

investment decision depends on connectivity to headquarters.

The paper is structured as follows. First, we present a simple theoretical framework

which lays the foundations of how to think about the creation and diffusion of knowl-

edge. The framework shows the two key parameters to estimate. Second, we describe

the historical context in which jet airplanes were introduced. Third, we present the

two datasets that we use: travel times and patents. Fourth, we perform the analysis

to estimate the impact of travel time on the diffusion of knowledge, the creation of

knowledge, and firm’s location decision. Fifth, we conclude.
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2. Conceptual framework

This section lays out a simple theoretical framework to think about the creation of

knowledge. The framework clearly shows the two key parameters to estimate empiri-

cally: the elasticity of knowledge diffusion to travel time and the elasticity of knowledge

creation to knowledge access.

Following Carlino and Kerr (2015) we consider a production function of knowledge

which includes external returns in the form of knowledge spillovers. Knowledge

output of a firm depends not only on firm’s specific characteristics as its idiosyncratic

productivity and input decisions, but also on an externality due to knowledge spillovers.

We consider a production function of knowledge of the following form:

New KnowledgeFi = f (zFi, inputsFi) × Knowledge Access
ρ
i (1)

where New KnowledgeFi is the knowledge created by firm F located in i. The produc-

tion output of Fi depends on an internal component and on an external component.

The internal component is the firm’s idiosyncratic productivity zFi and choice of in-

puts inputsFi. The external component represents the externality to which all firms F

in location i are exposed to: Knowledge Accessi. This externality, Knowledge Access,

represents the total amount of knowledge spillovers that the firm is exposed to. The

degree to which the externality affects the production of knowledge is governed by the

parameter ρ. If ρ is zero then knowledge spillovers have no effect on the creation of

new knowledge. On the other hand, a positive ρ implies that, keeping productivity and

inputs constant, an increase in the level of knowledge spillovers leads to an increase in

firm F’s creation of new knowledge.

A long standing literature studies the importance of knowledge spillovers for the

creation of new knowledge.6 The concept of knowledge spillovers goes back at least to

6The chapters of Audretsch and Feldman (2004) and Carlino and Kerr (2015) in the Handbook of
Regional and Urban Economics provide an excellent review on the literature on knowledge spillovers,
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Marshall (1920) who explains it as one of the agglomeration forces. Krugman (1991)

refers to knowledge spillovers as one of the justifications for external increasing returns,

and that the degree of spillovers are dependent on physical distance. The geographic

decay of spillovers is grounded in the fact that not all knowledge is easy to codify,

usually referred to as tacit knowledge, and geographic proximity increases the degree

of knowledge spillovers by facilitating face-to-face interactions (Storper and Venables

(2004), Glaeser (2011)). Hence, we consider the total amount of knowledge spillovers to

which the firm F in location i is exposed to has the following functional form:

Knowledge Accessi = ∑
j

Knowledge stockj × distance
β

ij (2)

where Knowledge stockj is the total amount of knowledge in location j (which is non-

negative) that could potentially spill over to location i and distanceij is a measure of

distance from j to i. The amount of knowledge that spills over from j to i depends

on distance and the degree with which distance impedes spillovers, governed by the

parameter β. If β is zero, then distance does not affect knowledge spillovers from j to i

and all locations perfectly share the same level of Knowledge Access. On the contrary, a

negative β implies a decay in knowledge spillovers when distance increases. In other

words, a negative β implies that if we reduce the distance from j to i while keeping

every other distance constant, the amount of spillovers from j to i will weakly increase.

This theoretical framework bears resemblance to the concept of Market Access pre-

sented in Donaldson and Hornbeck (2016) and Redding and Venables (2004). If we

interpret Knowledge Access as one of the inputs in the production function of knowledge,

then Knowledge Accessi could be interpreted as a measure of Input Market Access. This

measure captures how cheaply firms in location i can access pre-existing knowledge,

where the cost of accessing knowledge depends on distance between i and j. Also,

Knowledge Access is similar to a measure of network centrality. The centrality of each

location i (node) is the weighted sum of distance (edges) to every location, where the

their geographic decay and how they affect the creation of knowledge.
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weight of each location is given by its knowledge stock.

The theoretical framework highlights the two parameters to estimate: ρ and β. Empir-

ically, we use travel time as a measure of distance to first estimate β and then conditional

on β we estimate ρ. Changes in travel time due to improvements in commercial aviation

allow us to estimate both parameters. First, we use citations between patents as a proxy

for the diffusion of knowledge. We estimate β by relating changes in travel time be-

tween research establishments to changes in citations between research establishments.

Second, we use the stock of patents filed by inventors in each location as proxy for each

location’s stock of knowledge. We construct a measure of knowledge access using the

patent stock, travel times and the value of β. New patents in each location proxy for

new knowledge. Changes in travel time lead to changes in knowledge access which

allow us to estimate ρ.

3. Historical context

3.1. Air transport: jet arrival

The jet aircraft was first invented in 1939 for military use, with the German Heinkel

He 178 being the first jet aircraft to fly. The first commercial flight by a jet aircraft was

in 1952 by the British Overseas Airways Corporation (BOAC) from London, UK to

Johannesburg, South Africa with a Havilland Comet 1. Nonetheless, given the amount

of accidents of the Havilland Comet 1 due to metal fatigue, jet commercial aviation did

not truly take off until the Boeing 707 entered commercial service in late 1958. The 24th

of January of 1959 represented a major milestone in the jet era: American Airlines Flight

2 flew with a Boeing 707 jet aircraft from Los Angeles to New York, the first non-stop

transcontinental commercial jet flight.7

7The reader passionate of aviation history would enjoy reading the following New York Times article
which tells the experience of the first transcontinental jet flight: https://www.nytimes.com/2009/
01/26/nyregion/26american.html
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In 1951 New York City and Los Angeles were connected with a one-stop flight in

10 hours and 20 minutes. The flight had a forced stop in Chicago and was operated

with the propeller aircraft Douglas DC-6, which had a cruise of 500 kmh. By 1956,

New York City and Los Angeles were connected with a non-stop flight in 8 hours and

30 minutes. This was accomplished due to the introduction of the propeller aircraft

Douglas DC-7 which had a cruise speed of 550kmh, and a change in regulation which

increased maximum flight time of a crew from 8 to 10 hours within a 24-hour window.8

In 1961, the route was covered with the jet aircraft Boeing 707 in a non-stop flight in 5

hours 15 minutes, reaching 5 hours 10 minutes in 1966. The Boeing 707 had a cruise

speed of 1000kmh, cutting travel time from New York City to Los Angeles in half

between 1951 and 1966.

3.2. Air transport: moving people, not goods

During the 1950s and 1960s, air transportation served to transport people but not goods.

Figures 1 and 2 are images (edited for better readability) from annual reports of the

Interstate Commerce Commission of 1967 and 1965 respectively. Figure 1 displays the

amount of passenger-miles9 for Air, Motor and Rail transportation from 1949 to 1966.

We observe that, while transport of people by rail decreased and by motor remained

relatively constant, transport of people by air multiplied by 6 in a 16-year period, which

translates to around 12% compound annual growth. In 1966, air transport accounted

for more passenger-miles than both rail and motor transportation together, reflecting

the growing importance of this mean of transport.

8AA and TWA had transcontinental non-stop propeller flights scheduled since at least 1954. These
flights were scheduled to take 7 hours 55 minutes, just under the maximum flight time allowed by
regulation in domestic flights: regulation impeded pilots from being on duty more than 8 hours
within a 24 hours window. Nonetheless, the propeller aircrafts used in these flights, the Douglas
DC-7 and the Lockheed Super Constellation, overheated their engines due to excessive demand
to cover the route in less than 8 hours. AA fought intensely until the CAB approved a waiver
that allowed non-stop transcontinental flights to take up to 10 hours to accomplish the non-stop
transcontinental flight. See page 16 of the edition of 21st of June 1954 of the Aviation Week magazine
https://archive.org/details/Aviation_Week_1954-06-21/page/n7/mode/2up

9Passenger-miles is a standard unit of measurement in transport, where one passenger-mile accounts
for one person traveling one mile. The reasoning is the same for ton-miles, with one ton of goods
traveling one mile.
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Figure 2 shows shipments in ton-miles for the period 1939 to 1964 by mean of

transport: Airways, Pipelines, Inland Waterways, Motor, Railroads. Interestingly, we

observe that air transport of goods, even if it increased, it accounted for less than 0.1%

of transport of goods in 1964.10

Figure 1: Passenger Miles
Source: Interstate Commerce Commission, Annual Report 1967
Edited by the authors

Figure 2: Ton Miles
Source: Interstate Commerce Commission, Annual Report 1965
Edited by the authors

10We have not found data about shipments by mean of transport measured in monetary values.

12



3.3. Regulation

As explained in Borenstein and Rose (2014), in the 1930s the airline industry was seen

as suffering from coordination issues, destructive competition and entry. Additionally,

the industry was developing in a context of financial instability and increasing military

concerns post Great Depression. A strong domestic airline industry was perceived as

an interest of national defense. As consequence, the Civil Aeronautics Board (CAB)

was created in 1938 with the objective to promote, encourage and develop civil aero-

nautics.11 It was empowered to control entry, fares, subsidies and mergers.12 In other

words, the CAB regulated the market by deciding which airlines could fly, in which

routes they could operate, the price that they charged in each route, the structure of

subsidies and merger decisions. The CAB regulated the airline industry in a barely

unchanged manner until it ceased to exist in 1985.

When the CAB was created, it conceived special rights to the existing airlines over

the connections they were operating. The CAB did not permit entry of new airlines on

interstate routes and gradually allowed current airlines to expand their routes. The

CAB controlled both the system and each airline’s network. The network was designed

to maintain industry stability and minimize subsidies, leading to a system where each

route was mainly operated by one or two airlines.13 Importantly, Borenstein and Rose

(2014) in pages 68-69 explain that ”the regulatory route award process largely prevented

airlines from reoptimizing their networks to reduce operation costs or improve service as technol-

ogy and travel patterns changed.” As a consequence, any technological improvement such

as increases in aircraft speed, capacity or range would not affect each airline’s flight

network in the short term.

11The CAB was a federal agency hence, in principle, would not have control over intrastate routes.
Nonetheless, according to Borenstein and Rose (2014) the CAB managed to have some intrastate
markets under its control using legal arguments.

12Safety regulation was under the control of the Federal Aviation Administration.
13Borenstein and Rose (2014) in page 68, based on Caves (1962), expose ”In 1958, for example, twenty-

three of the hundred largest city-pair markets were effectively monopolies; another fifty-seven were effectively
duopolies; and in only two did the three largest carriers have less than a 90 percent share.”
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By regulating fares, the CAB explicitly encouraged airlines to adopt new aircraft.

Airlines, when operating an older aircraft, would apply for a fare reduction arguing

that it is needed in order to preserve demand for low quality service. The CAB would

refuse this application, hence airlines would have to adopt new aircraft or risk losing

consumers who would choose another airline which flies newer aircrafts.

4. Air travel data

We construct a new data set of the flight network in the United States during the 1950s

and 1960s. We collected and digitized information of all the flights operated by the

main airlines and obtained the fastest route and travel time between every two airports

in the network.

To construct the flight network we use historical flight schedules of the main airlines

operating in 1950s and 1960s. Figure 3 is a fragment from an example page of the

1961 flight schedule of American Airlines. In the flight schedule we observe in the

center column the name of departure and arrival cities (which we match to airports

using airlines’ historical ticket office geographical location), while the small columns

on the sides depict flights. In the top of the small columns we observe the type of

service provided (first class, coach or both), aircraft operated, days operated (daily if

information is missing) and flight number. The content of the small columns displays

the departure and arrival time (local time, bold numbers represent PM) at each city,

including all intermediate stops.

We digitize flight schedules for the years 1951, 1956, 1961 and 1966 of six domestic

airlines: American Airlines (AA), Eastern Airlines (EA), United Airlines (UA), Trans

World Airlines (TWA), Braniff International Airways (BN), Northwest Airlines (NW),14

14These are six of the fifteen trunk (interstate) airlines operating in 1951. Many of the remaining trunk
airlines would merge with another trunk airline over the years, and there would be zero entry of
new airlines. We are currently digitizing the remaining trunk airlines and we plan to add them to
the travel time dataset in the future. We have already digitized: Allegheny Airlines, Capital Airlines,
Colonial Airlines, Continental Airlines and Delta Air Lines. We have also digitized the year 1970 for
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Figure 3: Flight schedule American Airlines 1961
The center column displays the name of departure and arrival cities. The small
columns on the sides display flights with departure and arrival time (local time, bold
numbers represent PM). The top of the small columns shows the type of service pro-
vided (first class, coach or both), aircraft operated, days operated (daily if information
is missing) and flight number.

and one international airline: Pan American Airways (PA). This group of airlines in-

cludes the Big 4: AA, EA, UA and TWA, which accounted for between 69% and 74%

of interstate air revenue passenger miles in the US in the years collected. BN and

NW were digitized in order to have a wide geographical coverage, while PA provides

international flights. Based on C.A.B. (1966), in the years collected, the six domestic

airlines together account for between 77% and 81% of interstate air revenue passenger

miles.

In total we have digitized 6,143 US flights (unique combinations of flight number-

year, 7,007 worldwide). However, flights often have multiple stops. If we count each

the six airlines used in this paper and Pan American. Due to a time constraint we have not included
them in the current analysis. We are planning to digitize BOAC to obtain more international flights,
and to cover for all airlines possible a 70 time period: 1930 to 2000.
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non-stop part (leg) of these flights separately, our sample contains 17,737 legs in the US

and 21,210 worldwide. Our data connects 275 US airports (434 worldwide) creating

2,563 unique origin-destination (directional) airport links (3,466 worldwide). Figure

4 displays the flight network in continental United States pooling all years together.

In Appendix A.2 we show the US flight network by year, around 80% of the non-stop

flights remain year-on-year.

Figure 4: United States flight network 1951-1966

Using departure and arrival time of each flight at each airport, we obtain the fastest

route and corresponding travel time between every two airports in our data. To obtain

the fastest route and travel time we modify the Dijkstra algorithm to account for layover

time in case the fastest route includes connecting flights.15

Once the fastest route between every two airports is computed, we match every

airport to 1950 Metropolitan Statistical Areas (MSA) using the shape file from Manson

et al. (2020). We consider only MSAs in contiguous United States. We use MSAs as
15We are currently working on setting a minimum waiting time for switching airplanes, such that the

change is not permitted unless waiting time is more than the minimum. For the time being we have
set the minimum waiting time to zero, meaning that in our calculation one passenger would be
able to switch from one airplane to another if departure of the following flight is one minute later
than arrival of the previous flight. This a rather implausible assumption and we are estimating the
minimum waiting time in each airport depending on the airport’s congestion.
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the geographical unit of analysis because they are constructed taking into account

commuting flows. We assume that people in an MSA would use, for each desired

route, the most appropriate airport lying inside or nearby the MSA. We match each

airport to all MSAs for which it lies inside the MSA boundary or is at most 15km away

from the MSA boundary.16 176 out of 275 US airports are matched to at least one MSA.

Meanwhile, 142 out of 168 MSAs are matched to one or more airports in at least one

year, and 108 MSAs are matched to one or more airports in the four years. We use the

sample of 108 MSAs that had an airport in the four years as our baseline travel time

data.17

4.1. Descriptive statistics: Air travel

To understand the changes in travel time we will first study travel time of non-stop

flights and then of all routes including connecting flights. Figure 5 displays the non-

stop fastest flight within each MSA pair that was operating in each year. In 1951 the

longest non-stop flight across MSAs was between Chicago and San Francisco using

the Douglas DC-6, covering a distance of 2,960 km in 7 hours 40 minutes. This travel

time was just under 8 hours, the maximum flight time allowed for a crew in a 24-hour

period.18 In 1956, new regulation allowed up to 10 hour flights for transcontinental

flights, the longest non-stop flight between MSAs was New York to San Francisco with

the Douglas DC-7, covering a distance of 4,151 km in 9 hours. Between 1951 and 1956,

while we observe an increase in average flight speed that went up to 17%, the main

change observed is that longer non-stop routes were possible.

In 1961, the first year in which we have jet aircrafts in the travel time data, there is a

reduction in travel time between MSA-pairs, especially for those far apart from each
16The 15km distance was chosen after inspecting airports near the border that should arguably be

matched, as for example, Atlanta ATL airport.
17In Appendix A.2 we include a table with the 168 MSAs, those connected at least once and those

connected in the four years. Among the MSAs not connected is San Jose, California, which in our
patent sample accounted for around 2% of patents. San Jose had an airport (SJC) during our time
period but it was not served by any of our airlines, so it is not included in our analysis.

18Honolulu was not concerned by the regulation. Honolulu was connected with non-stop flights to San
Francisco (9 hours 40 minutes), Los Angeles (11 hours) and Portland (12 hours 55 minutes).

17



other. In 1966, there is a further decrease in travel time due to a widespread adoption

of jet aircrafts in shorter distances. In Appendix Figure 22 we show the jet adoption

rate by distance for MSAs connected with a non-stop flight. All MSA-pairs more than

3,000km apart connected with a non-stop flight operate at least one jet flight in 1961,

and this expands to all those more than 2,000km apart in 1966. The speed gain of jets

relative to propeller aircrafts is increasing with the amount of time that the jet can fly

at its cruise speed, arguing in favor of an adoption that is increasing with the distance

between origin and destination.19

Figure 5: Non-stop fastest flights United States MSAs

The change in travel time in non-stop flights is also reflected in the travel time for

connecting flights. Figure 6 shows, relative to 1951, the average and standard deviation

change in travel time for all MSA-pairs, including non-stop and connecting flights.20

19We are currently exploring the differential timing of jet adoption across airlines. Differences in (pre-
existing) route distance and past contractual relationships with aircraft suppliers potentially led to
different adoption rates at each time period. For example, Eastern Airlines’ routes were particularly
shorter than for other airlines. Also, those committed to buy Douglas airplanes (the leader US
commercial aircraft supplier pre-jet era) would have adopted jets later, as Douglas launched jet
airplanes later than Boeing.

20The plot includes only MSA-pairs with travel time in all time periods. The standard deviation for
MSA-pairs less than 250km apart is big relative to the ones at other distances. Hence we decided not
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Between 1951 and 1956, there is an average reduction in travel time of 9.2% which

is roughly constant for all distances over 500km. Between 1951 and 1961, there is a

reduction in travel time that is increasing with distance. The average decrease in travel

time is of 16.8%, while the reduction is of 29.4% for a distance of more than 2,000km

and 39.2% for a distance of 4,250-4,500km. Between 1951 and 1966, there is an even

stronger decrease in travel time at all distances. The average reduction in travel time

is 28.7% across all distances, 40.8% for a distance of more than 2,000km and 48.4% for

a distance of 4,250-4,500km. The increased adoption of jets for short distance flights

implied that both non-stop flights at short distance and connecting flights at farther

distance had a decrease in travel time.

