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Specialization Dynamics, Convergence, and Idea Flows1

Liuchun Deng2

Abstract: This paper studies the dynamic evolution of the patterns of Ricardian compara- tive advan-
tage from the perspective of knowledge diffusion. The theoretical analysis builds knowledge diffu-
sion into a quantifiable model of trade by allowing for industry-level produc- tivity to evolve through
a spatial flow of ideas. This may take place through four channels: Firms could upgrade their tech-
nology via meetings with domestic producers and foreign sell- ers, and meetings are both intra- and
interindustry. This theoretical framework yields a law of motion of industry-level productivity across
countries, capturing strong interdependence in the evolution of Ricardian comparative advantage. I
calibrate the model to a large sample of countries. My quantitative results capture important patterns
in the data: There is strong convergence in industry-level productivity and substantial mobility in spe-
cialization patterns. A decomposition exercise based on the theoretical law of motion suggests that
international and interindustry channels play a major role in knowledge diffusion. The framework
yields additional quantitative implications. Analysis of the knowledge-diffusion network facilitates
the identification of the countries or country–industry pairs that contribute most to global productiv-
ity growth. The calibrated model also suggests that dynamic gains from trade through knowledge
diffusion are economically significant, amounting to at least one third of static gains from trade.
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Dynamique de spécialisation, convergence et flux d’idées

Liuchun Deng

Abstract : Cet article étudie l’évolution dynamique des modèles d’avantage comparatif ricardien
du point de vue de la diffusion des connaissances. Il repose sur un modèle théorique de diffusion
des connaissances permettant à la productivité industrielle d’évoluer grâce aux flux spatiaux d’idées.
Cette diffusion s’effectue par quatre canaux : les entreprises peuvent améliorer leur technologie par le
biais d’interactions avec des producteurs nationaux et des vendeurs étrangers, et ces interactions sont à
la fois intra- et inter-industrielles. Ce cadre théorique produit une loi de mouvement de la productivité
industrielle dans tous les pays, qui crée une forte interdépendance dans l’évolution des avantages
comparatifs ricardiens. Le modèle est calibré sur un large échantillon de pays. Les résultats illustrent
une tendance nette des données : Il existe une forte convergence de la productivité au niveau sectoriel
et une mobilité substantielle des schémas de spécialisation. Un exercice de décomposition basé sur
la loi théorique du mouvement suggère que les canaux internationaux et inter-industriels jouent un
rôle majeur dans la diffusion des connaissances. Le modèle calibré fait apparaître d’autres résultats
empirique intéressants. L’analyse du réseau de diffusion des connaissances facilite l’identification des
paires de pays - secteurs qui contribuent le plus à la croissance de la productivité mondiale. De plus,
les gains dynamiques découlant du commerce via la diffusion des connaissances sont très significatifs,
et représentent au moins un tiers des gains statiques du commerce.

Mots-clefs : Commerce international, dynamique de spécialisation, convergence, productivité indus-
trielle, avantage comparatif, diffusion des connaissances, croissance économique.

3



1 Introduction

The last few decades have seen dramatic shifts in the patterns of industrial specialization in

the global economy. In an influential paper, Rodrik (2013b) demonstrates a strong conver-

gence in manufacturing productivity across countries, with countries that are initially less

productive catching up faster. Perhaps relatedly, many countries have seen large changes in

the composition of their exports in less than two decades,3 suggesting substantial mobility

in international specialization patterns (Hanson et al., 2016). Convergence in productivity

and more broadly the dynamics of comparative advantage have profound implications for

economic growth and therefore cross-country income distribution. Given its impact on the

world economy, understanding the drivers of specialization dynamics is clearly an important

pursuit.

This paper studies the dynamic evolution of the patterns of Ricardian comparative ad-

vantage4 from the perspective of knowledge diffusion. In an interdependent world, knowledge

diffusion is ubiquitous. It is hardly bounded by country borders or industry classifications.5

To understand and assess the nexus between the complex structure of knowledge diffusion and

specialization dynamics, I build a dynamic model featuring both international and interindus-

try flows of ideas. The cross-sectional setting is a fully fledged multi-country multi-industry

Ricardian model of international trade with multiple factors and input–output linkages as in

Caliendo and Parro (2014) and Levchenko and Zhang (2016). Industrial productivity, as well

as national factor endowments, shapes specialization patterns across countries. Knowledge

diffusion is modeled as in Buera and Oberfield (2016). Firm-to-firm interactions brings about

exchange of knowledge and therefore productivity growth. International trade determines the

structure of firm-to-firm interactions, and, as a result, flows of ideas go hand in hand with

flows of goods. I allow additionally for ideas to flow within and across different industries.