Figure 6: Change in MSAs travel time

Figure 25 in Appendix A.2 shows that the change in travel time is accompanied by a

reduction of the amount of legs needed to connect two MSAs at every distance. This

reduction is especially marked between 1951 and 1956, and 1961 and 1966. Between

1956 and 1961, we do not observe a big reduction in the amount of legs, implying

that the decrease in travel time observed in Figure 6 between 1956 and 1961 comes

to include it because it distorts the visualization of the rest of the plot.
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from a source other than the amount of legs. In Appendix Figure 26 we open up the

change in travel time by the way an MSA pair was connected in 1951 and 1966: either

directly (non-stop flight) or indirectly (connecting flight). We observe that much of the

increase in travel time for MSA pairs less than 250km apart comes from routes that in

1951 were operated non-stop while in 1966 were operated with connecting flights.21

Interestingly, for MSA-pairs more than 2,000km apart travel time reduced on average

42% for those pairs that were connected indirectly in both periods, and 51% for those

that switched from indirect to direct. This fact shows the relevance of improvements in

flight technology even for MSAs that were not directly connected.

It could be the case that a reduction in the amount of legs or an increase in frequency

of flights reduces layover time, which then translates into a reduction of travel time.

In Appendix Figure 28 we compare the change in travel time from 1951 to 1966 with a

counterfactual change in travel time in which we eliminate layover time in both time

periods. We observe that the average change in travel time is stronger at every distance

in the fictitious scenario without layover time. This implies that the relative importance

of layover time to total travel time within a route increased between 1951 and 1966, so

total travel time did not decrease proportionally to the change of in-flight travel time.

In short, layover time attenuated the reduction in travel time.

4.2. Constructing an instrument

In this section we construct an instrumental travel time that is based on the pre-existing

flight routes and the time-varying nation-wide roll out of jets. In this way, the instru-

ment abstracts from the endogenous decisions of two agents: First, regulator’s decision

on the opening/closure of routes. Second, airlines’ decision about to which routes

21Appendix Figure 27 repeats the exercise discarding layover time in all time periods. By comparing
Figure 26 and Figure 27 we can disentangle the effect of layover time and the change in in-flight time.
For MSA pairs less than 250km that changed from direct to indirect connection, 80% of the increase
in travel time is due to the increase in layover time (which was previously zero as it was a non-stop
flight), and 20% is due to the increase of in-flight time.
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allocate jet vs propeller airplanes and scheduling (frequency of flights and layover

time). We first explain the idea and identifying assumptions of the instrument, and

then we detail how it is constructed.

In Borenstein and Rose (2014) it is argued that, due to strict regulation, it was difficult

for airlines to adapt their flight network when technology to fly changed. However,

we may be concerned that the decision of the regulator to grant new routes could be

targeted to specific pairs or correlated with unobservable variables that also affect the

creation and diffusion of knowledge.22 Hence, as the first step in the construction of our

instrument, we fix routes to the ones we observe in 1951. In this way the instrumental

travel time is computed only using non-stop flights present in 1951, and does not

consider appearance or disappearance of non-stop flights in the data. The identifying

assumption is that the network of flight routes in 1951 did not yet include the changes

that would be optimal to operate with jet airplanes. In other words, we require that

the regulator did not change routes already by 1951 in anticipation of the arrival of jet

airplanes.23

Airlines could decide on two factors that affect travel time: the type of airplane (jet

vs. propeller) operated in each route24 and scheduling, which consists on the frequency

of flights and layover time in case of connecting flights. We may be concerned that, as

with the regulator, airlines’ decisions could be correlated with unobservables that also

affect the creation and diffusion of knowledge.25 The second step in the construction of

our instrument is to discard layover time (hence discarding all scheduling decisions) in

all time periods, and that in each year all routes are operated with a fictitious average

airplane of the year. Hence, the change in instrumental travel time in a route is indepen-

22For example, the regulator could have targeted the opening of new routes between places in order to
boost their economic activity.

23For example, in the instrument there are no non-stop transcontinental routes.
24In 1961, all non-stop flights of more than 3,000km had at least one jet operating within them, while in

1966 it was the case in all non-stop flights of more than 2,000km. Therefore the endogeneity of jet
adoption is a smaller concern for long distance flights.

25For example, airlines may have decided to prioritize the allocation of jets to routes which had a higher
share of business travel, which may be correlated with the diffusion of knowledge.
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dent of the type of airplane used in the route and it only depends on the nation-wide

roll out of jets. The identifying assumption is that no single route had the power to

shift the average speed of the year.

To construct the instrumental travel time we first estimate, separately for each year, a

linear regression of travel time on flight distance using only the fastest non-stop flight

in each origin-destination airport pairs.26 These yearly regressions provide us with the

fictitious average airplane of each year: the intercept gives the take-off and landing

time of the airplane while the slope provides the (inverse) speed. Second, we fit these

regressions to obtain predicted travel time in each non-stop flight and year. Third, for

each year, we compute the fastest travel time using the Dijkstra algorithm. The Dijkstra

algorithm looks for the fastest path using only 1951 non-stop flights, while the travel

time in each non-stop flight in each year is given by the predicted travel time from the

previous step. Layover time is set to zero in all years.

Figure 7 shows the percentage change in observed and instrumental travel time

relative to 1951. We compute the percentage change within each MSA-pair for each

year and then take averages within 250km bins. We observe that the instrumental travel

time follows pretty closely the observed change in travel time in each year. Especially,

it replicates the pattern of a stronger decrease in travel time for MSAs located farther

apart. It is only for MSAs less than 250-500km apart that the change in the instrumental

travel time departs from the observed change.27 This finding shows that for most of

the change in travel time that we observe is due to the change in speed of airplanes,

and that the endogeneity concern is limited for MSAs located far away from each other.

26The use of a linear regression is motivated by the linearity between travel time and distance displayed
in Figure 5. To estimate these regressions we use all routes appearing in each year.

27We observe an increase in travel time for short distances in 1961 relative to 1951. Given that non-stop
routes are fixed and that for longer distances there is a decrease in travel time, the increase in travel
time in short distances comes from an increase in the value of the intercept relative to the slope in
1961, relative to 1951.
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Figure 7: Instrumental Travel Time between US MSAs.

In Appendix A.2 we present other two counterfactual travel times: one in which we

fix airplanes to be the average airplane of 1951 and allow routes to evolve, and another

in which both the average airplane and routes are varying. These two counterfactuals

together with the one presented in this section allow us to decompose the change in

travel time by the change in routes and the change in speed of airplanes. We obtain that

around 90% of the change in travel time is due to the change in speed of aircrafts, while

around 10% of the change is due to the change in the flight routes. Appendix Figure

30 shows that the share is roughly constant for all distances. This finding confirms

that most of the observed changes in travel time are due to improvements in flight

technology.

5. Patent data

We use patent data as our source of innovation information. We construct a dataset of all

patents granted by the United States Patent and Trademark Office (USPTO) with filing
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year28 between 1949 and 1968, which includes for each patent: filing year, technology

classification, location of the inventors when they applied for the patent, owner of the

patent and citations to other patents also granted in the United States. This dataset

provides the distribution of patents and citations over the geographic space, allowing

to take into account ownership structure.

To construct the patent dataset we downloaded from Google Patents all patents

granted by the USPTO with filing year between 1949 and 1968. This dataset contains

patent number, filing year and citations.29,30 Based on the patent number we merge it

with multiple datasets. First, we obtained technology class from the USPTO Master

Classification File31 and we aggregated them to the six technology categories of Hall

et al. (2001). Second, we obtained geographic location of inventors from three datasets:

HistPat (Petralia et al. (2016)) and HistPat International (Petralia (2019)) for patents

published until 1975, Fung Institute (Balsmeier et al. (2018)) for patents published after

1975.32 We match all inventors’ locations to 1950 Metropolitan Statistical Areas (MSAs)

in contiguous United States. To do the match we obtain geographical coordinates from

the GeoNames US Gazetteer file and Open Street Maps, and use the MSAs shape file

from Manson et al. (2020). Third, we obtain ownership of patents from two sources:

Kogan et al. (2017) for patents owned by firms listed in the US stock market and Patstat

28Filing year, also called application year, is the closest date to the date of invention that is present in the
data and it represent the date of the first administrative event in order to obtain a patent. In the other
hand, the publishing (also called granting year) is a later year in which the patent is granted. The
difference between filing and publishing year depends on diverse non-innovation related factors (as
capacity of the patent office to revise applications) and changes over time. Hence filing year is the
date in our data that approximates the best to the date of invention.

29Very few patents had missing information on filing year. We complemented both missing filing year
and citations with the OCR USPTO dataset.

30We note that the patent citation record starts in 1947, year in which the USPTO made it compulsory to
have front page citations of prior art. Gross (2019)

31https://www.google.com/googlebooks/uspto-patents-class.html
32Due to the gap between the filing year and publishing year we also do the matching to patents

published after 1968. Our underlying patent data actually covers a longer time period of filing years,
which we need for example to construct forward and backward citation lags. However, there are
limitations to use the geographic data in filing years 1971-1972. In Appendix B.3 we show that during
filing years 1971-1972 the rate of unmatched patents to inventors’ location increases. This is probably
due to Histpat and Fung data not being a perfect continuation one of the other.
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(Magerman et al. (2006)) for the remaining unmatched patents.33

For the descriptives presented below and the posterior analysis we truncate and

aggregate the data in the following way. We drop patents that are owned by univer-

sities or government organizations. To count patents that are classified into multiple

technology categories, we do a fractional count by assigning proportionally a part of the

patent to each category. Citations are counted as the multiplication of the technology

weight of the citing and cited patents. We drop patents (and their citations) that have

inventors in multiple MSAs34 and citations in which the citing owner is the same as the

cited owner.35

We aggregate the patent data to 4 time periods of 5 years each, with the center of

the period being the year of travel time data collected. The periods are: 1951 (which

contains the years 1949-1953), 1956 (1954-1958), 1961 (1959-1963) and 1966 (1964-1968).

We consider only patents in Metropolitan Statistical Areas (MSAs) that are matched to

an airport in the four periods.36 The final dataset has 108 Metropolitan Statistical Areas

(MSAs) with patents and travel time.

5.1. Descriptive statistics: Patents

This section presents three facts about US patents over our sample period: First, ini-

tially less innovative locations had a higher patenting growth rate. The average yearly

growth rate of locations in the lowest quartile of initial innovativeness was 7.2% while

it was 1.9% for those in the highest quartile. High growth locations were also primarily

33Patent ownership in both datasets comes from the patent text, which is self declared by the patent
applicant. Particularly, Kogan et al. (2017) does not explicitly state if it takes into account firm-
ownership structure to determine the ultimate owner of a patent, neither does Patstat.

34Working with multi-MSA patents requires an assumption on how to compute distance and travel time
between the citing and cited patents, as it is not a single origin-destination location pair. We hence
prefer to abstract from multi-MSA patents. In the other hand, collaboration of inventors located in
different MSAs is a interesting subject and it is part of our research agenda.

35Incentives to self-cite may be different than to cite patents of other owners.
36We drop around 9% of patents that are in an MSA that is not matched to an airport in the 4 time

periods. Descriptive statistics including those patents are similar to the ones presented.
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in the South and the West of the US. The South and the West grew three times as fast

as the Midwest and the Northeast. Second, over time firms grew larger as measured

by the amount of MSAs in which they had research establishments. At the same time,

the share of patents filed by large multi-establishment firms increased. The amount of

firms with research establishments in more than 10 MSAs almost tripled over the time

period and their share of patents doubled. Third, the mass of citations shifted towards

longer distances. While the first quartile of citation distance remained relative stable

over the time period, the third quartile increased its distance by 39%. At the same time,

the share of citations at more than 2,000km increased by 30%.

We compute descriptives by technology. In here we present descriptives of averages

across technologies. Technology specific descriptives are included in Appendix B.3.

Fact 1.a.: Initially less innovative locations had a higher patenting growth rate

In the period 1951 to 1966 we observe that the highest growth of patenting takes place

in locations that were initially less innovative. The differential growth rate implies a

convergence rate of 5.3% per year.

Figure 8 shows the geographic distribution of patenting in 1951. Darker colors refer

to a higher level of initial innovativeness, which is defined as the amount of patents

filed by inventors in the MSA in 1951.37 We observe that MSAs in the top quartile

of patenting are concentrated in the Northeast (which includes New York) and the

Midwest (which includes Chicago), with few additional MSAs in the West.38,39

37To compute the level of initial innovativeness we only use patents filed in 1951 (years 1949-1953).
We aggregate patents to the MSA-technology level and then compute the quantile-position of each
MSA in the technology. Lower values of quantile-position refers to lower amount of patents in the
technology (relative to other MSAs). Each MSA has a different value of quantile-position in each of
the 6 technology categories. To obtain the MSA level quantile we take the average quantile across
technologies within the MSA. Finally we classify MSAs into quartiles depending on whether the
average quantile is higher or lower than the thresholds 0.25, 0.50, 0.75.

38In Appendix B.3 we show that the 1951 geographic distribution of patents looks similar across
technology categories.

39The top 5 patenting MSAs in 1951 were: New York City (25% of all patents), Chicago (11%), Los
Angeles (8%), Philadelphia (6%) and Boston (4%).
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Figure 9 shows the geographic distribution of patenting growth in 1951-1966.40 We

observe a striking pattern relative to Figure 8: high growth MSAs were those that were

initially less innovative. High growth happens in initially less innovative locations the

South and the West but also in the Northeast. We confirm this pattern in Figure 10,

which shows the MSA’s ranking of innovativeness in 1951 and its subsequent patenting

growth rate in 1951-1966. Figure 10 shows that MSAs that were initially more inno-

vative (lower values in the ranking) are those that saw lower values of subsequent

patenting growth.41,42 We estimate a linear regression with an intercept and a slope,

and find that the slope is positive and statistically different from zero. At the mean,

lowering initial innovativeness by 10 positions in the ranking was associated with a

subsequent 0.42 percentage points higher yearly growth rate of patenting.

Figure 10 presents average growth rates across technologies within a MSA. If we

compute the average growth rates across MSAs within a technology and quartile of

initial innovativeness, and then take the average across technologies we obtain a result

that goes in the same direction. The average yearly growth rate of MSA-technologies

in the lowest quartile of initial innovativeness is 7.2% while it is 1.9% in the highest

quartile.43 The percentage point difference between the two growth rates implies that

locations in the lowest quartile converged towards locations in the highest quartile at

40We compute the growth rate of patenting in each technology within a MSA and then take the average
across technologies within the MSA.

41Each dot in Figure 10 is an MSA. To compute the MSA ranking we need to double-rank MSAs. First
we rank all MSAs in each technology. Second we take the across-technology average ranking of
each MSA. Third we rank all MSA’s averages. To compute the MSA’s yearly growth rate we first
take the 1951-1966 growth rate for each technology in the MSA. We then take the average across
technology. Finally we obtain the MSA’s yearly growth rate by computing: yearly growth rate =

(1+ 19 year growth rate)(1/19) − 1 (the 1951 to 1966 period is a 20 year window, we take growth rates
as being from the first year 1949 to the last one 1968, which is 19 year growth).

42In Appendix B.3 we show replicate the plot differentiating geographic regions. MSAs that were
initially less innovative and had high subsequent growth were located in all four regions, although
they were primarily located in the South and the West.

43We first compute the 1951-1966 growth rate (19-year growth rate) for each MSA-technology. We then
take averages across MSAs within a quartile-technology, and after take averages across technologies
within a quartile. Finally, we convert the 19-year growth rate into an average yearly growth rate.
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a speed of 5.3% per year.44 Appendix B.3 shows that the Herfindahl index of patent

concentration across MSAs decreases during our sample period, a finding in line with

The Postwar Decline in Concentration, 1945-1990 described in Andrews and Whalley

(2021).

Figure 8: Geography of Patenting 1951 Figure 9: Patent growth 1951-1966

44We note that the aggregate growth of patents is much smaller than the across MSAs unweighted
average, and this is exactly because initially less innovative MSAs grew faster. If we compute the
growth rate in nationwide amount of patents in each of the technologies and then average across
technologies we obtain an yearly growth rate of 1.5%.
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Figure 10: Patent growth by initial innovativeness ranking of MSA

Fact 1.b.: The South and the West of the US had a higher patenting growth rate

Figure 9 shows that MSAs located in the South and the West of the US had a higher

patenting growth rate in 1951-1966. We classify MSAs using Census Regions of the

US (Midwest, Northeast, South and West)45 and aggregate patents within each region-

technology-year. Figures 11 and 12 present averages across technologies within a

region-year. Figure 11 shows that the share of patents filed by inventors located in the

Midwest and the Northeast decreased from 75% in 1951 to 68% in 1966, while the share

of patents filed in the South and the West increased from 25% to 32%. The opposite

change in the shares implies that the South and the West had a higher growth rate of

patenting relative to the Midwest and the Northeast.

Figure 12 shows that in the period 1951-1966 the South and the West increased their

amount of patenting by 80%, while the Midwest and the Northeast had a 22% growth.46

45In Appendix C we present a map with the four Census Regions.
46Growth rates are computed by region-technology and then averaged across technologies within region.
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Translated into yearly growth rates, the South and the West grew three times as fast as

the Midwest and the Northeast (3.14% vs. 1.05% per year).47

Figure 11: Share of patents by region Figure 12: Patent growth by region

Fact 2: Multi-establishment firms expanded geographically and accounted for a

higher share of patents

Using the patent owner identifier of patents we identify all locations in which a patent

owner had inventors applying for patents. We label a patent owner a firm and assume

that a firm has a research establishment in the MSAs in which it has inventors applying

for patents. Combining all patents belonging to the same firm we know if a firm has

research establishments in multiple MSAs, if a firm expands over time and where it

locates its establishments.

In Table 1 we count the number of firms and compute their share of patents according

to whether the firm had 1, 2 to 5, 6 to 10, 11 to 20, or more than 20 establishments in

each respective year. As we can see, the vast majority of firms had one establishment

(95.8% in 1951), while very few had 11 or more establishments (0.1% in 1951). In 1951,

single-establishment firms accounted for 57% of all patents. At the same time, firms

473.14% = 1.80(1/19) × 100, 1.05% = 1.22(1/19) × 100
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with 11 or more establishments (42 firms, 0.1% of all firms) accounted for 15% of all

patents.

From 1951 to 1966, the amount of single establishment firms declined by 1% while

the amount of firms with 11 or more establishments increased by 283%. In other words,

the amount of firms with presence in 11 MSAs or more grew from 42 to 119 firms. At

the same time, the share of patents accounted by firms with 11 or more establishments

increased from 15% to 31%. Simultaneously, the share of patents of single-establishment

firms decreased from 57% to 46%. Hence, Table 1 illustrates that both the amount of

multi-establishment firms and their share of patents grew over time.48 In Appendix B.3

we show that multi-establishment firms increased their share of patents in all quartiles

of MSAs’ initial innovativeness, with a stronger increase in initially less innovative

MSAs.