Thus, I am able to integrate four channels of idea flows: Each firm could upgrade technol-

ogy through meetings with domestic producers as well as foreign exporters, and knowledge

diffusion is both intra- and interindustry. The theoretical framework yields a law of motion

of industry-level productivity across countries, capturing strong interdependence of evolution

in the Ricardian comparative advantage.

3For instance, China’s top export industry shifted from children’s toys to computers within less than twenty
years (Hanson, 2012). Similarly, South Korea managed to establish its leading position in the shipbuilding
industry from zero production in two decades. Frequent turnover of main export industries is not just
confined to Eastern Asian miracle economies. African countries have also witnessed substantial mobility in
their specialization for the last two decades (Easterly and Reshef, 2010).

4Despite the fact that the Ricardian comparative advantage has been converging across countries, global
trade volume has increased dramatically in the last five decades due to declining trade costs and increasing
fragmentation of production across borders.

5International trade makes it possible for people across the world to be exposed to new products and
ideas created elsewhere in the world. Moreover, interdisciplinary and interindustry exchange of ideas is
increasingly important and has become one of the defining features of the modern economy. For example,
The rapid development of the information and communication technology in the last twenty years has a
profound impact on virtually all sectors of the economy, much beyond its own narrowly defined industry
(Acemoglu et al., 2016).
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Importantly, the law of motion of industry-level productivity is amenable to empirical

implementation.6 Using production and trade data, I calibrate this structural model of

knowledge diffusion to a sample of 32 OECD and 40 non-OECD countries. The calibrated

model reproduces strong convergence in Ricardian comparative advantage and its magnitude

is in line with what is observed in the data. The model also matches well the convergence

pattern in the data for reduced-form, broader measures of comparative advantage. To the

best of my knowledge, this is the first structural work on trade and growth that quantitatively

captures cross-country convergence in industry-level productivity. The quantitative exercise

demonstrates that knowledge diffusion serves as a plausible candidate to quantitatively ex-

plain convergence in industry-level productivity or, more broadly, Ricardian comparative

advantage (Rodrik, 2013b; Levchenko and Zhang, 2016). Furthermore, the calibrated model

generates substantial mobility in specialization especially among non-OECD countries. This

is consistent with the empirical findings by Proudman and Redding (2000), Redding (2002),

and Hanson et al. (2016).

My empirical framework provides a natural way to decompose global knowledge diffusion

into different channels. According to my quantification, international knowledge diffusion on

average contributes about two thirds to global productivity growth, playing a much more im-

portant role than domestic knowledge diffusion. Interindustry knowledge diffusion, a channel

that has recently received attention from the innovation-based growth literature (Cai and Li,

2014), contributes about 60% to total knowledge diffusion. The decomposition results un-

derscore the importance of studying cross-industry knowledge flows which enable us to study

industries’ technological relatedness in relation to global productivity growth (Hidalgo et al.,

2007). By allowing idea flows to take place in the technological space in conjunction with the

geographical space, the model offers a more comprehensive description of the complex form

of knowledge diffusion, thereby shedding light on the drivers of productivity convergence.

This paper also contributes to the large quantitative literature on the gains from trade.

Using the calibrated law of motion of industrial productivity, I compute the dynamic gains

from trade as additional increase in real income when a country starts drawing insights from

foreign exporters and enjoys higher productivity growth. On average, the additional gains

amount to at least 8% of real GDP. To put it in context, the standard static gains from trade

are on average about 20% of real GDP even taking into account input–output linkages.7

This suggests that the dynamic welfare gains originally proposed by Buera and Oberfield

(2016) are quite substantial. If we split the sample into non-OECD and OECD economies,

the dynamic gains from trade are much larger among non-OECD economies, on average

accounting for about 12% of real GDP, double the average dynamic gains from trade among

6Although the central focus of the paper is the endogenous evolution of industry-level productivity, like
Levchenko and Zhang (2016), I also allow production endowments to change over time.

7The static gains from trade depend on the elasticity of substitution in final consumption and the trade
elasticity. 20% is in line with the numbers reported in Costinot and Rodŕıguez-Clare (2014). The static gains
from trade are much smaller if I pick a relatively large estimate of trade elasticity as in Levchenko and Zhang
(2016), in which case the dynamic gains from trade exceed the static gains from trade.
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OECD economies. The asymmetry is due to the fact that knowledge diffusion plays a much

larger role in boosting productivity growth in developing countries. This suggests that static

trade models tend to greatly underpredict the gains from trade for countries that are far away

from the world productivity frontier.