Number of firms Share of patents

Year
N. estab. 1 2 to 5 6 to 10 11 to 20 +20 1 2 to 5 6 to 10 11 to 20 +20

1951 41,133 1,684 75 34 8 0.57 0.19 0.08 0.07 0.08
1956 42,590 1,927 111 60 12 0.52 0.19 0.09 0.11 0.08
1961 37,366 2,112 131 80 18 0.48 0.19 0.09 0.13 0.12
1966 40,711 2,086 132 89 30 0.46 0.15 0.09 0.14 0.17

Table 1: Number of firms and share of patents by firm’s geographic coverage
Geographic coverage is computed as the amount of Metropolitan Statistical Areas (MSAs) in which the firm has
inventors applying for patents (research establishments) in a certain year. Bins of geographic coverage are 1 MSA, 2 to 5
MSAs, 6 to 10 MSAs, 11 to 20 MSAs, more than 20 MSAs. The maximum possible is 108 MSAs.

While we observe an increase in the number of multi-establishment firms, we also

observe an increase in the distance between establishments of the same firm. Figure

13 shows that, for firms that have multiple establishments in the respective year, the

48Within each year and bin of firm size, we compute the share of patents by technology and then take the
average across technologies. We have computed the across-firms Herfindahl index within technology
(so it shows the level of across-firm concentration within a technology) and we do not observe a clear
pattern of either concentration or deconcentration.
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average distance across establishments within the firm increased over time.49

Figure 13: Average distance across establishments within the firm

Fact 3: Distance of citations increased

In our analysis we use citations as a proxy for knowledge diffusion. According to Jaffe

et al. (1993) ”a citation of Patent X by Patent Y means that X represents a piece of previously

existing knowledge upon which Y builds.” (page 580).50 We compute the distance between

the citing inventor and the cited inventor. Figure 14 shows the evolution over time

of the first, second and third quartile of citation distance.51 We observe that 25% of

citations happened between inventors located less than 300km apart throughout our

sample period. For the middle 50% of citations we observe that over time inventors

cited other inventors located farther away. The third quartile of citation distance in-

49The increase in distance across establishments within firms could well be the result of firms that are
growing and randomly producing new patents in different locations. However, in Section 8 we show
that the process firms’ geographic expansion was not random: firm’s expansion was directed towards
locations that got larger reductions in travel time to the firm’s headquarters.

50Jaffe et al. (1993) discusses the reasons why to cite and why not to cite. Using a survey of inventors,
Jaffe et al. (2000) find that there is communication among inventors and citations are a ”noisy signal of
the presence of spillovers.”

51We compute distance between MSA centroids.
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creased from 1,642km in 1951 to 2,284km in 1961, a 39% increase in the distance.52 In

other words, the mass of citations shifted towards longer distances.

In Figure 15 we present the share of citations by distance range between the citing

and cited inventors.53 The distance cutoffs where chosen in order to have a balanced

shared of citations in the initial time period, and considering the changes in travel time

presented in Section 4.1. The share of citations that happen between inventors located

more than 2,000km apart grew from 21.5% in 1951 to 27.9% in 1966. The 6.4 percentage

points increase represents an increase of 30% of the share of citations at more than

2,000km.

Figure 14: Quantiles of citation distance Figure 15: Share of citations by distance

52As a reference, the straight line distance from New York City NY to other places is: Boston MA 300km,
Chicago IL 1,140km, Dallas TX 2,200km, San Francisco CA 4,130km. The quantile 0.10 of was at 0km
in every period, implying that 10% of citations took place within MSA. The quantile 0.90 was around
3,611km to 3,789km over the time sample period.

53While Figure 14 shows how the distance of each quantile changes over time, Figure 15 shows the mass
of citations (and hence the quantile to which belongs) in a certain distance cutoff. For example, in
1951 the share of citations in the 0-300km range was 31.6%, which is equal to saying that the quantile
0.316 in 1951 was 300km.
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6. Diffusion of knowledge

In this section we show that the reduction in travel time led to an increase in knowledge

diffusion, especially over long distances. In doing so we estimate the parameter β

highlighted in equation (2): the elasticity of knowledge diffusion to travel time.

To perform the analysis we merge the Air Travel and Patent datasets to obtain a final

dataset that contains for each patent owner-location, the amount of patents filed in a

certain 5-year period and technology class, the amount of citations to other patents

with their respective owner identifier, location and technology class, and the travel time

to every location. We aggregate citations to the citing-cited establishment-technology

within each period. We assume that passengers take a return flight, hence we make

travel times symmetric.54

We estimate a gravity equation which relates citations between two establishments-

technologies with their pairwise travel time.55 We estimate the following regression:

citationsFiGjhkt = exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt (3)

where citationsFiGjhkt is the amount of citations from patents filed by the establishment

of firm F in location i, technology h and time period t, to patents filed by establishment

of firm G in location j and technology k. We call Fi the research establishment of firm F

in location i. travel timeijt is the air travel time (in minutes) between location i and j

at time period t. The parameter of interest in the regression is β, which represents the

elasticity of citations to travel time.56 If citations are affected negatively by travel time

we would expect a negative value of β.

54travel timeijt = (travel timeoriginal
ijt + travel timeoriginal

jit )/2 where travel timeoriginal
ijt stands for the travel

time between MSA i and j at time period t.
55For explanation and micro foundations of the gravity equation see Head and Mayer (2014) and

references thereof.
56A 1 percent increase in travel time has an effect of β percent increase (or decrease in the case of a

negative β) in citations.
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Given the panel structure of our data, we can include the fixed effect FEFiGjhk that

absorbs any time invariant citation behavior within the citing establishment-technology

and cited establishment-technology. This fixed effect flexibly controls for persistent re-

lationships within an establishment pair that would lead to relatively more (or less)

citations. That includes characteristics like physical distance, but also pre-existing

commercial relationships between establishments. The fixed effects FEFiht and FEGjkt

control for the time changing general level of citations specific to each establishment

and technology. For example FEFiht controls for the fact that if Fih files more patents

in a given period, it would mechanically make more citations to every establishment.

On the other hand, FEGjkt controls for Gjk filing more patents or higher quality patents

that would receive more citations from every establishment.57

The inclusion of FEFiGjhk implies that only variation across time within an establishment-

pair is used for identification. By additionally including the fixed effect FEFiht, the

across-time variation is compared only between citing-cited establishment-technology

pairs FiGjhk within a citing establishment-technology Fih in period t. As we also

include FEGjkt, the comparison is done while controlling for the size of the cited

establishment-technology Gjk in period t. Put differently and simplifying slightly, the

identification of β relies on changes in citations and travel time within an establishment-

pair, relative to another establishment-pair with the same citing establishment, condi-

tional on the two cited establishments’ sizes.

Following Silva and Tenreyro (2006), we estimate the gravity equation by Poisson

Pseudo Maximum Likelihood (PPML).58 This estimation methodology has two ad-

vantages over a multiplicative model that is then log-linearized to obtain a log-log

specification. First, it only requires the conditional mean of the dependent variable to be

correctly specified, while the OLS estimation of the log-linearized model would lead to

57In the International Trade literature, the parallel of the fixed effects (simplified for exposition) would
be: FEij country-pair fixed effect, FEjt origin-time fixed effect and FEit destination-time fixed effect.

58We use the package fixest (Bergé (2018)) in R to estimate high dimensional fixed effects generalized
linear models feglm with Poisson link function.
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biased estimates in the presence of heteroskedascity. Second, it allows to include zeros

in the dependent variable, which is especially relevant when using disaggregated data.

One downside of estimating PPML with the fixed effects that we include is that both

coefficients and standard errors have to be corrected due to the incidental parameter

problem (Weidner and Zylkin (2021)). We follow Weidner and Zylkin (2021) to use

split-panel jackknife bias-correction on the coefficients and Dhaene and Jochmans (2015)

to bootstrap standard errors which we also bias-correct with split-panel jackknife.59

Whenever FiGjhk has positive citations in at least one period and missing value in

another, we impute zero citations in the missing period.60 Travel time is set to one

minute whenever i = j.61

Column (1) in Table 2 presents the results of estimating equation (3). The value of the

elasticity of citations to travel time is estimated to be −0.083, statistically significant at

the 1% level. Given the average reduction in travel time of 31.4% in the full estimating

sample, the elasticity implies that citations increased on average 2.6% as consequence

of the reduction in travel time. If we consider the average decrease in travel time across

all MSAs in the baseline travel time data, the implied increase is 2.4%.62

The importance of air transport relative to other means of transport potentially de-

pends on the distance to travel. Also, we observed in section 4.1 that the improvements

in air travel time depended on the distance to travel, with a difference in jet adoption

59Details on the bias correction and bootstrap procedures are provided in Appendix D.
60We do not impute zeros in FiGjhk that are always zero, as those observations would be dropped due

to not being able to identify FEFiGjhk.
61We measure air travel time in minutes. In our sample 13% of citations happen within the same MSA.

The inclusion of those citations in the estimation increases the amount of observations available to
identify of FEFiht and FEGjkt, and hence keeping them increases the amount of FiGjhkt that remain in
the effective sample to identify β. In order to include them we then need to impute a within-location
travel time. We assume that within-location (air) travel time is not changing across time periods.
Nonetheless, the identification of β is not affected by the value chosen for the within-location (time
invariant) travel time, as β is identified by across time variation. In the appendix we show results
using other values of (time invariant) within MSA travel time and the coefficients remain equal.

62These values come from the multiplication of the elasticity of citations to travel time 0.083 and the
average decrease in travel time between 1951 and 1966: 31.4% in the full estimating sample and 28.7%
in the raw data of travel time across MSAs.
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PPML IV PPML
Dep. variable: citations citFiGjhkt citFiGjhkt

(1) (2) (3) (4)
log(travel time) −0.083∗∗∗ −0.152∗∗∗

(0.019) (0.029)

log(travel time) × 0-300km 0.019 −0.076
(0.036) (0.221)

log(travel time) × 300-1,000km −0.089∗∗∗ −0.134∗∗∗
(0.023) (0.044)

log(travel time) × 1,000-2,000km −0.094∗∗∗ −0.112∗∗
(0.033) (0.047)

log(travel time) × +2,000km −0.169∗∗∗ −0.203∗∗∗
(0.039) (0.043)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 2: Elasticity of citations to travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =
exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to
1 when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute
zero citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance
bin between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) show the result of two
step instrumental variables estimation, where log(travel timeijt) is instrumented with log(travel timefix routes

ijt ), the
travel time that would have taken place if routes were fixed to the ones observed in 1951 and in each year routes
were operated with the average airplane of the year. Bootstrap standard errors are presented in parentheses. The
coefficients and standard errors in columns (1) and (2) are jackknife bias-corrected. R2 is computed as the squared
correlation between observed and fitted values.
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for travel distances under and over 2,000km. Taking these two characteristics into

account, we estimate a variation of equation (3) in which we allow the elasticity of

citations to travel time to vary by distance interval between the locations of citing and

cited establishments.63 Column (2) in Table 2 shows the result of this estimation.64 The

estimated value of the elasticity in absolute terms increases with distance, reaching

−0.169 for distances of more than 2,000km. Between 1951 and 1966 the average change

in travel time in the full estimating sample is 47.7% for a distance of more than 2,000km.

The estimated elasticity implies that citations between establishments at more than

2,000km apart increased by 8.1% due to the decrease in travel time. In total citations

at more than 2,000km increased by 21%, implying that the change in travel time can

account accounts for 38.2% of the observed increase. If instead we consider the 40.8%

average reduction in travel time across MSAs in the raw data, the elasticity implies an

increase in citations of 6.9%, accounting for 32.7% of the total citation increase.

In Appendix B.3 we investigate different heterogeneous effects. We study how travel

time affects the extensive margin of citations (whether an establishment cites another

establishment or not) and the intensive margin (conditional on citing, how much it

cites). We find the effect comes from both margins. We estimate an heterogeneous

elasticity depending on the level of spatial concentration of the citing technology and

the cited technology, we do not find a statistical difference. We also look at whether

it is older patents or younger patents that get diffused, finding some slight evidence

that it is technologies that take longer time to diffuse that increase more their diffusion

with the reduction in travel time. We study citations to and from government patents,

and self citations, on the whole we do not find a different pattern from the baseline.

We also do not find a particular pattern of the elasticity depending on the citing firm’s

size as measured by the amount of patents filed in 1949-1953. Finally, we estimate the

elasticity by citing and cited technology and most of the effect seems to come when the

citing and cited technologies are the same.

63We compute distance between the geographical center of each MSA.
64The share of observations (citations) in each distance interval is: 0-300km 26.1% (28.5%), 300-1,000km

30.7% (28.5%), 1,000-2,000km 19.7% (23.4%), +2,000km 23.4% (19.6%).
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The identifying assumption in equation (3) is that there is no omitted variable that

would either drive both the diffusion of knowledge and the change in travel time, or be

a driver the diffusion of knowledge and be correlated with the change in travel time.

In the remaining of this section we address the first type of potential omitted variable

by estimating the model by instrumental variables. In the following subsection we

address the second type of omitted variables by adding multiple controls. In both cases

we show that results do not change.

As mentioned in Section 4.2, we may be concerned that the timing and allocation of

jets to routes and that the opening/closure of routes were not random. In case there

is an omitted variable that affects the change in travel time at the MSA pair level and

is correlated with citations across establishments within the same MSA, we would

estimate biased coefficients. In order to tackle the endogeneity concern due to omitted

variable we do an instrumental variables estimation using the instrument proposed in

Section 4.2. To implement the instrumental variables estimation we follow a control

function approach described in Wooldridge (2014). We proceed in two steps estimating

the following two equations:

log(travel time)FiGjhkt = λ2 log(travel timefix routes
FiGjhkt )

+ FEFiGjhk + FEFiht + FEGjkt + uFiGjhkt

(4)

citationsFiGjhkt = exp [β log(travel timeijt) + λ ûFiGjhkt

+ FEFiGjhk + FEFiht + FEGjkt] × vFiGjhkt

(5)

In a first step we estimate equation (4) and obtain estimated residuals ûFiGjhkt. In a

second step we use the estimated residuals as a regressor in equation (5) which controls

for the endogenous component of travel time. To perform inference we bootstrap stan-

dard errors.65 According to Wooldridge (2014), there would be evidence of endogeneity

if the parameter λ in equation (5) is estimated to be statistically different from zero.

65Appendix D includes details on the bootstrap procedure.
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Columns (3) and (4) of Table 2 show the results of the instrumental variables esti-

mation. If airlines were allocating jet airplanes to routes that would have witnessed a

higher degree of exchange of knowledge even in the absence of jets, then we would

expect the instrumental variables estimate to be smaller in absolute terms relative to

the baseline coefficient. On the other hand, if the regulator targeted the opening of new

routes between places that were in a lower trend of exchange of knowledge, we would

expect the instrumented coefficient to be larger in absolute terms. Column (3) estimates

the elasticity to be -0.152, bigger in absolute value compared to the non-instrumented

estimate. The instrumental variables corrects for a downward bias in absolute terms,

which represents evidence in favor of the regulator targeting the opening of new routes

between places that had a lower degree of exchange of knowledge.

In column (4) of Table 2 we see the coefficients of the instrumental variable estimation

by distance between the citing and cited establishments. We observe the presence

of a bias in the same direction as in column (3), however the magnitude of the bias

is smaller except for the distance bin 0-300km, which is not precisely estimated. In

particular, at more than 2,000km, the coefficient is relatively similar to the baseline

estimation. In Appendix E we show the regression including coefficients on the residual

controls. If the coefficients on controls are statistically significant, that is evidence of

endogeneity. While the control is statistically significant when using only one coefficient

for all distance, none of them is statistically significant when opening the coefficient

by distance range. In other words, we do not find evidence of endogeneity at long

distances, especially at +2,000km.

6.1. Diffusion of knowledge: Robustness

We may be concerned that there are other variables that could drive the diffusion of

knowledge and at the same time be correlated with the change in travel time. In order
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to bias the coefficients, such omitted variables should be time-changing at the origin-

destination MSA pair and be systematically correlated with the change in MSA-pair

air travel time.66 We consider three potential variables that could bias our estimates:

improvements in highways, improvements in telephone, flight ticket prices. In Table 3

we show the results controlling for this variables separately, while in Appendix E we

include them simultaneously. Estimates are robust to including these controls.

Column (1) of Table 3 repeats the result of column (2) in Table 2. Column (2) repeats

column (1) without bias correction.67 We observe that not doing the bias correction

does not qualitatively affect results. Columns (3) to (6) include the additional controls

and should be compared to column (2).

First, in 1947 the Congress published the official plan for the Interstate Highway

System, a nation-wide infrastructure plan to improve existing highways and build

new ones (see Baum-Snow (2007), Michaels (2008), Jaworski and Kitchens (2019) and

Herzog (2021)). In case the change in travel time by air is correlated with the change

in travel time by highway, we would have an omitted variable bias if we include only

one of them in the estimation. Taylor Jaworski has graciously shared with us data on

county-to-county highway travel time and travel costs for 1950, 1960 and 1970, which

we converted to MSA-to-MSA and linearly interpolated to convert to the same years of

our air travel data. Hence we have a MSA-to-MSA time-varying measure of travel time.

In Appendix E we show the correlation of MSA-to-MSA change in air travel time and

highway travel time.

Second, other means of communication like telephone lines may have expanded

or changed their price during the period of analysis. Haines et al. (2010) contains

information on the share of households within each city with telephone lines in 1960.

66Variables that are not time changing or that are time changing at the MSA or establishment level do
not represent a threat to identification, as they are flexibly controlled for with the fixed effects.

67The jackknife bias-correction due to the incidental parameter problem is computationally intensive.
Due to the computational burden, we have still not bias-corrected all coefficients. Columns (2) to (6)
of Table 3 do not include bias-correction.
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We aggregate the variable to the MSA level. For each MSA-pair, we take the log of the

mean share of households with telephone lines.68 To include the variable as control

we interact it with a time dummy to make the measure time variant. The assumption

behind the interaction is that, if telephone lines expanded or changed their price over

the time period, this time-change specific to each year was proportional to the 1960 log

mean share of the MSA-pair.

Third, during the period of analysis ticket prices were set by the Civil Aeronautics

Board, so airlines could not set prices of their own tickets. Some airlines included a

sample of prices in the last page of their booklet of flight schedules a sample of prices,

which we digitized. In appendix A.2 we document multiple facts about prices. The

relevant fact for this section is that prices were relatively constant until 1962-1963, years

in which we observe a drop in prices of around 20% for routes of more than 1,000km

distance. We may be concerned that the change in flow of knowledge is actually con-

sequence of a change in prices, which happens to be correlated with the change in

travel time. Given that we do not have ticket prices for each route and year, we use

an estimated route price which is time varying. We obtain estimated prices by using

the sample of prices that we digitized and fitting, for each year, price on a third degree

polynomial of distance between origin and destination. We use log of estimated prices

as control.69

Column (3) to (5) of Table 3 include the described controls. Assuming the covariance

across coefficients is zero, none of the coefficients is statistically different from the

baseline coefficients either in column (1) or (2).70

68Data from the 1962 City Data Book which comes from the US Bureau of the Census. log(mean
telephone shareij = log((telephone sharei+telephone sharej)/2). We take the log of the mean share
because the share is a linear combination of origin MSA and destination MSA characteristics, hence
perfectly explained by origin and destination fixed effects. Taking the log prevents this.