Moreover, the model maps the directly observable trade network to an underlying network

of knowledge diffusion. The global diffusion network keeps track of the share of knowledge

that each country–industry pair receives from other country–industry pairs. Employed with

the full structure of idea flows, I propose different methods to identify the country or country–

industry pair that contributes most to the global knowledge diffusion. Using the reduced-

form centrality measure, I find that while such advanced economies as the United States and

Germany top the list of “key players,” major emerging-market economies including China and

India play an increasing role in mediating knowledge diffusion. To understand substitutability

of a country in the global diffusion network, I also propose a counterfactual centrality measure.

It is defined as the percentage decrease of global productivity growth upon removing a given

country in the world trade network.8 For example, the counterfactual analysis suggests that

removing Japan from the world trade would have caused the largest decline of productivity

growth by 5.81% from 1990 to 2010. Interestingly, China, the leading emerging-market

economy, disappears from the list of top ten non-OECD economies ranked by this centrality

measure. There is only a 1% decline of global productivity growth when China is assumed to

be autarkic. The contrasting findings under different centrality measures can be reconciled by

the fact that industry-level productivity is relatively low in China. Therefore, many countries

would achieve higher productivity growth by importing from more expensive, but also more

productive, exporters outside China.

In sum, while a growing body of work documents specialization dynamics and particu-

larly the underlying convergence in Ricardian comparative advantage, most papers in the

literature have nevertheless been silent on the sources of dynamic evolution of comparative

advantage. This paper attempts to fill this void by providing a quantitative exploration from

the perspective of knowledge diffusion through international trade.

1.1 Relation to the Literature

From a modeling point of view, this paper is closely related to the recent theoretical liter-

ature on “idea flows.” In this class of models, agent-to-agent interaction is the engine of

growth (Lucas and Moll, 2014; Perla and Tonetti, 2014). Each period, an agent is randomly

matched with another agent in the economy and potentially adopts new insight from the

matched agent. Economic growth is thereby characterized as a traveling wave of productivity

8This centrality measure does not admit a simple closed-form solution, because I must account for the
endogenous change of trade patterns and evolution of industry-level productivity when a country is excluded
from the sample. This measure is closely related to the notion of “key players” in the literature on social
networks (Zenou, 2016).
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distribution within the economy. Extending this framework into the open-economy setting,

a series of theoretical papers study how dynamic gains from trade arise from learning from

foreign sellers (Alvarez et al., 2013), the timing of technology adoption (Perla et al., 2015),

and dynamic selection effects due to entry-exit decisions (Sampson, 2016a). My model builds

upon Buera and Oberfield (2016), which itself stems from Kortum (1997) and Alvarez et

al. (2013). The key departure from this literature is opening up the industry dimension.9

Agents across different industries are allowed to meet each other and exchange insights. The

traveling wave of an industry is therefore determined by productivity distributions of those

industries from which this industry draws insights.

The cross-sectional setting of my model closely follows Caliendo and Parro (2014) and

Levchenko and Zhang (2016). Following Eaton and Kortum (2002), a large literature em-

ploys quantifiable trade models to study how Ricardian comparative advantage shapes in-

ternational trade. Shikher (2011) and Costinot et al. (2012) first extend the Eaton–Kortum

framework into a multi-industry setting. Caliendo and Parro (2014) and Levchenko and

Zhang (2016) further enrich the framework by incorporating realistic input–output linkages

(Acemoglu et al., 2012) and multiple factors of production. Though their theoretical prede-

cessors are dynamic growth models (Kortum, 1997; Eaton and Kortum, 1999), most of the

existing structural trade models are static. A recent exception is Somale (2014), which stud-

ies the complex two-way relationship between productivity growth and trade pattern in an

innovation-based framework. My work adds to this literature by endogenizing industry-level

trade patterns through the lens of knowledge diffusion.

This paper draws insights from the literature that examines the economic consequences

of the technological relatedness of industries spurred by Jaffe (1986). Based on a coexport

structure, Hidalgo et al. (2007) conceptualize and operationalize the notion of the “product

space” and document strong path dependence in trade patterns. Follow-up work by Kali et

al. (2012) reveals the structure of the product space in relation to growth acceleration using

cross-country regressions. Cai and Li (2014) builds into an innovation-based growth model

industrial linkages of knowledge creation. Using patent citation data, they demonstrate

that industrial linkage is important in explaining firms’ R&D behavior. Cai et al. (2016)

further extend their earlier work into a multi-country setting. Similarly, they allow knowledge

diffusion across borders and industries, but their theoretical and quantitative exercise is based

on the balanced growth paths on which trade patterns are stable.