69In order to perform inference we should adjust standard errors by the fact that we have a predicted
regressor as control variable.

70To perform a test of statistical difference across coefficients of different regressions we need to estimate
the covariance between them. We are currently doing a joint-bootstrap to obtain the covariance and
perform the test.
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.

Fourth, we control for a time varying effect of distance on citations. We may believe

that other variables may have an effect on the diffusion of knowledge, and those vari-

ables are related to the distance between the citing and cited establishments. In column

(6) we include as control log(distance) interacted with a time dummy. We observe that

the coefficients reduce in magnitude, potentially due to the fact that the change in

travel time is also correlated with distance, hence controlling for a time-varying effect

of distance absorbs part of the effect. In spite of that, the coefficient for distance of more

than 2,000km remains statistically significant at the 5%. This result shows that travel

time and distance are not equivalent measures. Hence, it highlights the importance of

the origin-destination time varying travel time data when studying the impact of face

to face. At the same time, this result differentiates the analysis from the one of Feyrer

(2019) who uses two types of time-invariant distance (sea distance and geographical

distance) interacted with time dummies.

Finally, as we will see in section 8.2, entry and exit of research establishments that

was not uniform across locations during the sample period. We may then be concerned

that the change in diffusion of knowledge is only consequence of the change in the

geographic location of innovation. In Appendix E we re-estimate equation (3) with

different samples: first, using only citing establishments that were present in 1949-1953,

and second using only citing and cited establishments that were present in 1949-1953.

We find the coefficient at more than 2,000km remains comparable to the one in the

baseline regression, statistically significant at the 1%.

7. Creation of knowledge

In this section we show that the reduction in travel time to innovative locations led to

an increase in knowledge creation. We show that the effect on knowledge creation was

stronger in initially less innovative locations, leading to convergence across locations in
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PPML
bias-corrected

PPML
not bias-corrected Highway time Telephone × time Price Distance × time

Dep. variable: citations citFiGjhkt
(1) (2) (3) (4) (5) (6)

log(travel time) × 0-300km 0.019 0.021 0.023 0.0198 0.025 0.032
(0.036) (0.039) (0.039) (0.039) (0.038) (0.040)

log(travel time) × 300-1,000km −0.089∗∗∗ −0.099∗∗∗ −0.096∗∗∗ −0.094∗∗∗ −0.102∗∗∗ −0.075∗∗
(0.023) (0.027) (0.028) (0.027) (0.027) (0.030)

log(travel time) × 1,000-2,000km −0.094∗∗∗ −0.093∗∗ −0.089∗∗ −0.071∗ −0.104∗∗ −0.040
(0.033) (0.042) (0.044) (0.042) (0.042) (0.052)

log(travel time) × +2,000km −0.169∗∗∗ −0.185∗∗∗ −0.180∗∗∗ −0.172∗∗∗ −0.196∗∗∗ −0.124∗∗
(0.039) (0.049) (0.050) (0.050) (0.049) (0.059)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88 0.88 0.88

Controls:
log(highway time) - - Yes - - -
log(telephone share) × time - - - Yes - -
log(price) - - - - Yes -
log(distance) × time - - - - - Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 3: Robustness: Elasticity of citations to travel time
Part 1

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt = exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) +

∑d αd 1{distanceij ∈ d}1{XFiGjhkt} log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location
i, technology h and time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel time in minutes between
location i and j at time period t, and it is set to 1 when i = j. d are distance intervals: [0− 300km], (300km− 1000km], (1000km− 2000km], (2000km−max]. Column
(1) presents jackknife bias-corrected coefficients and bias-corrected bootstrap standard errors. Column (2) repeats column (1) without bias-correction. Relative to
(2), columns (3) through (6) contain additional controls. Column (3) controls for log highway time between i and j at period t. Column (4) controls for the log of the
mean share of households with telephone line in 1960 in ij pair interacted with a time dummy. Column (5) controls for log flight ticket price between i and j at
period t. Column (6) controls for log distance ij interacted with a time dummy. When FiGjhk has positive citations in at least one period and no citations in another,
we attribute zero citations in the missing period. Columns (2) through (6) present standard errors clustered at the non-directional location in parentheses (ij is the
same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted values.



terms of innovation. Additionally, the reduction in travel time contributed to a change

in the geographic distribution of knowledge creation, increasing the relative importance

of locations in the South and the West of the United States.

We construct a measure of Knowledge Access by adapting equation (2) to an empirical

set up with multiple technology categories and time periods. The measure of Knowledge

Access (KAiht) shows how easy it is in time period t for research establishments in

location i and technology h to access knowledge created in other locations. We compute

Knowledge Access as follows:

KAiht = ∑
k

ωhk ∑
j, j 6=i

Patent stockjk,t=1953 × travel time
β

ijt (6)

where, from right to left, travel timeβ
ijt is the travel time between locations i and j at

time period t, to the power of the elasticity of diffusion of knowledge to travel time.

Patent stockjk,t=1953 is the discounted sum of patents produced in location j and tech-

nology k between 1941 and 1953.71 ωhk is the share of citations of technology h that go

to technology k at the aggregate level in 1949-1953, similar to an input-output weight.72

Then, KAiht is a weighted sum of the patent stock in each other location and technology,

where the weights are how easy it is to access that patent stock (travel timeβ
ijt) multi-

plied by how relevant that knowledge is (ωkh).

In order to reduce concerns of potential endogeneity of accessing knowledge and

creating knowledge, we exclude the patent stock in the location itself from the sum

(we only use j 6= i).73 The measure of Knowledge Access is only time varying due to the

71Patent stockjk,t=1953 = ∑y∈[1941,1953] Patentsjky × (1−depreciation rate)1953−y . We use a depreciation
rate of 5%, which is the the range of average depreciation rates of R&D found by De Rassenfosse and
Jaffe (2017). We decided to fix the patent stock and not to allow it to change over time, as changes
in travel time will potentially lead to changes in patent stock creating a dynamic reinforcing effect
between knowledge access and new knowledge. In this sense, we abstract from dynamic externalities
that could be at play.

72ωhk = citationshk,t=[1949,1953]/citationsh,t=[1949,1953] is included to weight each source technology cate-
gory k by how important it is for the destination technology category h. The inclusion of ωhk provides
across-technology variation within a location-time.

73The theory makes no distinction on whether the knowledge stock is in i or j, so in principle we
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change in travel time between locations, every other component of the measure is fixed

to its 1949-1953 level.

The degree with which changes in travel time are reflected in access to knowledge

depend on how important travel time is to get knowledge to diffuse, which is exactly the

elasticity of knowledge diffusion to travel time that we estimated in Section 6. As the

baseline we use β = 0.185, which is the elasticity of citations to travel time at more than

2,000 km not bias corrected. In robustness we use distance-specific β and in Appendix

E we do sensitivity analysis of the results to changing the value of β.

The measure of Knowledge Access allows us to translate changes in travel time between

pairs of MSAs into a single location-specific characteristic, and to represent it on the

same scale as patent growth in Figure 9. Figure 16 depicts the time change in log

Knowledge Access from 1951 to 1966, averaged across technologies within each MSA.

Darker colors represent higher growth in Knowledge Access. As with patent growth, we

observe that MSAs that had the strongest growth are generally located in the South

and the West of the United States, far from the knowledge centers of New York and

Chicago. The reduction in travel time was larger between locations far apart, implying

that locations which happened to be far from knowledge centers increased relatively

more their Knowledge Access.

With the measure of Knowledge Access we then adapt equation (1) to estimate:

PatentsFiht = exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht (7)

where PatentsFiht are patents applied by establishment of firm F in location i and

would like to include the patent stock of i in the knowledge access of i. However, this could lead to
econometric problems. First, we do not have exogenous variation of travel time within i. Second, if
knowledge creation in i is a persistent process, by including the patent stock of i we would introduce
a mechanical relationship between knowledge access and knowledge creation. Hence, our baseline
measure of knowledge access of i does not consider the patent stock of i. In Appendix E we show
that the inclusion of i’s patent stock does not affect the results.
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Figure 16: Change in log Knowledge Access 1951 - 1966

technology h at time period t. The measure of knowledge access KAiht is at the iht

location-technology-time level, implying that all establishments within an iht share the

same level of access to knowledge. The parameter of interest ρ is the elasticity of (the

creation of new) patents to knowledge access. In the presence of knowledge spillovers

as suggested in section 2, we would expect ρ to be positive and statistically significant.

The fixed effect FEFih absorbs time invariant characteristics at the firm-location-

technology level, as for example the productivity of the establishment-technology. This

fixed effect is more fine grained than just a location-technology, which would absorb

the comparative advantage of a location in a certain technology. The fixed effect FEit

absorbs characteristics that are time variant at the location level. For example, changes

in R&D subsidies that are location specific and common across all technologies would

be absorbed by this fixed effect. Also, better flight connectivity could spur economic

activity as shown in Campante and Yanagizawa-Drott (2017), leading to an increase

in patenting activity in the location. If that increase is general across technologies

within the location, then FEit would absorb it. Finally, the fixed effect FEht absorbs

characteristics that are time variant at the technology level. If technologies had different
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time-trends at the national level, then the fixed effect would control for these trends in

a flexible way.

The inclusion of FEFih implies that only across-time variation within an establishment-

technology is used to identify ρ. The across-time variation in the measure of knowledge

access is coming only from the change in travel time. The inclusion of FEit implies

that only variation across-technologies within a location-time is used, so across-time

variation is compared across establishments within a location, and not across locations.

The inclusion of FEht implies that the identifying across-time variation is conditional on

aggregate trends of the sector. In other words, identification of ρ relies on across-time

changes in the amount of patents and knowledge access of an establishment, relative

to other establishments in the same location, conditional on aggregate technological

trends.

Column (1) in Table 4 shows the result of estimating equation (7). The elasticity of

patents to knowledge access is estimated to be 10.14, significant at the one percent

level. The average change in knowledge access at the location-technology level74 is

9%, implying that on average the change in travel time predicts a 3.5% average yearly

growth rate of patents.75 The observed average yearly growth rate of new patents at

the location-technology is 4.4%.76 Comparing the predicted and observed growth rates,

the improvement in air travel time has the power to account for 79.5% of the observed

average yearly patent growth rate.77

74Due to entry, we cannot compute the growth rate at the establishment-technology level for 70%
of establishment-technology, given that they had 0 patents in the initial time period. In the case
of location-technology, 5% did not have patents in the initial period. We the prefer to interpret
coefficients using location-technology growth rates, which we compute using the remaining 95% of
location-technologies that had positive patents in the initial time period.

75The elasticity of 10.14 predicts an increase of 91.3% over the time period of 19 years (10.14 × 0.09 =
0.913), which translates into a 3.5% average yearly growth rate ((1+0.913)1/19-1≈0.035).

76From 1949 to 1968 we observe an overall growth rate of new patents of 127%. We obtain 0.044 ≈
((1 + 1.27)1/19 − 1

7779.5 = 3.5/4.4× 100
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PPML PPML
q innovation IV PPML IV PPML

q innovation
Dependent Variable: Patents PatentsFiht

(1) (2) (3) (4)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 11.24∗ 10.26
(3.66) (3.69) (6.35) (6.38)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 2.32∗∗∗
(0.58) (0.66)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 4.21∗∗∗
(0.90) (0.84)

log(knowledge access) × 1st quartile 5.00∗∗∗ 5.77∗∗∗
(1.30) (1.11)

R2 0.85 0.85 0.85 0.85
N obs. effective 991,480 991,480 991,480 991,480
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 4: Effect of knowledge access on patents, by MSA innovativeness quartile
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed
using patents filed in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth quartile is
used as reference category. Column (3) and (4) show the result of two step instrumental variables estimation, where
KAiht is instrumented with K̃Aiht, knowledge access computed using the counterfactual travel time that would have
taken place if routes were fixed to the ones in 1951 and each year routes were operated at the average aggregate
flying speed of the year. Standard errors are presented in parentheses. Column (1) and (2) present clustered at
the location-technology ih. Column (3) and (4) present bootstrap standard errors. R2 is computed as the squared
correlation between observed and fitted values.
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Section 5.1 showed that in the data, initially less innovative MSAs had a larger

growth rate of patenting. In column (2) in Table 4 we investigate if the increase in

knowledge access had an heterogeneous effect on the amount of new patents created

depending on the initial innovativeness of the location i in technology h. We compute

the quartile of innovativeness of location i in technology h in the time period 1949-1953

and interact it with log(KAiht).78 We use as reference category the highest quartile of

initial innovativeness, hence the coefficient on log(KAiht) without interaction is the

elasticity for the highest quartile. Coefficients on other quartiles should be interpreted

relative to the highest quartile.

We find that the coefficients on lower quartiles of initial innovativeness are positive

and statistically different from the coefficient in the highest quartile. Thus, knowledge

access had a greater effect on establishments that are located in initially less innovative

locations.79 Given the difference in the coefficients, the increase in knowledge access

predicts an average yearly growth of new patents of 4.5% for the initially lowest quar-

tile of innovativeness, while it predicts 3.4% for the highest quartile.80 The change in

knowledge access predicts differential growth rate of 1.1 percentage points. In the data

we observe that the average yearly growth rate of patents in the lowest quartile is 5.3

percentage points higher than in the highest quartile. Comparing the predicted and ob-

served differential growth rates, the improvement in knowledge access as consequence

of the reduction in travel time explains 21% of the difference in growth rates of new

patents between locations in the lowest and highest quartile of innovativeness.81

78We use the quartiles of innovativeness defined in section5.1, computed using the amount of patents
of location i in technology h filed in the time period 1949-1953. Each location i has (potentially)
a different value quartile in each technology h. The 1st quartile refers to the 25% initially least
innovative MSAs in technology h

79A given percentage change in knowledge access leads to a stronger increase in patenting in initially
less innovative locations.

80The change in knowledge access for the lowest quartile is on average 9.1%, which multiplied by
the coefficient 14.36 (obtained by doing 9.36+5.00=14.36) gives a predicted growth of 131% over 19
years. Translated into average yearly growth it is 4.5% = [(1 + 1.31)(1/19) − 1] × 100. For the highest
quartile, knowledge access changed on average 9.5%, which multiplied by the coefficient 9.36 predicts
89% growth rate, which is 3.4% yearly growth rate.

8121% ≈ 1.2/5.1 × 100
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We aggregate predicted changes in patent growth at the Census Region level. The

change in travel time predicts a yearly growth rate 0.86 percentage points higher in the

South and the West relative to the Midwest and Northeast. In the data we observe 2.1

percentage points difference in the growth rate, implying that the change in travel time

can account for 41% of the observed differential growth rate.82

As in Section 6, we may be concerned that decisions of the regulator or airlines which

affect travel time are endogenous to the diffusion of knowledge and consequently to

knowledge access. Therefore, we construct an instrument for knowledge access in

which instead of using observed travel time, we use the fictitious travel time presented

in section 4.2 in which routes are fixed to the ones in 1951 and each route is operated

with the average airplane of the year:

K̃Aiht = ∑
k

ωhk ∑
j, j 6=i

Patent stockjk,t=1953 × (travel timefix routes
ijt )β (8)

We then implement the instrumental variables estimation by control function as in

Section 6. The results are presented in columns (3) and (4) in Table 4. The coefficients

do not show an important change and the convergence prediction obtained using

non-instrumented PPML remains valid.83

Figure 17 shows in the left panel the patent growth observed in the data (similar to

Figure 9), while in the right panel it is the predicted patent growth. We compute the

prediction using the observed change in travel time and quartile specific elasticities of

column (2) in Table 4. Similarly to what is observed in the data, the change in travel

time predicts a larger patenting growth rate in the South and the West. At the same

82We compute predicted level of patents for 1966 and aggregate it at the Census region - technology
level. Then, we compute yearly growth rates within each region-technology and take averages across
technologies. We take the average between S and W, and MW and NE, and finally compute the
differential predicted growth.

83Using IV estimates, the predicted yearly patent growth rate in the lowest quartile is 4.9% while it is
3.7% in the highest quartile. The predicted differential growth rate is then 1.2 percentage points,
meaning that the change in knowledge access can explain (1.2/5.3) × 100 ≈ 23% of the observed
differential growth rate.
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time, the change in travel time predicts smaller growth rates in New York, Chicago and

their surroundings.

Figure 17: Observed vs. predicted patent growth 1951 - 1966

The result in column (2) implies that a given change in Knowledge Access had a

stronger effect on patenting growth in less innovative locations. In other words, knowl-

edge spillovers as an externality had a more predominant role in the production of

knowledge in locations that initially produced relatively fewer patents. Theoretically,

this result implies that the parameter ρ in equation (1) varies depending on the level

of previous production of knowledge of location i. Empirically the implication is that

a given increase in knowledge spillovers leads to innovation convergence across lo-

cations. As seen in section 5.1, during 1949-1968 we observe innovation-convergence

across locations and that is exactly what the estimated coefficients predict following a

reduction in travel time.

In order to understand the convergence result and compare it with other findings

in the literature it is important to remember that commercial airplanes during 1950s

and 1960s were a means of transportation mainly for people. On the other hand,

other transportation improvements as those in water transport, railroads or highways

also contain another ingredient: they were used to carry goods. Hence, other means
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of transportation have a simultaneous impact on face to face interactions and trade.

Pascali (2017) finds that the introduction of the steam engine vessels in the second

half of the 19th century had an impact on international trade that led to economic

divergence between countries. Faber (2014) finds that the expansion of the highway

system in China led to a reduction of GDP growth in peripheral counties, with evidence

suggesting a trade channel due to reduction in trade costs. In our setup, the introduction

of jet airplanes represented a big shock to the mobility of people while not affecting

significantly the transport of merchandise. Therefore, studying the introduction of

jet airplanes allows us to focus on improved face to face interactions, while the trade

channel would be a second order effect.

7.1. Creation of knowledge: Robustness

In this section we show that the effect of Knowledge Access on the creation of new patents

and the convergence effect remains after including different controls. Table 28 shows

the results.

Jaworski and Kitchens (2019) show that improvements in the Interstate Highway

System led to local increases in income through an increased market access. In our set

up, if the effect of market access affects innovation in the same way across technologies,

then it would be absorbed by the MSA-time fixed effect FEit in equation (7). However,

if the effect of market access on innovation varies across technologies, then it would be

a confounder. To control for this potential confounder, we compute market access by

highway and interact it with a technology dummy. We compute market access as:

Market Accessit = ∑
j

Populationj,t=1950 τθ
ijt (9)

where Populationj,t=1950 is population in MSA j in 1950, τijt are the shipping costs

provided in the data of Taylor Jaworski computed using each year’s highway driving

distance, highway travel time, petrol cost and truck driver’s wage. θ is the elasticity

of trade to trade costs which we set to -8.28, the preferred value of Eaton and Kortum
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(2002) and in the range of many other estimates in the literature (Head and Mayer

(2014), Caliendo and Parro (2015), Donaldson and Hornbeck (2016)). Columns (3) and

(4) of Table 28 show the results, we do not observe an important difference with the

baseline estimates.

Campante and Yanagizawa-Drott (2017) shows that better connectivity by airplane

leads to an increase in economic activity as measured by satellite-measured night light.