This paper is also related to the literature on international technology diffusion.10 This

strand of literature studies the extent to which technology diffuses across borders via imports,

exports, and foreign direct investment. The seminal paper by Coe and Helpman (1995) doc-

uments that a country’s R&D expenditures have large effects on the productivity of its trade

partners. Acharya and Keller (2009) provide more recent evidence that technology transfers

9Sampson (2016b) offers a multi-industry framework of idea flows, but his contribution is primarily theo-
retical and the paper focuses on steady-state trade patterns.

10Keller (2004) provides an excellent review.
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through international trade. As an influential paper, Keller (2002) also integrates four chan-

nels of knowledge diffusion in a reduced-form empirical framework. He examines the spillover

effects of R&D expenditures on industry-level productivity and finds substantial contribution

from interindustry spillovers. The existing cross-country empirical studies primarily rely on

industry-level R&D data to measure knowledge stock; as a result, analysis is restricted to a

sample of industrialized economies. On the other hand, micro-level studies have established a

causal link between imports of intermediate inputs and domestic productivity growth across

emerging-market economies such as Indonesia (Amiti and Konings, 2007; Blalock and Veloso,

2007), Chile (Kasahara and Rodrigue, 2008), India (Topalova and Khandelwal, 2011), and

Hungary (Halpern et al., 2015). Closest in spirit to this paper, Zhang (2016) documents

substantial dynamic gains from input imports, suggesting that knowledge diffusion plays an

important role in boosting productivity growth. Taking a macro approach, I base my empiri-

cal exercise on a dynamic quantifiable trade model, which allows me to conduct cross-country

empirical analysis with a tight connection to the theory.

The rest of the paper is structured as follows. Section 2 presents the motivating evidence:

specialization dynamics and convergence. Section 3 describes the model, solves the instan-

taneous equilibrium, and derives the law of motion of industry-level productivity. Section

4 describes sample construction and the two-step estimation strategy. Section 5 presents

main results and demonstrates the model’s internal validity. Section 6 discusses the model’s

quantitative implications. Section 7 concludes.

2 Motivating Facts

2.1 Specialization Dynamics

The first set of facts concern changes in specialization patterns across countries. Earlier work

by Redding (2002) examines evolution of seven OECD countries’ export baskets. Armed

with an empirical framework of distribution dynamics, he finds substantial mobility in spe-

cialization. This finding is further extended by Hanson et al. (2016) in a gravity-equation

framework. In a 20-year window, they find the turnover rate of the top 5% of industries to be

about 60%. Figure 1 plots four representative countries’ export shares11 of the top 10 export

industries in 2010 and compares them with their export shares in 1990. Consistent with the

literature, there is substantial turnover among emerging-market economies and developing

countries. The US export basket is relatively stable, but the change of export shares is also

quite prominent for the top two industries. Figure 2 conducts an exercise similar to that in

Hanson et al. (2016). The small values on the diagonal suggest that many of leading export

11Export share is admittedly a crude measure, but this pattern is robust under more sophisticated measures
of export capabilities. Another criticism is that change in gross exports may simply reflect change in vertical
specialization, but I find a similar degree of change in specialization using trade in value-added data (TiVA)
from OECD-WTO.
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industries in 2010 exported very little or not at all in 1990.

Figure 1: Export Share: 1990 versus 2010
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Notes: (1) The data source is Comtrade (3-digit SITC, Rev. 2); (2) I choose the top 10 industries in terms of

export share in 2009–2011 and compare their export shares in 1989–1991. The only exception is that I omit

coffee industry in Ethiopia (export share drops from 61% to 34%) for better scaling.

2.2 Convergence

Despite the longstanding theoretical prediction, it is only very recently12 that the quest for

evidence on cross-country convergence has delivered sharp empirical results. Rodrik (2013a)

documents that, within the manufacturing sector, countries tend to achieve higher produc-

tivity growth if the initial level of productivity is relatively low.13 Closely related to this, the

recent trade literature documents convergence patterns for a variety of measures of compar-

ative advantage, such as the revealed comparative advantage index (RCA), export capability

12In an earlier work, Hwang (2006) documents cross-country convergence in unit values using product-level
international trade data.

13In the growth literature, unconditional convergence refers to a negative correlation between the initial
level of a variable of interest and its growth rate without conditioning on any country-specific characteristics.
A negative correlation with conditioning is conditional convergence. In this paper, I consider both conditional
convergence in a pooled regression with country fixed effects and unconditional convergence in regressions by
industry without country fixed effects. The model captures both types of convergence.
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Figure 2: Transition Matrix from 1990 to 2010

Notes: (1) The data source is Comtrade (3-digit SITC, Rev. 2); (2) Industries are ranked according to the

revealed comparative advantage index. The ijth entry is the share of the ith percentile industries in 2009–

2011 that were in jth percentile in 1989–1991; (3) Due to skewness in export share, industries with RCA

below the 25th percentile export very little, if not zero. Therefore, percentiles are not equally divided.

constructed from a gravity equation (Hanson et al., 2016), and industry-level TFP derived

from structural gravity equations (Levchenko and Zhang, 2016). Figure 3 illustrates conver-

gence from a slightly different point of view. I plot industry-level RCA growth in the tradable

sector from 1990 to 2010 against the gap between a country’s RCA and the average RCA

of its trade partners weighted by import share in 1990. There is clearly a positive relation-

ship between the growth rate and the initial gap, meaning that a country tends to experience

faster export growth in industries where it falls far behind its trade partners. That being said,

a country’s export capability converges to not only the world technology frontier, a salient

pattern that has been documented in the literature, but also the average level of its trade

partners. International technology diffusion through trade partners seems to be a plausible

explanation of this convergence pattern. In the next section, I build a model of knowledge

diffusion to quantitatively assess how various channels of technology diffusion could give rise

to convergence.
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Figure 3: Convergence to Trade Partners
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Notes: (1) The data source is Comtrade (3-digit SITC, Rev. 2); (2) Gap in ln(RCA) to trade partners is

obtained as the average difference in ln(RCA) between a country and its trade partners weighted by import

share; (3) The RCA index is calculated as a three-year average (1989–1991, 2009–2011); (4) I control for

industry and country fixed effects.

3 Model

The model has two main components. The cross-sectional setting is a multi-industry multi-

country Hechscher–Ohlin–Ricardian framework with industrial linkages, which closely follows

Caliendo and Parro (2014) and Levchenko and Zhang (2016). Dynamics of industry-level

productivity is modeled in line with Buera and Oberfield (2016). Diffusion of ideas is the

engine of productivity growth. The two-way relationship between international trade and

productivity growth is separated into two dimensions: At each moment of time, the trade

pattern is determined by cross-country industry-level productivity; along the time dimension,

productivity growth is shaped by the pattern of international trade. By incorporating the

industry dimension into Buera and Oberfield (2016), I am able to investigate a rich set

of knowledge diffusion and derive the law of motion for industry-level productivity that is

amenable to empirical implementation.

In my model, the world consists of N countries indexed by n and n′. There are I + 1

industries indexed by i and i′ among which the first I industries produce tradable goods and

the (I+ 1)th industry produces nontradable goods. Time is continuous, infinite, and indexed

by t.

3.1 Cross-sectional Setup

To simplify the notation, I suppress the time subscript t in presenting the cross-sectional

setup when this causes no confusion.
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3.1.1 Demand

Goods from I + 1 industries are combined into final goods which are used for investment and

consumption. The combination is of the form

Yn(Y 1
n , Y

2
n , ..., Y

I+1
n ) =

[
I∑
i=1

(
ωin
)1−κ (

Y i
n

)κ]φn/κ (
Y I+1
n

)1−φn
,

where Yn is the output of final goods in country n and Y i
n is the goods from industry i;

ωin is the share parameter of tradable goods and
∑I

i=1 ω
i
n = 1 for any country n; φn is

Cobb–Douglas share of tradable goods. The elasticity of substitution across tradable goods

is constant and given by 1/(1−κ). A representative consumer in country n is faced with the

following per-period decision problem

max
Y 1
n ,Y

2
n ,...,Y

I+1
n

Yn(Y 1
n , Y

2
n , ..., Y

I+1
n ) subject to

I+1∑
i=1

P i
nY

i
n ≤ En,

where P i
n is the industry-level price index and En is per-period total expenditure. Standard

derivation yields

Y i
n =

ωinP
i
n

κ
κ−1∑I

i′=1 ω
i′
nP

i′
n

κ
κ−1

· φnEn
P i
n

, i = 1, 2, ..., I, (1)

Y I+1
n =

(1− φn)En
P I+1
n

. (2)