Söderlund (2020) shows that an increase in business travel in the late 1980s and early

1990s led to an increase in trade between countries. In a similar way to market access,

we could think that better connectivity by airplane could have led to an increase in

market access due to a reduction in information frictions, with goods being shipped by

land. Similarly to highway market access, if the effect of market access by airplane is

common to all technology categories the effect would be absorbed by the MSA-time

fixed effect FEit. In order to account for a technology-specific effect, we construct

a measure of airplane market access and interact it with a technology dummy. The

measure of airplane market access is similar to equation 9 where τ is the travel time by

airplane and θ is set to -1,22, the elasticity of trade to travel time from Söderlund (2020).

The results are shown in columns (5) and (6) of Table 28. While the coefficients in all

quartiles are reduced, the estimated value of ρ is positive and significant and the result

on convergence remains.

Potential contemporaneous improvements in other means of communication, like

telephones, could have spurred the creation of new patents. In columns (7) and (8)

we include the log of the MSA’s share of households with telephones in 1960 and

double-interact it with a technology dummy and a time dummy. The results remain

invariant with respect to the baseline.

Another potential explanation for the increase of patenting could be that better con-

nectivity decreased technology-specific financial frictions. The potential reduction in

financial frictions, rather than a confounder, would be a mechanism through which
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airplanes increased innovation. However, according to Jayaratne and Strahan (1996)

during 1950s and 1960s interstate lending or bank branching was limited. Prior to the

1970s, banks and holdings were restricted in their geographic expansion within and

across state borders. Additionally, the Douglas Amendment to the Bank Holding Com-

pany Act prevented holding companies from acquiring banks in other states. Therefore,

it is unlikely that interstate bank financing would be a driving force. Nonetheless, if

other sector-specific modes of financing like venture capital were active, it could be

confounding the results. In Appendix E we construct multiple measures of access to

capital by using market capitalization of patenting firms listed in the stock market. The

results present suggestive evidence that access to capital is not driving the results.

Finally, in Appendix E we include additional robustness checks. We compute differ-

ent versions of Knowledge Access: we use distance-specific β from section 6, we consider

the patent stock only of locations j far from i, we do sensitivity analysis using different

values of β. Also, we re estimate the effects by quartile of initial innovativeness using

patents per capita. Last, we re-do the baseline regression using OLS estimation. Re-

sults go in the same direction: an increase in knowledge access leads to an increase in

patenting and the effect is stronger in initially less innovative locations.

8. Firms’ geographic expansion

In section 5.1 we showed that there was innovation-convergence across regions and

this happened simultaneously with an increase in the amount of multi-establishment

firms. In section 7 we showed that the reduction in travel time predicts innovation-

convergence across locations. In this section we uncover one of the mechanisms that

led to innovation-convergence: the geographic expansion of multi-establishment firms.

We proceed in two steps. First, we show that the increase in patenting is driven by two

types of entry: entry of establishments of new firms, and entry of establishments of

pre-existing firms. The second type of entry is due to the geographic expansion of firms.

Second, we show that the decrease in travel time led firms to expand geographically
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PPML Highway
Market Access

Airplane
Market Access Telephone

Dependent Variable: Patents PatentsFiht
(1) (2) (3) (4) (5) (6) (7) (8)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 9.28∗∗ 8.23∗∗ 6.22∗ 5.84 10.34∗∗∗ 9.25∗∗∗
(3.66) (3.69) (3.68) (3.69) (3.58) (3.60) (3.44) (3.43)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 2.16∗∗∗ 2.06∗∗∗ 2.23∗∗∗
(0.58) (0.57) (0.59) (0.57)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 3.89∗∗∗ 3.75∗∗∗ 3.93∗∗∗
(0.90) (0.89) (0.88) (0.91)

log(knowledge access) × 1st quartile 5.00∗∗∗ 5.13∗∗∗ 5.08∗∗∗ 5.18∗∗∗
(1.30) (1.30) (1.29) (1.32)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Controls:
log(Highway market access) × technology - - Yes Yes - - - -
log(Airplane market access) × technology - - - - Yes Yes - -
log(Telephone share) × technology × time - - - - - - Yes Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 5: Elasticity of new patents to knowledge access, by MSA innovativeness quartile
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht = exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for
patents filed by establishment of firm F in location i, technology h and time period t. KAiht is knowledge access of establishments in location i technology h and
time period t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed using patents in 1949-1953. Higher
quartile indicates higher initial level of innovativeness. The fourth quartile is used as reference category. Relative to columns (1) and (2), columns (3) and (4) control
for technology specific effect of log(highway market access), columns (5) and (6) control for technology specific effect of log(airplane market access), columns (7)
and (8) control for technology and time specific effect of log(telephone share). Standard errors clustered at the location-technology ih are presented in parentheses.
R2 is computed as the squared correlation between observed and fitted values.



and this expansion was stronger towards initially less innovative locations.

8.1. Entry of new establishments

We use all patents of the same firm to identify all locations in which the firm had re-

search establishments in each time period.84 Using patents applied during the first time

period (1949-1953), we classify all the research establishments that applied for patents

in every subsequent period. We classify research establishments into three mutually

exclusive categories: the establishment (and hence the firm) applied for patents in

1949-1953 (existing firm and est), the establishment did not apply for patents but the

firm had establishments in other locations applying for patents in 1949-1953 (existing

firm new est), neither the establishment nor the firm applied for patents in 1949-1953

(new firm new est).85 The dummies new firm new est and existing firm new est capture two

types of entry margin. new firm new est captures a new establishment of a new firm,

while existing firm new est captures entry due to the geographic expansion of firms. The

dummy existing firm and est captures jointly an intensive and exit margin.

We estimate a variation of equation (7) that includes interactions with dummies

which indicate the status of the establishment in 1949-1953:

PatentsFiht = exp [∑
e

ρe log(KAiht) × 1{Fi ∈ e}+ FEFih + FEit + FEht] × νFiht (10)

where PatentsFiht are patents applied by establishment of firm F in location i and tech-

nology h at time period t. KAiht is the knowledge access at the location-technology-time

level. 1{Fi ∈ e} is an indicator variable that takes value 1 of Fi is of the type e = {new

firm new est, existing firm new est, existing firm and est}. The results are displayed in col-

84All our firm and research establishment information comes from the patent data. Hence, we only observe
an establishment in a certain time period if it applies for patents in that time period.

85We define if an establishment exists or not if it applied for patents in any technology h in 1949-1953.
We define the establishment at the Fi level (as opposite to Fih) as our object of interest a firm-location.
An interesting avenue of research is to study within-establishment changes in the technological
composition of patenting.
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umn (2) of Table 6. The results show that the effect of innovation access on the increase

of patenting happened through the two entry margins: entry of new establishments of

new firms and entry of new establishments of firms that previously existed in other

locations.

Dependent Variable: Patents PatentsFiht
(1) (2)

log(knowledge access) 10.14∗∗∗
(3.66)

log(knowledge access) × new firm new est 23.71∗∗∗
(4.46)

log(knowledge access) × existing firm new est 23.79∗∗∗
(4.47)

log(knowledge access) × existing firm and est −0.28
(4.70)

R2 0.85 0.81
N obs. effective 991,480 991,480
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 6: Patents and knowledge access: Entry, exit and continuing firms
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) adds an interaction of log(KAiht) with e the type of establishment Fi in a classification on whether
the establishment and/or the firm existed in 1949-1953. Standard errors clustered at the location-technology ih are
presented in parenthesis. R2 is computed as the squared correlation between observed and fitted values.

In Table 7 we open up the effect by including a double interaction of Fi establishment

type and location-technology ih quartile of initial innovativeness. We use the highest

quartile as the reference category. The two margins of entry are active in all quartiles

of initial innovativeness, with a stronger effect in lower quartiles. In the case of the

entry of establishments that belong to firms that already existed in other locations, the

pattern is more prominent. The intensive and exit margin does not appear active in

any quartile of innovativeness except for the last one. The combined effect of entry and

intensive/exit suggests that, in locations in the lowest quartile of initial innovativeness,

the churn rate of patenting firms is increased as consequence of the increase in knowl-

edge access.
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The results of Table 6 and Table 7 indicate that one part of the increase in patenting is

consequence of multi-establishment firms that expand across locations, and more so

in initially less innovative locations. Hence, multi-establishment firms contributed to

innovation-convergence across locations by expanding geographically.

Quartile innovativeness
Establishment type New firm &

New est
Existing firm &

New est
Existing firm &

Existing est

log(knowledge access) 22.84∗∗∗ 22.00∗∗∗ −0.36
(4.40) (4.41) (4.67)

log(knowledge access) × 3rd quartile 3.40∗∗∗ 6.35∗∗∗ −1.33
(1.14) (1.44) (1.19)

log(knowledge access) × 2nd quartile 5.95∗∗∗ 6.74∗∗∗ −2.20
(1.48) (1.67) (2.33)

log(knowledge access) × 1st quartile 4.88∗∗ 10.98∗∗∗ −15.62∗∗∗
(1.97) (2.15) (3.25)

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 7: Patents and knowledge access: entry, exit and continuing firms
The table shows the results of one Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρq4,e log(KAiht) × 1{ih ∈ 4th quartile} × 1{Fi ∈ e} + ∑q,e ρq,e log(KAiht) × 1{ih ∈ q} × 1{Fi ∈ e}+ FEFih +

FEit + FEht] × νFiht, for patents filed by establishment of firm F in location i, technology h and time period t. KAikt
is knowledge access of establishments in location i technology h and time period t. q is the quartile of initial
innovativeness of location i within technology h, computed using patents filed in 1949-1953. Higher quartile indicates
higher initial level of innovativeness. The fourth quartile is used as reference category. e is the type of establishment
Fi in a classification on whether the establishment and/or the firm existed in 1949-1953. Standard errors clustered at
the location-technology ih are presented in parenthesis. R2 is computed as the squared correlation between observed
and fitted values. All columns and rows belong to the same regression. The number of observations is 991,480.

8.2. Geographic expansion of multi-establishment firms

In this subsection we show that the decrease in travel time gave rise to the geographic

expansion of multi-establishment firms. We focus on all firms that patented in the initial

time period and follow their subsequent opening and closure of establishments. We

find that firms directed the opening (closure) of new establishments towards locations

that got stronger reductions in travel time to the firm’s headquarters.

We define the headquarters location q of firm F as the location in which the firm filed

the largest amount of patents in the period 1945-1953. If firm F did not file any patent in

1945-1953, or there is no unique location with the maximum amount of patents (e.g. two
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locations have the maximum amount of patents), then no headquarters is assigned.86

Firms with no headquarters assigned are dropped from the estimations that required

headquarters location.

We compute the travel time of every firm F’s headquarters’s location q to each other

location j. We then estimate a linear probability model to study if the location decision

of establishments of a firm depend on travel time to a firm’s headquarters. We estimate

the following regression:

1{establishmentFqjt} = γ log(travel timeqjt) + FEFqj + FEFqt + FEjt + ζFqjt (11)

where 1{establishmentFqjt} is a dummy variable that takes value 1 if firm F with head-

quarters in location q has a research establishment in location j at time period t.87

The coefficient γ is a semi-elasticity: γ/100 is the change in percentage points of the

probability that firm F has an establishment in location j when travel time increases

by one percent. If travel time has a negative impact on the probability then we would

expect γ to be negative.

The inclusion of the fixed effect FEFqj implies that γ is identified only from changes

in travel time and opening and closure of research establishments across time.88 Fixed

effects FEFqt and FEjt control flexibly for changes in firm F expanding and opening

establishments everywhere else, and j becoming more attractive for every firm.

Table 8 presents the results jointly with predicted and observed growth rate of the

probability. Column (1) presents the results of estimating equation (11). We find that the

probability of firm F having a subsidiary establishment in location j increases when the

travel time between the firm’s headquarters’s location q and j decreases. The coefficient

86Using patents applied in the period 1949-1953 does not significantly affect the results. We use 1945-1953
instead as it allows us to identify headquarters location for 7% more firms.

87
1{establishmentFqjt} takes value 0 if firm F does not file patents in location j at time period t. The

headquarters location q remains fixed for all time periods.
88Opening refers from 1{establishmentFqjt} switching from 0 to 1, while closure refers to the inverse.
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is -0.0364, which if we multiply it by the average change in travel time between head-

quarters’ location and every other potential location (-34.7%), the decrease in travel time

predicts an increase in the share of existing subsidiaries of 0.0126 percentage points.

The result goes in the same direction as Giroud (2013) who finds that a reduction in

travel time between a firm’s subsidiary and its headquarters leads to an increase in

investment in the subsidiary.

Baseline Quartile receiving
location Initial

probability
Change

travel time
Predicted yearly

growth rate
Observed yearly

growth rateDependent Variable: 1{establishmentFqjt}
(1) (2)

log(travel time) -0.0364∗∗∗ 0.000810 -34.7% 15.94% 1.50%
(0.0088)

log(travel time) × 4th quartile -0.0749∗∗∗ 0.001895 -36.0% 15.41% 0.98 %
(0.0187)

log(travel time) × 3rd quartile -0.0150∗∗∗ 0.000364 -33.4% 15.22% 3.03%
(0.0031)

log(travel time) × 2nd quartile -0.0102∗∗∗ 0.000145 -35.2% 18.67% 3.86%
(0.0028)

log(travel time) × 1st quartile -0.0079∗∗∗ 0.000068 -33.8% 21.40% 5.75%
(0.0025)

R2 0.49 0.50
N obs. effective 19,755,792 19,755,792
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 8: Subsidiaries’ location and travel time to headquarters
The table shows the estimation of a linear probability model. The left panel of the table shows estimation results
while the right panel shows observed and predicted growth rates of the probability. Column (1) presents the results
of OLS estimation of 1{establishmentFqjt} = γ log(travel timeqjt) + FEFqj + FEFqt + FEjt + ζFqjt or firm F which
has headquarters in location qwhere 1{establishmentFqjt} is a dummy that takes value one if firm F which has
headquarters in location q has an establishment open in location j at time period t. We define an establishment
of firm F in location j at time period t as open if F has inventors located in j that apply for patents at time period
t. travel timeqjt is the travel time in minutes between F’s headquarters location q and location j at time period t.
Column (2) includes an interaction of log(travel timeqjt) with the across-technology average quartile of initial level of
innovativeness of j. j’s quantile of initial innovativeness in technology h is computed using the level of patents of j
in 1949-1953 in technology h. Standard errors at the non-directional location pair are presented in parentheses (qj
is the same non-directional location pair as jq). Predicted growth rates are obtained using the estimated coefficient
and the change in travel time, relative to the initial probability. Yearly growth rates g are obtained by computing
g = [(1 + nineteen year growth rate)(1/19) − 1]× 100, where 19 is the amount of years between 1949 and 1968.

Column (2) of Table 8 estimates the semi-elasticity of the probability of having an

establishment to travel time by the quartile of innovativeness of location j in 1949-1953.

We compute the quartile of innovativeness at the location level by taking the average

quantile across technologies within a location, only for those technologies in which the

61



location has positive patents in 1949-1953. The semi-elasticity in the lowest quartile

of initial innovativeness is around 1/10th the one in the highest quartile. However,

the initial probability in the lowest quartile is around 1/30th of the one in the highest

quartile. Therefore, a given percentage change in travel time has an impact on the

growth rate of the probability in the lowest quartile that is around 3 times the one in the

highest quartile.89 In other words, given the initial very low probability of locations in

the lowest quartile of innovativeness to receive a subsidiary from a firm headquartered

in another location, the small increase in percentage points represents a big relative

increase in the probability.

The yearly growth rate of subsidiaries implied by the change in travel time is 21.4%

for the lowest quartile while it is 15.4% for the highest quartile, implying a predicted

difference of 6 percentage points in the yearly growth rate.90 In the data we observe an

average yearly growth rate which is 4.8 percentage points higher for the lowest quartile

relative to the highest quartile.91 Hence, the reduction in travel time not only predicts

a geographic expansion of firms, but it also predicts that the geographic expansion is

tilted towards initially less innovative locations. This pattern of geographic expansion

is exactly what we observe in the data.

89These are approximate numbers. The precise computations: the ratio of coefficients is 0.106 =
(−0.0079)/(−0.0749), the ratio of initial probability is 0.036 = 0.000068/0.001895, the ratio of
the growth rate is 2.94 = (−0.0079/0.000068)/(−0.0749/0.001895). The initial probabilities are
computed as the amount of observed subsidiaries in 1949-1953 divided by the amount of (time
invariant) potential subsidiaries. The amount of potential subsidiaries is the amount of firms for
which we identify HQ multiplied by the amount of locations other than HQ location (we have 108
locations in the data, meaning that each firm has 107 potential locations for subsidiaries).

90For the lowest quartile, the model predicts a 3,869% increase in the probability over 19 years (19 =
1968− 1949), which translates into an average yearly growth rate of 21.4%. For the highest quartile the
predicted increase is 1,422%, an average yearly growth rate of 15.4%. Consistent with the computation
of the relative growth rate: 1, 422/3, 869 = 0.36 ≈ 0.34× (33.8/36.0), where 0.34 has to be adjusted
by the fact that the average change in travel time is not the same across quartiles. The 19-year growth
rates are obtained by multiplying the change in travel time (-33.8% vs -36.0%) by the coefficient
(-0.0079 vs -0.0749) divided by 100, and finally dividing by the initial probability (0.000069 vs 0.001895)
and multiplying by 100. For the lowest quartile: 3, 869 = [(−33.8)× (−0.0079/100)/0.000069]× 100,
and for the highest quartile:[1, 422 = (−36.0)× (−0.0749/100)/0.001895]× 100. The average yearly
growth rates are computed as 21.4 ≈ [(1+ 38.69)1/19− 1]× 100 and 15.4 ≈ [(1+ 14.22)1/19− 1]× 100.

91The average yearly growth rate of the probability for the lowest quartile is 5.7% while it is 0.9% for the
highest quartile.

62



9. Conclusion

This paper constructed a new dataset of the flight network in the United States during

the Jet Age and studied the impact of improvements of air travel on the diffusion and

creation of knowledge. We found that the reduction in travel time led to an increase

in knowledge diffusion, especially between research establishments located far apart.

The reduction in travel time also led to an increase in the general access to knowledge,

which had positive spillovers for the creation of new knowledge. The effect in the

increase of creation of knowledge was stronger in locations initially less innovative,

generating a convergence force which goes in the same direction as what is observed in

the data. One of the drivers of the increase in the creation of knowledge and conver-

gence was the geographical expansion of firms.

We provide causal evidence of standing on the shoulders of giants: new knowledge

builds upon pre-existing knowledge. We do so by first estimating one new key pa-

rameter: the elasticity of diffusion of knowledge to travel time. Second, extending a

production function of knowledge proposed in Carlino and Kerr (2015), we estimate the

impact of knowledge spillovers on the creation of new knowledge. Conditional on the

pre-existing distribution of knowledge, changes in travel time translate into changes in

knowledge spillovers. The results show that knowledge spillovers are important for the

creation of new knowledge and more so in locations which are initially less innovative.