3.1.2 Production

In each industry i, there is a unit mass of intermediate goods indexed by νi ∈ [0, 1]. Each

variety of intermediate good, νi, is produced using labor, capital, and composite intermediate

goods. Production technology is of Cobb–Douglas form:

qin(νi) = zin(νi)[`in(νi)]γ
iL
n [kin(νi)]γ

iK
n

I+1∏
i′=1

[mii′

n (νi)]γ
ii′
n ,

where qin(νi) is the output of variety νi; zin(νi) is the productivity level; `in(νi) and kin(νi)

are labor and capital; mii′
n is composite intermediate goods from industry i′; Cobb–Douglas

coefficients γiLn and γiKn are the labor and capital shares; γii
′

n is the input share of intermediate

goods from industry i′, capturing the important input–output (I–O) linkage emphasized by

the recent macroeconomic literature (Carvalho, 2014). Production technology follows con-

stant returns to scale (CRS), which requires γiLn + γiKn +
∑I+1

i′=1 γ
ii′
n = 1 for any country n.
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According to the production function, the unit cost of an input bundle, cin, can be defined as

cin =

(
wn
γiLn

)γiLn ( rn
γiKn

)γiKn I+1∏
i′=1

(
P i′
n

γii′n

)γii′n
, (3)

where wn is the wage rate and rn is the rental rate.

Composite goods in each industry are produced by combining a continuum of varieties

within the same industry with constant elasticity of substitution (CES):

Qi
n =

[∫ 1

0

qin(νi)(σ
i−1)/σidνi

]σi/(σi−1)
,

where σi is the elasticity of substitution. Standard derivation yields

qin(νi) =

(
pin(νi)

P i
n

)−σi
Qi
n with P i

n =

[∫ 1

0

pin(νi)1−σ
i

dνi
]1/(1−σi)

,

where pin(νi) is the price of variety νi in country n.

Composite goods in each industry can be either used as composite intermediate inputs

in production at the variety level or combined to final goods. Production technology of

composite and final goods is identical across countries. This implies that international trade

only occurs at the variety level, which will be specified in the next section.

3.1.3 International Trade

Trade cost is of the iceberg form (Samuelson, 1954). It requires shipping dinn′ units of goods

from country n′ to deliver one unit of good to country n. The triangle inequality is assumed

to always hold: dinn′′d
i
n′′n′ ≥ dinn′ for any country n, n′, n′′ and industry i. This implies that

reexport is always more costly than direct export in the model. Consequently, such trade hubs

as Singapore and Hong Kong are excluded in the empirical implementation of the model. For

the nontradable sector, dI+1
nn′ =∞ for any n, n′ such that n 6= n′. Domestic trade is assumed

to be frictionless,14 so dinn = 1 for any n and i.

The product market is assumed to be perfectly competitive. Each variety of intermediate

inputs is purchased from the supplier with the lowest unit cost adjusted by trade cost. Recall

that cin is the unit cost of an input bundle of industry i in country n. Therefore, the price of

the intermediate good νi in country n is given by

pin(νi) = min

{
ci1d

i
n1

zi1(ν
i)
,
ci2d

i
n2

zi2(ν
i)
, ...,

ciNd
i
nN

ziN(νi)

}
.

Following Eaton and Kortum (2002), variety-level productivity, zin, is a random draw from

14The recent work by Ramondo et al. (2016) suggests that assuming full integration for each country may
not be innocuous.
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a Fréchet distribution:

F i
n(z) = exp(−λinz−θ

i

),

where F i
n is country n’s productivity distribution in industry i; the location parameter, λin,

governs the mean of the distribution; θi measures the dispersion of the distribution. Denote

by πinn′ the share of expenditure that country n spends on the imports from country n′ in

industry i. Exploiting the probabilistic structure, standard derivation yields

πinn′ =
λin′(c

i
n′d

i
nn′)

−θi∑N
n′′=1 λ

i
n′′(c

i
n′′d

i
nn′′)

−θi
, (4)

where the denominator captures “multilateral resistance” coined by Anderson and van Win-

coop (2003), the fact that bilateral trade flows are shaped by economic variables beyond those

of the bilateral trading partners in a multilateral world. The industry-level price index is also

a function of multilateral resistance.

P i
n =

[
Γ

(
1 +

1− σi

θi

)]1/(1−σi)( N∑
n′=1

λin′(c
i
n′d

i
nn′)

−θi
)−1/θi

, (5)

where Γ(·) is the Gamma function. The usual regularity condition, θi + 1 > σi, is imposed,

so the price index is well defined.