Our novel dataset document a historical country wide event that dramatically

changed the way we see time and space. Our results provide new evidence on how the

introduction of jet airplanes changed the geography of innovation. Better connectivity

to innovation centers in the Midwest and the Northeast led to an increase in innovation

in the South and the West of the United States. In this way, jet airplanes were one

facilitator in the shift of innovative activity towards the South and the West of the

United States.
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We would like to point to the limitations of the current analysis. The results found in

this paper are identified by exploiting differential time changes across establishments.

As consequence, we are able to identify differential impacts and not aggregate ones. The

results obtained could be consequence of general increase in the amount of diffusion

and creation of knowledge, a relocation of previous diffusion and creation, or a mix

of both. At the same time, the potential relocation of resources as consequence of the

reduction in travel time may have increased the allocative efficiency and therefore

increasing the amount of knowledge creation.

In order to separately identify the aggregate effects of travel time from relocation

we plan to estimate a structural model. We consider two types of models that could

potentially account for the increase in the diffusion of knowledge and the increase

of innovation in the South and the West. The first option is to extend Donaldson

and Hornbeck (2016) including an intermediate sector which produces knowledge,

where knowledge access would enter the production function of knowledge. The

second option is to modify Davis and Dingel (2019), who find that a system of cities

is an equilibrium outcome in the presence of localized knowledge spillovers. We

would extend the model to allow for knowledge spillovers across cities, where the

degree of across-city spillovers depends on the across-city travel time. To include

multi-establishment firms we would build upon Oberfield et al. (2020) who present

a model of spatial equilibrium with multi-establishment firms. This model includes

the location interdependency of establishments within a firm: the ideal location of an

establishment of a firm depends on the location of every other establishment of the firm.
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Bergé, L. (2018). Efficient estimation of maximum likelihood models with multiple

fixed-effects: the R package FENmlm. CREA Discussion Papers (13).

65



Bloom, N., M. Schankerman, and J. Van Reenen (2013). Identifying technology spillovers

and product market rivalry. Econometrica 81(4), 1347–1393.

Borenstein, S. and N. L. Rose (2014, June). How Airline Markets Work... or Do They?

Regulatory Reform in the Airline Industry, pp. 63–135. University of Chicago Press.

C.A.B. (1951, 1956, 1961, 1966). Air carrier traffic statistics. Civil Aeronautics Board.

Caliendo, L. and F. Parro (2015). Estimates of the trade and welfare effects of nafta. The

Review of Economic Studies 82(1), 1–44.

Campante, F. and D. Yanagizawa-Drott (2017, 12). Long-Range Growth: Economic

Development in the Global Network of Air Links*. The Quarterly Journal of Eco-

nomics 133(3), 1395–1458.

Carlino, G. and W. R. Kerr (2015). Agglomeration and innovation. Handbook of regional

and urban economics 5, 349–404.
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A. Appendix: Travel Time Data

A.1. Data Construction

We construct a dataset of travel times by plane between US MSAs for the years 1951,

1956, 1961, 1966. We get information of direct flights from airline flight schedules and

feed this information into an algorithm to allow for indirect flights. For each MSA pair

with airports served by at least one of the airlines in our dataset we compute the fastest

travel time in each of the four years.

Using images of flight schedules, we digitized the flight network for six major air-

lines: American Airlines (AA), Eastern Air Lines (EA), Trans World Airlines (TWA),

United Airlines (UA), Braniff International Airways (BN) and Northwest Airlines (NW).

Note that the first four in this list were often referred to as the Big Four, highlighting

their dominant position in the market. They alone accounted for 74% of domestic

trunk revenue passenger-miles from February 1955 to January 1956. Together the

six airlines accounted for 82% of revenue passenger-miles in that same period, 77%

from February 1960 to January 1961 and 78% from February 1965 to January 1966

(C.A.B., 1966). Our sample of airlines thus covers a vast share of the domestic market

for air transport. In addition, the airlines were chosen to maximize geographic coverage.

In total we obtain a sample of 5,910 flights. These flights often have multiple stops. If

we count each origin-destination pair of these flights separately, our sample contains

17,469 legs.

Table 9 lists the exact dates of when flight schedules we digitized became effective.

Due to limited data availability not all flight schedules are drawn from the same part of

the year. As seasonality of the network seems limited and given the large market share

of the airlines we consider, our data is a good approximation of the network in a given

year.
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Table 9: Date of Digitized Flight Schedules

Airline 1951 1956 1961 1966

AA September 30 April 29 April 30 April 24
EA August 1 October 28 April 1 April 24
TWA August 1 September 1 April 30 May 23
UA April 29 July 1 June 1 April 24
BN August August 15 April 30 April 24
NW April 29 April 29 May 28 March 1
PA June 1 July 1 August 1 August 1

Figure 18 shows two pages of the flight schedule published by American Airlines

in 1961. Each column corresponds to one flight. As can be seen, one flight often has

multiple stops. Departure and arrival times in most flight schedules are indicated

using the 12-hour system. PM times can be distinguished from AM times by their bold

print. In the process of digitization we converted the flight schedules to the 24-hour

system. Times in most tables are in local time. We thus recorded the time zones that are

indicated next to the city name and converted them to Eastern Standard Time.

Figure 18: Flight Schedule American Airlines 1961.
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To obtain exact geographical information on where airports are located, we match

city names to their IATA airport codes. We use the addresses of ticket offices that are

indicated on the last pages of the flight schedules. Most of the ticket offices were located

directly at the airport, allowing to infer the airport the airline was serving in a given

year. For some flight schedules we are missing these last pages and used information

from adjacent years in order to identify airports. We also manually verified the airport

match using various online sources. We then obtain geographical coordinates from a

dataset provided by https://ourairports.com/ (downloaded July 2020).

From the flight schedule we also collect information on the aircraft model, indicated

next to the flight number. Using various online sources, we manually identified aircraft

models that are powered by a jet engine. We thus know on which connections airlines

were using jet aircraft.

Flight Schedules also contain information on connecting flights. For example, the

second column in figure 18 indicates a departure from Boston leaving at 12.00 local time.

A footnote is added to the departure time indicating that this departure is a connection

via New York. It is thus not operated by flight 287 otherwise described in column 2, but

it is just supplementary information for the passenger. As we are interested in the speed

of aircraft and the actual travel time on a given link, this information on connecting

flights would pollute our data and we thus delete this supplementary information.

As outlined above, the digitization requires human input. It is thus prone error-prone.

The travel time calculation relies on each link in the network, and if one important

connection has a miscoded flight, it might potentially distort the travel time between

many MSA pairs. We thus implement an elaborate method to detect mistakes in the

digitization process. In particular, after the initial transcription, we regress the observed

duration of the flight on a set of explanatory variables: the full interaction of distance,

a set of airline indicators, a set of year indicators and a dummy variable indicating

whether the aircraft is powered by a jet engine or not. This linear model yields an
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R2 above 95%. We then compute the predicted duration of each flight and obtain

the relative deviation from the observed duration. If the deviation is above 50%, we

manually check whether the transcribed information is correct. If we find a mistake,

we correct the raw data, rerun the regression and recompute relative deviations, until

all the observations with more than 50% deviation have been manually verified.

For 15 connections, the information was correctly transcribed from the flight sched-

ule, but the flight time differed a lot from other flights with similar distances that used

the same aircraft. The implied aircraft speed for these cases is either unrealistically

high or low, in one case the implied flight time is even negative. These cases seem to

be typos introduced when the flight schedule was created (e.g. a ”2” becomes a ”3”).

Instead of inferring what the true flight schedule was which is not always obvious, we

drop these cases. Table 10 lists all 15 cases.

Table 10: Dropped Connections

Airline Year Origin Destination Departure Time Arrival Time

0 UA 66 TYS DCA 1940 2036
1 UA 66 LAX BWI 2150 1715
2 UA 66 CHA TYS 1635 1909
3 PA 66 SFO LAX 2105 1850
4 PA 66 SEA PDX 705 935
5 PA 56 PAP SDQ 830 835
6 PA 51 HAV MIA 800 903
7 PA 51 SJU SDQ 825 830
8 NW 66 HND OKA 655 1135
9 EA 66 ORD MSP 2340 2340
10 EA 56 SDF MDW 1352 1418
11 EA 56 GSO RIC 2207 2204
12 AA 56 PHX TUS 1630 1655
13 PA 51 STR FRA 1320 1540
14 EA 66 TPA JFK 1330 1548

As our analysis is at the MSA level, we match airports to 1950 MSA boundaries. Each

airport is matched to all MSAs for which it lies inside the MSA boundary or at most
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15km away from the MSA boundary. If we focus only on airports contained within

MSA boundaries, we would, for example, drop Atlanta’s airport. Of 275 US airports,

156 airports are matched to at least one MSA. 18 of these are matched to two MSAs and

Harrisburg International Airport is matched to three MSAs: Harrisburg, Lancaster and

York. Out of 168 MSAs, 142 are at some point connected to the flight network in our

dataset. In table ?? we present the 168 MSAs, the ones that are connected at least once,

and the ones that are connected in the four years.

Figure 19: Airports matched to MSAs.

Next, we compute the shortest travel time for every airport pair, and then take the

minimum to obtain shortest travel time at the MSA pair level. In particular, we apply

Dijkstra’s algorithm to compute shortest paths (Dijkstra et al., 1959). We adjust this

algorithm to take into account the exact timing of the flight schedules. We consider
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a possible departure time t from origin city o and then compute the shortest path to

destination city d at this time of the day. If getting to d requires switching flights, we

account for the required time at the location of the layover. We repeat this procedure

for every possible departure time t at origin city o and then take the minimum that

gives us the fastest travel time from o to d, τod.

The flight schedule format requires us to make one assumption. In particular, the

flight schedule for a multi-stop flight may either indicate the arrival time or the depar-

ture time for a particular stop. If the flight schedule only lists the departure time, we

need to infer the arrival time and vice versa. We allow for five minutes between arrival

and departure. This is relatively low, but still in the range of observed difference be-

tween departure and arrival for cases where we observe both. As correspondences may

have been ensured by airlines in reality, i.e. one aircraft waiting with departure until

other aircraft arrive, we opted for the lower end of the observed range of stopping times.

Finally, since the shortest travel time measure may not capture the benefits of a

highly frequented hub, we also calculate the daily average of the shortest travel time.

In particular, we compute the shortest travel time at every full hour of the day and take

the average. This measure thus captures the benefits of being located near an airport

where flights depart many times per day.

To conclude, we end up with a set of four origin-destination matrices indicating the

fastest travel time (and another set with the average daily travel time) between US

MSAs in 1951, 1956, 1961 and 1966.

A.2. Descriptive Statistics

Table 12 shows the number of non-stop connections between MSAs by year and airline.

It underlines the dominant position of the Big Four (AA, EA, TW, UA) which were much
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bigger than their competitors (BN and NW). The growth of the airline industry is also

apparent. All airlines had the lowest number of connections in 1951 and subsequently

extended their network. At the same time the average distance of the connections grad-

ually increased over time. Part of this may have been due to jet technology allowing

for longer aircraft range. We thus analyze a period where more and longer flights are

introduced.

Table 12: Domestic Non-Stop Connections by Airline and Year

Airline Year Number of
connections

Jet Share
(connec-

tions)

Jet Share
(km)

Mean
Distance (in

km)

AA 1951 258 0.00 0.00 515.32
AA 1956 367 0.00 0.00 889.66
AA 1961 325 22.15 50.50 768.24
AA 1966 282 73.40 89.52 1020.36

BN 1951 96 0.00 0.00 317.90
BN 1956 210 0.00 0.00 380.60
BN 1961 176 8.52 18.84 460.41
BN 1966 150 72.00 76.64 553.09

EA 1951 345 0.00 0.00 319.87
EA 1956 479 0.00 0.00 412.60
EA 1961 595 3.70 13.28 441.42
EA 1966 492 54.47 75.46 569.01

NW 1951 77 0.00 0.00 521.70
NW 1956 95 0.00 0.00 724.77
NW 1961 127 11.02 32.43 824.59
NW 1966 136 77.94 90.86 945.81

TW 1951 210 0.00 0.00 503.69
TW 1956 253 0.00 0.00 711.78
TW 1961 240 28.75 54.63 807.72
TW 1966 265 86.42 96.05 1143.30

UA 1951 291 0.00 0.00 492.88
UA 1956 361 0.00 0.00 714.39
UA 1961 323 31.89 65.32 803.49
UA 1966 533 49.91 79.54 781.38
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While these changes in the network are remarkable, airlines were constrained by the

regulator in opening new routes. Accordingly, table 13 shows that the network remains

relatively stable over time with more than three quarters of connections remaining

intact within a five-year window. Interestingly, during the beginning of the jet age (i.e.

1956 to 1961), the network appears to have been especially stable, with only 11% of

connections either disappearing or newly being added. Thus, the rise of jet aircraft did

not lead to a vast reshaping of the network. Given the very different technology, this

may be surprising, but may partly be due to heavy regulation.

The table also shows that newly introduced routes were over long distances whereas

those discontinued were operating on shorter distances. When changes in the network

took place, they thus seemed to improve the network for places further apart.

Table 13: Network Changes (weighted by frequency)

Period Remain connected Newly connected Disconnected

Share of Non-stop Connections (%)
1951 to 1956 78.47 16.79 4.74
1956 to 1961 88.96 6.43 4.6
1961 to 1966 80.64 12.37 6.99

Mean distance (km)
1951 to 1956 411 1075 337
1956 to 1961 524 914 972
1961 to 1966 568 769 450
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Table 14: Network Changes

Period Remain connected Newly connected Disconnected

Connected MSAs
1951 to 1956 119 7 8
1956 to 1961 122 0 4
1961 to 1966 114 7 8

Non-stop Connections
1951 to 1956 721 357 124
1956 to 1961 908 231 170
1961 to 1966 912 331 227

Changes in the number of connected MSAs and connections among them. A MSA is connected if in our
data it appears as having at least one incoming and one outgoing flight. A non-stop connection refers to

a pair of origin MSA-destination MSA between which a non-stop flight operates.

Figure 20 shows all non-stop connections in our data weighted by the (log) frequency.

Initially, the network was concentrated in the Eastern states and transcontinental routes

were not yet established, due to technological limitations. In contrast, in the 1960s, after

the jet is introduced, intercontinental routes quickly emerge and are operated at a high

frequency. Similarly, direct connections from the Northeast to Florida intensify. The

figure echos the findings from table 14 which illustrates that the overall number of MSA

pairs with a direct connection increases over time.
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Figure 20: Flight Network by Year. Weighted by log weekly frequency.

Airlines differed in their speed of adoption of the newly arrived jet aircraft. Table

12 shows that, in 1961, 65% of UA’s connections between MSAs were flown using a jet

aircraft (weighted by distance), whereas this was only true for 13% of EA’s connections.

While adoption was heterogeneous across airlines, adoption was fast. By 1966, all

airlines were operating 75% of their connections with jet aircraft (weighted by distance).

Figure 21 show the average speed of jet and propeller aircraft by distance. Generally,

jet aircraft were substantially faster, but especially so on long-distance flights, where

they could be up to twice as fast as propeller-driven aircraft. This particularly stark

difference in speed for long-haul flights is also reflected by adoption. Figure 22 shows

that jet aircraft were first introduced on long-haul flights. Only 50% of MSA pairs at

around 1,500 km distance had at least one jet aircraft operating, whereas 100% of pairs

above 3,000 km. Then, in the late 1960s, they were also gradually introduced on shorter

distances. In fact, for all pairs above 2,000 km there was at least one jet engine-powered

flight.
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Figure 21: Speed by Aircraft Type. Pooling all Years.

Figure 22: Jet Adoption.
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Figure 23 shows on which routes jets were operating. In the early days of the jet

age it was mainly the transcontinental corridor between New York and California that

benefited. In 1966 propeller aircraft were already being phased out and only operating

in the dense Eastern part of the US where distances between cities are relatively small.

Figure 23: Jet Adoption by Year.

The increase in speed due to jet aircraft caused a dramatic reduction in travel times

between US cities. When looking at the full origin-destination matrix, i.e. including

indirect flights, a network-wide reduction in travel time becomes apparent. Figure 24

shows travel times between US MSAs. While the figure shows a gradual decline in

travel time from 1951 to 1966, it also illustrates that conditional on distance and year a

large amount of variation in travel time remains, as only a small fraction of all MSA

pairs were connected via a direct flight (around 8.5% in 1966).
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Figure 24: Travel Times between US MSAs.

Figure 25 that the change in travel time is accompanied by a reduction of the amount

of legs needed to connect two MSAs at every distance. This reduction is specially

marked between 1951 and 1956, and 1961 and 1966. In Figure 26 we open up the

change in travel time by the way an MSA pair was connected in 1951 and 1966: either

directly (non-stop flight) or indirectly (connecting flight). We observe that much of the

increase in travel time for MSA pairs less than 250km apart comes from routes that were

operated non-stop and then it needed a connecting flight. Interestingly, for MSA-pairs

more than 2,000km apart travel time reduced on average 42% for those pairs that were

connected indirectly in both periods, and 51% for those that switched from indirect to

direct. This fact shows the relevance of improvements in flight technology even for

MSAs not directly connected. It could be the case that a reduction in the amount of legs

or an increase in frequency of flights reduces layover time. In Figure 28 we compare the
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change in travel time from 1951 to 1966 with a fictitious change in travel time in which

we eliminate layover time in both time periods. We observe that the average change

in travel time is stronger at every distance if we disregard layover time. This implies

that the relative importance of layover time over total travel time increases between

1951 and 1966, preventing total travel time to decrease proportionally to the change of

in-flight travel time.

Figure 25: Average amount of legs per route
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Figure 26: Change in US travel time 1951 to 1966: connections
92

Figure 27: Change in US travel time 1951 to 1966: connections, discarding layover time
93
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Figure 28: Change in US travel time 1951 to 1966: layover time

In figure 29 we show the average change in travel time in three counterfactual flight

networks. The first counterfactual fixes the flight routes94 and allows aircraft speed

to evolve. The second counterfactual fixes aircraft speed and allows flight routes to

evolve. The third counterfactual allows both flight routes and aircraft speed to evolve.

We obtain that around 90% of the change in travel time is due to the change in speed of

aircrafts, while around 10% of the change is due to the change in the flight routes. In

the figure 30 in the appendix we show that the proportion is relatively constant for all

distances. This confirms that most of the observed changes in the network are due to

improvements in the flight technology.

94Fixes the origin-destination airports that are connected with a non-stop flight
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Figure 29: Counterfactual change in travel time
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Figure 30: Counterfactual change in travel time 1951-1966

In addition to the changes over time in the network leading to faster travel times,

another feature of the US airline industry becomes salient in the data: airlines’ regional

specialization. As figure 31 shows, while there was competition among the airlines

in our dataset on the major routes (Lower West Coast to the Midwest and Upper East

Coast to the Midwest), some airlines are very specialized and face no competition

from any of the other five airlines on certain routes. In particular, NW controls the

routes connecting Seattle to the Midwest and EA controls much of the connections from

Florida to New York and surroundings.
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Figure 31: Flight Network in 1956 by Airline (weighted by log frequency).

B. Appendix: Patent data

In this appendix we describe facts that we observe in the US patent data, for patents

filed95 between 1945 and 1975. US patents data containing citations and filing year have

95Filing year, also called application year, is the closest date to the date of invention that is present in the
data and it represent the date of the first administrative event in order to obtain a patent. In the other
hand, publishing or also called granting year, is the later year in which the patent is granted. The
difference between filing and granting year depends on diverse non-innovation related factors (as
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been downloaded from Google Patents. Then, it was merged with multiple datasets

(see Appendix Patent Data Construction for more details):

• Technology classification: NBER patent database.

• Geographic location of inventors: Histpat and Histpat International for patents

published until 1975, Fung Institute for patents published after 1975. Both

matched to 1950s Metropolitan Statistical Areas (MSAs).

• Ownership: Kogan et al. (2017) for patents owned by firms listed in the US stock

market, Patstat for the remaining patents not matched to Kogan et al. (2017).

We highlight two details from the matching process: 1. During filing years 1971-1972

the rate of non-geocoded patents increases, possibly due to Histpat and Fung data

not being a perfect continuation one of the other. 2. Kogan et al. (2017) seems to use

a matching method based on the patent owner declared in the patent text, as Patstat

does. Specially, Kogan et al. (2017) does not explicitly say if it takes into account firm-

ownership structure to determine patent ownership, neither does Patstat.

For the analysis presented in this appendix we will use the resulting dataset from

the matching procedure, where unless evident or noticed, we will use only patents

that have inventors within MSAs. We discard patents that have inventors in multiple

MSAs and patents that belong to government organizations or universities. We assign

patents to technology categories using fractional count: if a patent is listed in two

technology categories, then we assign half a patent to each category. We discard self

citations (citations in which the citing patent owner is the same as the cited patent

owner) because self-citations may be due to different incentives.

B.1. Matching patents to locations

In figure 32 we observe that the matching rate decreases from around 95% before

1970, to around 80% in 1971 and 1972, and then it stabilizes around 99% after 1975.

capacity of the patent office to revise applications) and changes over time. Hence filing year is the
date in our data that approximates the best to the date of invention.
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Hence, geogprahical results during years 1970-1975 will contain an increased amount

of measurement error.

Figure 32: Non-matching rate HistPat, HistPat International and Fung

Figure 33 shows the share of patents that have inventors inside MSAs, and figure 34

displays the same by technology category.96

96Technologies are aggregated to six big groups, as explained in HJT 2002
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Figure 33: Share patents in Metropolitan Statistical Areas

Figure 34: Share patents in Metropolitan Statistical Areas
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B.2. Input-Output of patents

In the same spirit as how Input-Output tables of industries are constructed, we can

use citations as a reflection of sourced (input) knowledge. In this case, we interpret

the cited patent as being a source of knowledge, and the citing patent as being a desti-

nation. In Figure 35 we aggregate citations by citing-cited technology category in the

years 1949-1953. Rows represent the source technology and columns the destination

technology. Columns should sum to 1 (round errors may exist). We highlight in bold

those IO coefficients that are higher than 0.1. We observe that the diagonal has coef-

ficients greater than 0.5, implying that technologies rely on themselves to create new

knowledge. At the same time, we observe the importance of Electrical to create Com-

munication technologies, and the small relevance of Drugs for every other technology.

Figure 35: Input-Output of technologies 1949-1953

B.3. General Electric research establishments

Using the patent owner identifier we can display the geographical distribution of

research establishments for a selected firm. Figure 36 shows the research establishments

of General Electric in the period 1945-1953. We say that a firm F had a research

establishment in location i in time period t if firm F filed at least one patent in time

period t with inventors located in location i. The headquarters location q of firm F

is defined as the location in which the firm filed the largest amount of patents in the

period 1945-1953. General Electric had research establishments in 62 MSAs in the

period 1945-1953, and the MSA with the largest amount of patents was Schenectady,

93



New York. Figure 37 shows the location of patents cited by patents filed by General

Electric with inventors in Fort Wayne, Indiana, in the period 1949-1953. Figure 38 shows

the research establishments of General Electric during periods 1949-1953 and 1964-1968.

General Electric had research establishments in 51 MSAs in 1949-1953 and in 76 MSAs

in 1964-1968. 42 out of them appear in both time periods.
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Figure 36: Research establishments of General Electric 1949-1953

Figure 37: Citations General Electric at Fort Wayne IN 1949-1953

Figure 38: Change location research establishments of General Electric between
1949-1953 and 1964-1968
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B.4. Descriptive statistics

C. Appendix: US Census Regions

To be completed.

D. Appendix: Bias Correction and Bootstrap

To be completed.

E. Appendix: Additional results

E.1. Diffusion of knowledge

E.1.1. Heterogeneous effects

First, we perform an intensive margin/extensive margin decomposition of the effect

of travel time on citations. We find that the effect is coming from both margins. In

the instrumental variables approach, the intensive margin is only statistically different

from zero for distance greater than 2,000km, while for the extensive margin it is for

distance greater than 300km. Results for the baseline analysis are shown in Table 15

and for the IV estimation in Table 16.

Second, we investigate if the elasticity varies by the degree of concentration of patents

across establishments in the citing technology or cited technology, we find no statisti-

cally significant heterogeneous effect. Results are shown in columns (1) and (2) of Table

18.

Third, we check if the elasticity varies by the median forward and backward citation

lags of the cited and citing technologies. We find that the elasticity of citations to travel

time is more negative both for technologies that accumulate citations during a longer
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time period and for technologies that cite older patents. To be able to precisely show if

it is newer or older technologies that diffuse better as consequence of the jet requires an

analysis with the citation level forward and backward lag, and not using the median

lag in the technology. Nonetheless, the results seem to suggest that jets improved the

diffusion of older technologies. Results are shown in columns (3) and (4) of Table 18.

Fourth, we extend the sample of patents to include patents with a patent owner

identified as a government organization or university. Column (5) of Table 18 opens

the elasticity of citations to travel time by whether the citing patent belongs to a gov-

ernment organization of university. Column (6) includes a dummy for whether the

cited patent belongs to a government organization or university. We do not observe a

particular change in the pattern of the elasticity of citations to travel time.

Sixth, we extend the sample to include self citations (citations in which the citing and

cited patents belong to the same patent owner F). Column (7) of Table 18 shows that

the elasticity is not statistically different for self citations.

Seventh, we check if the elasticity varies with the level of innovativeness of the citing

firm. It may be the case that those firms that actually have the -time and monetary-

budget to take a plane are only the most innovative ones. We rank firms F in technology

h according to the amount of patents filed by F in technology h at the initial time

period 1949-1953. We define quantile 0.00 as all those firms that did not file patents in

1949-1953, while quantile 0.01 is assigned to those that filed patents but not as many

as to be in the quantile 0.25 or higher. Results are shown in Table 17. We do not find a

particular pattern related to the initial innovativeness.

Eighth, we check if the elasticity varies with the citing technology, cited technology

and citing-cited technology pair. Results are shown in Table 19 and Table 21. We

find that the elasticity is negative and significant mainly when the citing and cited

technology are the same. In Appendix B.3 we show that most citations happen within a
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technology, so most identification power would be when citing and cited technologies

are the same.

PPML log-log linear probability
Dep. variable: citations citFiGjhkt log(citFiGjhkt) citFiGjhkt > 0

(1) (2) (3) (4) (5) (6)
log(travel time) −0.083∗∗∗ −0.071 -0.013∗∗∗

(0.019) (0.098) (0.003)

log(travel time):0-300km 0.019 0.318∗∗ −0.0045
(0.036) (0.152) (0.005)

log(travel time):300-1000km −0.089∗∗∗ −0.265∗ −0.008∗∗∗
(0.023) (0.145) (0.003)

log(travel time):1000-2000km −0.094∗∗∗ −0.231 −0.013∗∗∗
(0.032) (0.209) (0.003)

log(travel time):+2000km −0.169∗∗∗ −0.424∗∗ −0.024∗∗∗
(0.039) (0.192) (0.005)

N obs. effective 4, 703, 010 4, 703, 010 16, 412 16, 412 10, 106, 940 10, 106, 940
R2 0.88 0.88 0.86 0.86 0.70 0.70
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 15: Elasticity of citations to travel time: intensive and extensive margin
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =
exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to
1 when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute
zero citations in the missing period. Column (3) shows the result of an OLS estimation of log(citationsFiGjhkt) =
α log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + εFiGjhkt, with a sample of establishment-technology pairs (FiGjhk)
that have positive citations in all periods. Column (5) shows the result of an OLS estimation of 1{citationsFiGjhkt >
0} = γ log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + εFiGjhkt, with the same sample as (1). Column (2), (4) and (6)
open, respectively, the coefficients β, α, γ by distance between the citing establishment Fi and the cited establishment
Gj. Standard errors are presented in parentheses. Columns (1) and (2) present coefficients and bootstrap standard
errors jackknife bias corrected. Columns (3) through (6) present standard errors clustered at the non-directional
location pair (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between
observed and fitted values.
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IV PPML IV log-log IV linear probability
Dep. variable: citations citFiGjhkt log(citFiGjhkt) citFiGjhkt > 0

(1) (2) (3) (4) (5) (6)
log(travel time) −0.152∗∗∗ -0.396∗∗ -0.027∗∗∗

(0.029) (0.175) (0.004)

log(travel time):0-300km -0.076 1.324 -0.028
(0.221) (1.680) (0.036)

log(travel time):300-1000km −0.134∗∗∗ -0.148 -0.022∗∗∗
(0.044) (0.378) (0.007)

log(travel time):1000-2000km −0.112∗∗ -0.314 -0.021∗∗∗
(0.047) (0.200) (0.005)

log(travel time):+2000km −0.203∗∗∗ -0.388∗∗ -0.032∗∗∗
(0.043) (0.185) (0.005)

N obs. effective 4, 703, 010 4, 703, 010 16, 412 16, 412 10, 106, 940 10, 106, 940
R2 0.88 0.88 0.86 0.86 0.70 0.70
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 16: Elasticity of citations to travel time: IV estimation intensive and extensive
margin

Column (1) shows the result of Instrumental Variables Poisson estimation of citationsFiGjhkt =
exp [β log(travel timeijt) + λ ûFiGjhkt + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed
by establishment of firm F in location i, technology h and time period t, to patents filed by establish-
ment of firm G in location j and technology k. travel timeijt is the travel time in minutes between
location i and j at time period t, and it is set to 1 when i = j. The variable ûFiGjhkt is constructed as
ûFiGjhkt = travel timeFiGjhkt − λ̂2 travel timefix network

FiGjhkt . When FiGjhk has positive citations in at least one period and
no citations in another, we attribute zero citations in the missing period. Column (3) shows the result of an IV-2SLS
estimation of log(citationsFiGjhkt) = α log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + εFiGjhkt, with a sample of
establishment-technology pairs (FiGjhk) that have positive citations in all periods. Column (5) shows the result of
an IV-2SLS estimation of 1{citationsFiGjhkt > 0} = γ log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + εFiGjhkt, with
the same sample as (1). Columns (3) and (5) use travel timefix network

ijt as an instrument for travel timeijt. Column
(2), (4) and (6) open, respectively, the coefficients β, α, γ by distance between the citing establishment Fi and the
cited establishment Gj. Standard errors are presented in parenthesis. In Columns (1) and (2) standard errors are
bootstrapped. In Columns (3) to (6) standard errors clustered at the non-directional location pair (ij is the same
non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted values.
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Concentration
citing

Concentration
cited

Cited lag
forward

Citing lag
backward

Citing
govnt & uni

Cited
govnt & univ

Self
citation

Dep. variable: citations citFiGjhkt
(1) (2) (3) (4) (5) (6) (7)

log(travel time):0-300km 0.103 0.160 −0.045 0.1907 0.021 0.018 0.002
(0.121) (0.114) (0.472) (0.538) (0.038) (0.038) (0.039)

log(travel time):300-1000km −0.105 −0.039 −0.546 −0.145 −0.102∗∗∗ −0.099∗∗∗ −0.077∗∗∗
(0.084) (0.095) (0.364) (0.366) (0.027) (0.027) (0.029)

log(travel time):1000-2000km −0.138 −0.117 0.086 0.101 −0.094∗∗ −0.093∗∗ −0.094∗∗
(0.105) (0.116) (0.480) (0.498) (0.042) (0.041) (0.040)

log(travel time):+2000km −0.287∗∗∗ −0.268∗∗∗ 0.720∗∗ 0.560 −0.185∗∗∗ −0.188∗∗∗ −0.153∗∗∗
(0.105) (0.090) (0.344) (0.472) (0.049) (0.048) (0.040)

log(travel time):0-300km × X −1.180 −2.013 0.028 −0.066 −0.125 0.481 0.038
(1.843) (1.712) (0.185) (0.211) (0.367) (0.543) (0.252)

log(travel time):300-1000km × X 0.079 −0.880 0.178 0.018 −0.088 −0.609∗ 0.077
(1.188) (1.366) (0.144) (0.145) (0.265) (0.330) (0.127)

log(travel time):1000-2000km × X 0.634 0.341 −0.073 −0.078 −0.282 −0.370 0.082
(1.412) (1.606) (0.191) (0.197) (0.366) (0.385) (0.210)

log(travel time):+2000km × X 1.436 1.157 −0.366∗∗∗ −0.299 −0.328 0.015 −0.073
(1.456) (1.136) (0.137) (0.188) (0.410) (0.295) (0.170)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 800, 144 4, 800, 144 4, 835, 001
R2 0.88 0.88 0.88 0.88 0.88 0.88 0.94
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 18: Elasticity of citations to travel time: Heterogeneity (part 1)
Result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt = exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) + ∑d αd 1{distanceij ∈
d}1{XFiGjhkt} log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i, technology h and
time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel time in minutes between location i and j at time
period t, and it is set to 1 when i = j. d are distance intervals: [0− 300km], (300km− 1000km], (1000km− 2000km], (2000km−max]. The variable X takes different
value depending on the column: in column (1) it is the across-MSA Herfindahl index of the citing technology, in column (2) it is the across-MSA Herfindahl index of
the cited technology, in column (3) it is median forward citation lag of the cited technology, in column (4) it is median backward citation lag of the citing technology.
In column (5) and (6) the sample includes government and university patents, in column (5) X is a dummy that takes value one if the citing patent belongs to a
university or government organisation, in column (6) it is a dummy that takes value one if the cited patent belongs to a university or government organisation. In
column (7) the sample includes self citations, the variable X is a dummy that takes value one if the citing firm F cited firm G are the same. When FiGjhk has positive
citations in at least one period and no citations in another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional location
pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted values.



Citing quantile Cited quantile
Dep. variable: citations citFiGjhkt

(1) (2)
log(travel time) × quantile 0.00 -0.151∗∗∗ -0.111∗∗∗

(0.058) (0.039)

log(travel time) × quantile 0.01 -0.078 -0.084
(0.114) (0.101)

log(travel time) × quantile 0.25 -0.081 -0.159∗
(0.103) (0.093)

log(travel time) × quantile 0.50 -0.139 -0.063
(0.091) (0.083)

log(travel time) × quantile 0.75 -0.262∗∗∗ -0.033
(0.079) (0.068)

log(travel time) × quantile 0.90 -0.029 -0.127∗∗
(0.066) (0.057)

log(travel time) × quantile 0.95 -0.001 -0.123∗∗∗
(0.037) (0.038)

log(travel time) × quantile 0.99 -0.130∗∗∗ -0.066∗
(0.035) (0.039)

log(travel time) × quantile 0.999 -0.070 -0.070
(0.045) (0.045)

N obs. effective 4, 703, 010 4, 703, 010
R2 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 17: Elasticity of citations to travel time: Heterogeneity (part 2)
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =
exp [∑q βq log(travel timeijt)1{quantileFh ∈ q} + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed
by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G in
location j and technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and
it is set to 1 when i = j. quantileFh is the quantile of firm F in the distribution of firms within technology h, using
patents applied by F in h in the time period 1949-1953. Column (2) repeats the analysis using the quantile of the
cited firm G in technology k. When FiGjhk has positive citations in at least one period and no citations in another,
we attribute zero citations in the missing period. When FiGjhk has positive citations in at least one period and no
citations in another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional
location in parentheses (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation
between observed and fitted values.
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PPML
Citing technology Cited technology

Dep. variable: citations citFiGjhkt
(1) (2)

log(travel time) × Chemical −0.066 −0.093∗∗
(0.045) (0.045)

log(travel time) × Computers & Communications −0.100 −0.140∗
(0.079) (0.077)

log(travel time) × Drugs & Medical −0.053 −0.005
(0.162) (0.181)

log(travel time) × Electrical & Electronic −0.070 −0.054
(0.048) (0.046)

log(travel time) ×Mechanical −0.080∗∗ −0.087∗∗∗
(0.031) (0.032)

log(travel time) × Others −0.147∗∗∗ −0.113∗∗
(0.045) (0.044)

N obs. effective 4, 703, 010 4, 703, 010
R2 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 19: Elasticity of citations to travel time by citing and cited technology
Part 1

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =
exp [∑tech βh 1{tech = h} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed
by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G
located in j, in technology k. 1{tech = h} is a dummy variable that takes value 1 when the citing technology h is equal
to technology tech. In column (2) the dummy is modified to 1{tech = k} such that it takes value 1 when the cited
technology k is equal to technology tech. travel timeijt is the travel time in minutes between location i and j at time
period t, and it is set to 1 when i = j. When FiGjhk has positive citations in at least one period and no citations in
another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional location
pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is computed as the squared
correlation between observed and fitted values.
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Cited
Citing Chemical Computers &

Communications
Drugs &
Medical

Electrical &
Electronic Mechanical Others

Chemical −0.092∗∗ 0.219 0.113 −0.299∗∗∗ −0.025 −0.070
(0.052) (0.262) (0.199) (0.094) (0.071) (0.068)

Computers & Communications −0.089 −0.306∗∗∗ −0.657 0.107 0.122 0.095
(0.259) (0.095) (0.976) (0.090) (0.149) (0.169)

Drugs & Medical 0.224 0.567 −0.278 −0.230 −0.334 0.358
(0.239) (1.205) (0.268) (0.561) (0.362) (0.323)

Electrical & Electronic 0.233∗∗ 0.171∗ −0.224 −0.102∗∗ 0.087 −0.063
(0.093) (0.096) (0.634) (0.056) (0.070) (0.079)

Mechanical −0.060 0.151 −0.152 0.106 −0.129∗∗∗ −0.032
(0.076) (0.145) (0.402) (0.082) (0.035) (0.056)

Others 0.042 0.173 0.204 0.052 0.019 −0.209∗∗∗
(0.074) (0.169) (0.274) (0.072) (0.053) (0.054)

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 21: Elasticity of citations to travel time by citing and cited technology
Part 2