Note that the location parameter, λin, varies across time. When turning to the time

dimension of the setup, I will introduce the diffusion process developed by Buera and Oberfield

(2016) to further endogenize and dynamize the industry-level productivity distribution.

3.1.4 Market Clearing and Instantaneous Equilibrium

Denote country n’s total trade deficit by Dn. Like Caliendo and Parro (2014), I allow inter-

national lending and borrowing, and trade deficits are exogenously given.15 The world total

trade deficit has to be balanced out, so
∑N

n=1Dn = 0. Country n’s expenditure is therefore

given by

En = wnLn + rnKn +Dn, (6)

where Ln and Kn is labor and capital endowment.

By definition, the trade deficit is the difference between total imports and exports

Dn =
I+1∑
i=1

(
P i
nQ

i
n −

N∑
n′=1

P i
n′Q

i
n′π

i
n′n

)
. (7)

Recall that composite goods in each industry can be either used as intermediate inputs for

15The paper does not model the international capital market, so it is silent on the sources of global trade
imbalances. Reyes-Heroles (2016) offers a recent explanation for trade imbalances based on a dynamic multi-
industry model of international trade in which households’ intertemporal decisions and international capital
market are explicitly modeled.
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variety-level production or combined to final goods, so the product-market-clearing condition

in each industry is given by

P i
nQ

i
n =

I+1∑
i′=1

γi
′i
n

N∑
n′=1

P i′

n′Q
i′

n′π
i′

n′n + P i
nY

i
n (8)

Given the Cobb–Douglas production technology, the share of labor and capital income

are given by γiL and γiK , respectively. Therefore, I have

wnL
i
n = γiL

N∑
n′=1

P i
n′Q

i
n′π

i
n′n and rnK

i
n = γiK

N∑
n′=1

P i
n′Q

i
n′π

i
n′n, (9)

where Lin and Ki
n are industry-level labor and capital inputs

Market-clearing conditions for the labor and capital markets further require

I+1∑
i=1

Lin = Ln and
I+1∑
i=1

Ki
n = Kn. (10)

At each moment of time t, given labor and capital endowments {Ln}Nn=1 and {Kn}Nn=1,

trade deficits {Dn}Nn=1, bilateral industry-level trade costs {dinn′}
N,N,I+1
n=1,n′=1,i=1, and industrial

productivity measures {λin}
N,I+1
n=1,i=1, an instantaneous equilibrium is characterized by {rn}Nn=1,

{wn}Nn=1, and {P i
n}

N,I+1
n=1,i=1 such that consumers maximize utility (Equation 1, 2), firms maxi-

mize profit (Equation 3), decisions on international trade are made optimally (Equation 4, 5),

product markets clear (Equation 6–8), and factor markets clear (Equation 9–10). In short,

Equation 1–10 hold16 for any country n and industry i.

3.2 Dynamic Setup

3.2.1 A General Diffusion Process

I start with a brief description of a general diffusion process originally formulated by Buera

and Oberfield (2016). To make it concrete, consider that firms participate in a trade fair.

Each moment of time, a domestic firm f with productivity z drawn from a productivity

distribution F i
n,t has a certain chance randomly meeting another firm g in the trade fair.

This is formally modeled as a Poisson process. At this point, I do not impose restrictions on

where and what firm g produces. Firm g could be a domestic firm or an international firm. It

could compete with firm f in the same industry, or it may produce in a different industry. Its

productivity zG is drawn from a productivity distribution Gi
n,t. This distribution evolves over

time and potentially varies across countries and industries. I will explicitly specify Gi
n,t when

turning to explaining different channels of knowledge diffusion. Firm f adopts the technology

16Among these equations, N equations are redundant due to the identity for each country, En =∑I+1
i=1 P

i
nY

i
n. The proof can be found in Appendix B.1.
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or idea from g if it is productivity improving.

However, technology adoption usually requires localization and customization, so it inher-

ently involves randomness. To capture the noisiness in adoption, Buera and Oberfield (2016)

introduce another random draw, zH , from an exogenous, time-invariant Pareto distribution

H i. In particular, the actual productivity of adopting technology from firm g is given by

a Cobb–Douglas combination of zG and zH , zβ
i

G z
1−βi
H . The adoption parameter βi captures

the degree of determinacy in knowledge diffusion. If βi = 1, adoption of new ideas is de-

terministic; if βi = 0, the quality of new ideas is purely determined by exogenous noise.17