Column (1) shows the result of one single Poisson Pseudo Maximum Likelihood (PPML) estimation of
citationsFiGjhkt = exp [∑tech pair βhk 1{tech pair = hk} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt,
for citations of patents filed by establishment of firm F in location i, technology h and time period t, to patents filed by
establishment of firm G located in j, in technology k. 1{tech pair = hk} is a dummy variable that takes value 1 when
the citing technology h is equal to technology tech. In column (2) the dummy is modified to 1{tech = k} such that
it takes value 1 when the cited technology k is equal to technology tech. travel timeijt is the travel time in minutes
between location i and j at time period t, and it is set to 1 when i = j. When FiGjhk has positive citations in at least
one period and no citations in another, we attribute zero citations in the missing period. Standard errors clustered at
the non-directional location pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is
computed as the squared correlation between observed and fitted values. The amount of observation in the effective
sample is 4,703,010.
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E.1.2. Robustness

PPML
Dep. variable: citations citFiGjhkt

(1) (2) (3) (4) (5) (6) (7) (8)
log(travel time) × 0-300km 0.0213 0.0276 0.0198 0.0318 0.0252 0.0349 0.0283 0.0313

(0.0388) (0.0385) (0.0391) (0.0393) (0.0389) (0.0391) (0.0396) (0.0393)

log(travel time) × 300-1000km -0.0990∗∗∗ -0.1040∗∗∗ -0.0935∗∗∗ -0.0745∗∗ -0.1014∗∗∗ -0.0857∗∗∗ -0.0748∗∗ -0.0861∗∗∗
(0.0269) (0.0292) (0.0265) (0.0303) (0.0290) (0.0312) (0.0303) (0.0312)

log(travel time) × 1000-2000km -0.0928∗∗ -0.1155∗∗ -0.0710∗ -0.0395 -0.0948∗ -0.0498 -0.0318 -0.0435
(0.0418) (0.0485) (0.0423) (0.0523) (0.0502) (0.0573) (0.0520) (0.0576)

log(travel time) × 2000 max -0.1848∗∗∗ -0.1761∗∗∗ -0.1724∗∗∗ -0.1238∗∗ -0.1658∗∗∗ -0.1052∗ -0.1236∗∗ -0.1041∗
(0.0492) (0.0531) (0.0498) (0.0587) (0.0542) (0.0607) (0.0590) (0.0609)

log(highway time) × 0-300km -0.1306 -0.1060 -0.0422 -0.0374
(0.1210) (0.1231) (0.1415) (0.1426)

log(highway time) × 1000-2000km 0.0530 0.0695 0.0578 0.0681
(0.1017) (0.1090) (0.1569) (0.1582)

log(highway time) × +2000km -0.0650 -0.0486 -0.0712 -0.0707
(0.1134) (0.1162) (0.1780) (0.1779)

log(highway time) × 300-1000km 0.0020 0.0309 0.0808 0.0867
(0.1134) (0.1137) (0.1495) (0.1491)

log(mean share telephone) × year 1956 10.58∗∗ 10.43∗∗ 4.855 4.811
(4.689) (4.671) (4.587) (4.584)

log(mean share telephone) × year 1961 13.47∗∗ 13.13∗∗ 7.539 7.471
(6.243) (6.251) (6.066) (6.085)

log(mean share telephone) × year 1966 16.39∗∗ 16.50∗∗ 12.02∗ 12.23∗
(6.761) (6.752) (6.686) (6.691)

log(distance) × year 1956 0.0119∗∗∗ 0.0119∗∗∗ 0.0111∗∗∗ 0.0111∗∗∗
(0.0025) (0.0025) (0.0026) (0.0026)

log(distance) × year 1961 0.0144∗∗∗ 0.0147∗∗∗ 0.0133∗∗∗ 0.0136∗∗∗
(0.0044) (0.0044) (0.0045) (0.0044)

log(distance) × year 1966 0.0131∗∗ 0.0137∗∗ 0.0112∗∗ 0.0120∗
(0.0054) (0.0067) (0.0055) (0.0068)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 20: Elasticity of citations to travel time: additional controls
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =
exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) + ∑d αd 1{distanceij ∈ d}1{XFiGjhkt} log(travel timeijt) + FEFiGjhk +
FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i, technology h and
time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel
time in minutes between location i and j at time period t, and it is set to 1 when i = j. d are distance intervals:
[0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. Relative to (1), columns (2) to (8) contain
additional controls. Log highway time between i and j changes in every time period t. The log mean share of
households with telephone line in ij pair interacted in 1960 is interacted with a time dummy. Log distance ij is
interacted with a time dummy. When FiGjhk has positive citations in at least one period and no citations in another, we
attribute zero citations in the missing period. Standard errors clustered at the non-directional location in parentheses
(ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and
fitted values.
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Sample of establishments

During the time period there was entry and exit of research establishments that was not

uniform across locations. We may then think that the change in diffusion of knowledge

is only consequence of the change in the geographical location of innovation. To test

this possibility, in Table 22 we estimate the baseline regression 3 with different samples.

In column (1) we include the baseline results.97 In column (2) we use only citing estab-

lishments Fi that filed patents during the initial time period 1949-1953. In column (3)

we further restrict the sample to both citing establishments Fi and cited establishments

Gj that filed patents in 1949-1953.98 We find that the coefficient at more than 2,000km re-

mains comparable to the one in the baseline regression, statistically significant at the 1%.

97Coefficients are not bias corrected.
98We require Fi and Gj to have positive amount of patents applied during 1949-1953. However, those

establishments need not to have cited each other.
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All Citing
establishment

Citing & Cited
establishment

Dep. variable: citations citFiGjhkt
(1) (2) (3)

log(travel time) × 0-300km 0.021 0.020 0.028
(0.039) (0.043) (0.043)

log(travel time) × 300-1,000km −0.099∗∗∗ −0.095∗∗∗ −0.095∗∗∗
(0.027) (0.029) (0.030)

log(travel time) × 1,000-2,000km −0.093∗∗ −0.092∗∗ −0.062
(0.042) (0.047) (0.050)

log(travel time) × +2,000km −0.185∗∗∗ −0.155∗∗∗ −0.179∗∗∗
(0.049) (0.052) (0.052)

N obs. effective 4, 703, 010 3, 109, 285 1, 960, 851
R2 0.88 0.88 0.89
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 22: Elasticity of citations to travel time:
Fix sample of establishments

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =
exp [∑d βd × 1{distanceij ∈ d} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents
filed by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G
in location j and technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and
it is set to 1 when i = j. d are distance intervals: [0− 300km], (300km− 1000km], (1000km− 2000km], (2000km−max].
Column (2) truncates the sample keeping only citing establishments Fi that where present in the initial time period
1949− 1953. Column (3) truncates the sample keeping only citing establishments Fi and cited establishments Gj that
where present in the initial time period. When FiGjhk has positive citations in at least one period and no citations in
another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional location
pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is computed as the squared
correlation between observed and fitted values.

Ticket prices

During the period of analysis ticket prices were set by the Civil Aeronautics Board, so

airlines could not set prices of their own tickets. Some airlines included a sample of

prices in the last page of their booklet of flight schedules a sample of prices, which we

digitized. We document multiple facts about prices.

First, prices were set in the form of an intercept plus a variable increment depending

on distance between origin and destination. Second, all airlines operating within the

same route charged exactly the same price.

Third, ticket prices of flights operated by jet airplanes had a surcharge of around 6%

on top of the one operated by propeller airplanes.
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Fourth, prices were relatively constant over time (with a growth rate approximately

equal to the one of the consumer price index) until 1962-1963, years in which we observe

a drop in prices of around 20% for routes of more than 1,000km distance, breaking the

linearity of prices on distance previously observed.

PPML
Dep. variable: citations citFiGjhkt

(1) (2) (3) (4) (5) (6) (7) (8)
log(travel time) × 0-300km 0.0213 0.0276 0.0198 0.0318 0.0252 0.0349 0.0283 0.0313

(0.0388) (0.0385) (0.0391) (0.0393) (0.0389) (0.0391) (0.0396) (0.0393)

log(travel time) × 300-1,000km -0.0990∗∗∗ -0.1040∗∗∗ -0.0935∗∗∗ -0.0745∗∗ -0.1014∗∗∗ -0.0857∗∗∗ -0.0748∗∗ -0.0861∗∗∗
(0.0269) (0.0292) (0.0265) (0.0303) (0.0290) (0.0312) (0.0303) (0.0312)

log(travel time) × 1000-2,000km -0.0928∗∗ -0.1155∗∗ -0.0710∗ -0.0395 -0.0948∗ -0.0498 -0.0318 -0.0435
(0.0418) (0.0485) (0.0423) (0.0523) (0.0502) (0.0573) (0.0520) (0.0576)

log(travel time) × +2,000km -0.1848∗∗∗ -0.1761∗∗∗ -0.1724∗∗∗ -0.1238∗∗ -0.1658∗∗∗ -0.1052∗ -0.1236∗∗ -0.1041∗
(0.0492) (0.0531) (0.0498) (0.0587) (0.0542) (0.0607) (0.0590) (0.0609)

log(highway time) × 0-300km -0.1306 -0.1060 -0.0422 -0.0374
(0.1210) (0.1231) (0.1415) (0.1426)

log(highway time) × 300-1,000km 0.0020 0.0309 0.0808 0.0867
(0.1134) (0.1137) (0.1495) (0.1491)

log(highway time) × 1,000-2,000km 0.0530 0.0695 0.0578 0.0681
(0.1017) (0.1090) (0.1569) (0.1582)

log(highway time) × +2,000km -0.0650 -0.0486 -0.0712 -0.0707
(0.1134) (0.1162) (0.1780) (0.1779)

log(mean share telephone) × year 1956 10.58∗∗ 10.43∗∗ 4.855 4.811
(4.689) (4.671) (4.587) (4.584)

log(mean share telephone) × year 1961 13.47∗∗ 13.13∗∗ 7.539 7.471
(6.243) (6.251) (6.066) (6.085)

log(mean share telephone) × year 1966 16.39∗∗ 16.50∗∗ 12.02∗ 12.23∗
(6.761) (6.752) (6.686) (6.691)

log(distance) × year 1956 0.0119∗∗∗ 0.0119∗∗∗ 0.0111∗∗∗ 0.0111∗∗∗
(0.0025) (0.0025) (0.0026) (0.0026)

log(distance) × year 1961 0.0144∗∗∗ 0.0147∗∗∗ 0.0133∗∗∗ 0.0136∗∗∗
(0.0044) (0.0044) (0.0045) (0.0044)

log(distance) × year 1966 0.0131∗∗ 0.0137∗∗ 0.0112∗∗ 0.0120∗
(0.0054) (0.0067) (0.0055) (0.0068)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 23: Elasticity of citations to travel time: additional controls
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =
exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) + ∑d αd 1{distanceij ∈ d}1{XFiGjhkt} log(travel timeijt) + FEFiGjhk +
FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i, technology h and
time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel
time in minutes between location i and j at time period t, and it is set to 1 when i = j. d are distance intervals:
[0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. Relative to (1), columns (2) to (8) contain
additional controls. Log highway time between i and j changes in every time period t. The log mean share of
households with telephone line in ij pair interacted in 1960 is interacted with a time dummy. Log distance ij is
interacted with a time dummy. When FiGjhk has positive citations in at least one period and no citations in another, we
attribute zero citations in the missing period. Standard errors clustered at the non-directional location in parentheses
(ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and
fitted values.

107



Highway travel time

To be completed.

E.2. Creation of knowledge

E.2.1. Heterogeneous effects

E.2.2. Robustness
Baseline Quartile

absolute
Quartile

per capita
Dependent Variable: Patents PatentsFiht

(1) (2) (3)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 7.77∗∗
(3.66) (3.69) (3.70)

log(knowledge access) × quartile 0.50 2.05∗∗∗ 0.75∗∗
(0.58) (0.34)

log(knowledge access) × quartile 0.25 3.80∗∗∗ 1.58∗∗∗
(0.90) (0.50)

log(knowledge access) × quartile 0.00 5.00∗∗∗ 4.03∗∗∗
(1.30) (0.77)

N obs. effective 991,480 991,480 991,480
R2 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 24: Elasticity of new patents to knowledge access: absolute and per capita MSA
innovativeness

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed
within technology using the absolute level of patents in the MSA-technology in 1949-1953. Column (3) computes the
quartile of innovativeness using patents per capita in the MSA-technology in 1949-1953 using 1950 population. Higher
quartile indicates higher initial level of innovativeness. The fourth quartile is used as reference category. Standard
errors clustered at the location-technology ih are presented in parentheses. R2 is computed as the squared correlation
between observed and fitted values.

108



PPML β
by distance +300km +1,000km +2,000km

Dependent Variable: Patents PatentsFiht
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 18.17∗∗∗ 16.50∗∗ 10.09∗∗ 8.70∗ 18.82∗∗∗ 19.08∗∗∗ 12.70 10.26
(3.66) (3.69) (4.63) (4.76) (4.66) (4.67) (5.82) (5.74) (8.18) (7.92)

log(knowledge access) × quartile 0.50 2.05∗∗∗ 2.70∗∗∗ 2.12∗∗∗ 2.08∗∗∗ 1.94∗∗∗
(0.58) (0.84) (0.58) (0.53) (0.49)

log(knowledge access) × quartile 0.25 3.80∗∗∗ 5.96∗∗∗ 4.19∗∗∗ 3.97∗∗∗ 3.64∗∗∗
(0.90) (1.42) (0.88) (0.81) (0.73)

log(knowledge access) × quartile 0.00 5.00∗∗∗ 8.94∗∗∗ 5.49∗∗∗ 5.28∗∗∗ 4.68∗∗∗
(1.30) (1.97) (1.25) (1.23) (1.07)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 25: Elasticity of new patents to knowledge access, varying beta or distance.
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed
using patents in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth quartile is
used as reference category. Relative to columns (1) and (2), columns (3) and (4) compute Knowledge Access using
four distance-specific β parameter according to distance bins between i and j. The bins are [0km, 300km], (300km,
1000km], (1000km, 2000km], +2,000km. Columns (5) to (10) use the same β as column (1) and (2), but computing
Knowledge Access with a truncated sample of j that are further than a certain distance threshold from i. Standard
errors clustered at the location-technology ih are presented in parentheses. R2 is computed as the squared correlation
between observed and fitted values.

E.3. Firms’ geographic expansion

To be completed.
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PPML OLS
Dependent Variable: Patents PatentsFiht log(PatentsFiht)

(1) (2) (3) (4)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 6.83∗ 6.27∗
(3.66) (3.69) (3.19) (3.20)

log(knowledge access) × quartile 0.50 2.05∗∗∗ 0.92∗
(0.58) (0.51)

log(knowledge access) × quartile 0.25 3.80∗∗∗ 2.64∗∗
(0.90) (1.03)

log(knowledge access) × quartile 0.00 5.00∗∗∗ 3.82∗∗
(1.30) (1.79)

N obs. effective 991,480 991,480 300,539 300,539
R2 0.85 0.85 0.87 0.87
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 26: Elasticity of new patents to knowledge access: PPML and OLS
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (3) estimates log(Patents)Fiht = ρ log(KAiht) + FEFih + FEit + FEht + ξFiht. Columns (2) and (4) open
the coefficient ρ by the quartile of innovativeness of location i within technology h, computed within technology
using the absolute level of patents in the MSA-technology in 1949-1953. Higher quartile indicates higher initial level
of innovativeness. The fourth quartile is used as reference category. Difference in amount of observations is due
to dropping zeros in columns (3) and (4). Standard errors clustered at the location-technology ih are presented in
parentheses. R2 is computed as the squared correlation between observed and fitted values.
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Dependent Variable: Patents PatentsFiht
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(knowledge access) 10.14∗∗∗ 9.96∗∗ 11.29∗∗∗ 10.67∗∗ 12.90∗∗∗
(3.66) (4.50) (4.32) (4.70) (4.43)

log(finance access hq) 0.54∗∗ 0.02
(0.26) (0.30)

log(finance access hq rel) 0.40 -0.14
(0.25) (0.28)

log(finance access est) 0.56∗ -0.07
(0.31) (0.39)

log(finance access est rel) 0.31 -0.39
(0.30) (0.38)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 27: Elasticity of new patents to knowledge access and finance access
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) to (5) use as regressor the finance access of establishments in location i technology h and time period
t, where the measure of finance access changes across columns. Columns (6) to (9) estimate the regression using
both knowledge access and finance access. Standard errors clustered at the location-technology ih are presented in
parentheses. R2 is computed as the squared correlation between observed and fitted values.
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IV-PPML
Dependent Variable: PatentsFiht

(1) (2)
log(knowledge access) 11.24∗ 10.26

(6.35) (6.383)

log(knowledge access) × quartile 0.50 2.317∗∗∗
(0.6554)

log(knowledge access) × quartile 0.25 4.212∗∗∗
(0.8381)

log(knowledge access) × quartile 0.00 5.770∗∗∗
(1.108)

residual -2.31 -2.249
(7.20) (7.268)

residual × quartile 0.50 -2.553
(1.594)

residual × quartile 0.25 -4.341∗∗
(1.972)

residual × quartile 0.00 -8.267∗∗
(3.277)

N obs. effective 991,480 991,480
R2 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 28: Elasticity of new patents to knowledge access: IV-PPML
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + λ ûFiht + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i,
technology h and time period t. KAiht is knowledge access of establishments in location i technology h and time
period t. ûFiht is the estimated residual of log(KAFiht) = λ2log(K̃AFiht) + uFiht, where the subindex F in KAFiht is
used to denote that there are multiple observations per iht. Column (2) open the coefficient ρ and λ by the quartile of
innovativeness of location i within technology h, computed within technology using the absolute level of patents in
the MSA-technology in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth quartile
is used as reference category. Bootstrap standard errors are presented in parentheses. R2 is computed as the squared
correlation between observed and fitted values.
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β ρ β × ρ
Predicted yearly

growth p.p.
Share yearly

growth explained
Predicted yearly

growth differential p.p.
Share yearly growth

differential explained
-0.186 10.14 -1.89 3.47 0.78 1.1 0.21
-0.1 19.35 -1.94 3.5 0.78 1.07 0.2
-0.2 9.4 -1.88 3.47 0.78 1.1 0.21
-0.3 6.1 -1.83 3.45 0.77 1.14 0.22
-0.4 4.48 -1.79 3.44 0.77 1.16 0.22
-0.5 3.52 -1.76 3.44 0.77 1.19 0.23
-0.6 2.91 -1.74 3.45 0.77 1.2 0.23
-0.7 2.48 -1.73 3.47 0.78 1.22 0.23
-0.8 2.17 -1.73 3.5 0.78 1.22 0.23
-0.9 1.93 -1.73 3.52 0.79 1.24 0.24
-1 1.72 -1.72 3.51 0.79 1.28 0.24
-2 0.58 -1.16 2.8 0.63 1.55 0.3
-5 0.04 -0.19 1.19 0.27 3.65 0.7
-8 0.09 -0.76 8.22 1.84 6.96 1.33

-10 0.11 -1.08 15.16 3.4 8.19 1.56
-20 0.13 -2.63 69.8 15.65 21.66 4.14
-50 0.16 -8.22 531.34 119.16 219.49 41.94

-100 0.12 -12.33 5428.85 1217.49 2971.74 567.91

Table 29: Effect of knowledge access on new patents: varying the value of elasticity of knowledge
diffusion
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