The new idea is adopted if and only if zβ
i

G z
1−βi
H is greater than the productivity level of the

existing technology z. Following the derivation in Buera and Oberfield (2016), this diffusion

process yields18 the productivity distribution F i
n,t = exp(−λin,tz−θ

i
) which coincides with the

Fréchet distribution I assume in the cross-section setting. In this sense, the general diffusion

process endogenizes the industrial productivity distribution. The industry-level productivity

parameter λin,t follows the law of motion19

dλin,t
dt

= η

∫ ∞
0

xβ
iθidGi

n,t(x),

where η is the normalized rate of random meetings with firms drawn from distribution Gi
n,t

and θi is the shape parameter in the Pareto distribution H i divided by 1−βi. The lower θi is,

the more likely it is to get a very large random draw from H i, which implies more dispersion

in the productivity distribution and thus strong forces of comparative advantage.

Since a firm could meet many different groups of firms in the trade fair, it draws ideas from

different productivity distributions. Let each firm draw new ideas from source s with distri-

bution Gi,s
n,t at a normalized rate ηs. New ideas from different sources arrive independently

of each other. The adoption parameter βi is assumed to be industry specific but source in-

variant. Therefore, I can write the general law of motion of industry-level productivity under

multiple sources as
dλin,t
dt

=
∑
s

ηs
∫ ∞
0

xβ
iθidGi,s

n,t(x). (11)

3.2.2 Channels of Idea Flows

I integrate four channels of idea flows: Knowledge diffuses within a country and across borders

through international trade. It takes place within the same industry and across industries. As

a benchmark, I start with the assumption that productivity dispersion does not vary across

industries: θi = θ.

17Notice that there is no upper bound on zH , so it is possible that an idea adopted by a new firm delivers
even higher productivity than where it is originally crafted.

18Details of the derivation can be found in Appendix B.2.
19In what follows, x in the integral always denotes the variety-level productivity draw.
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In the model, intraindustry knowledge diffusion20 takes the form of random meetings

among producers within the same industry. For example, in my trade-fair analogy, electronics

producers in China could meet and adopt technology from other electronics producers who

sell to the Chinese market. Denote by η̃in,t the Poisson intensity at which a producer in

industry i and country n randomly meets another seller in the same industry. Assuming that

each active seller in the domestic market is drawn with equal probability, I obtain the source

distribution of this channel as

Gi
n,t(z) =

∫ z

0

N∑
n′=1

∏
n′′ 6=n′

F i
n′′,t

(
cin′′,td

i
nn′′

cin′,td
i
nn′

x

)
dF i

n′,t(x),

where
∏

n′′ 6=n′ F
i
n′′,t

(
ci
n′′,td

i
nn′′

ci
n′,td

i
nn′

x

)
dF i

n′,t(x) can be interpreted as the (infinitesimal) probability

that a firm with productivity x from country n′ is the cheapest seller in country n.

By adding an industry dimension to Buera and Oberfield (2016), I am able to investigate

a much richer set of diffusion channels beyond intraindustry interactions. Motivated by the

recent empirical evidence on interindustry linkages in innovation (Cai and Li, 2016; Acemoglu

et al., 2016), I explicitly allow firm-to-firm meetings to be interindustry. For example, Chi-

nese electronics producers can meet and potentially adopt insights from German machinery

exporters. Formally, in the model, I allow firms in industry i to learn from active sellers in

the domestic market from another industry i′. New ideas arrive with the rate η̃ii
′

n,t. The source

distribution is then given by

Gii′

n,t =

∫ z

0

N∑
n′=1

∏
n′′ 6=n′

F i′

n′′,t

(
ci
′

n′′,td
i′

nn′′

ci
′
n′,td

i′
nn′

x

)
dF i′

n′,t(x).

Collecting these channels together and using Equation 11, I obtain the law of motion of

industry-level productivity:21

20Social learning has long been argued crucial to the understanding of productivity growth. A growing body
of empirical work confirms learning from information neighbors as an important factor of technology adoption
(Bandiera and Rasul, 2006; Conley and Udry, 2010). Case studies of Argentinian industries by Artopoulos et
al. (2013) suggest domestic knowledge diffusion could significantly impact a country’s comparative advantage
through learning from export pioneers. Moreover, a large literature studies international technology diffusion
through imports at the industry level. This channel is found important for both high-tech industries like
capital equipment (Eaton and Kortum, 2001) and traditional sectors like agriculture (Gisselquist and Jean-
Marie, 2000).

21Detailed derivation can be found in Appendix B.2.
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dλin,t
dt

=

domestic intraindustry diffusion︷ ︸︸ ︷
ηin,tπ

i
nn,t

1−βi
λin,t

βi
+

international intraindustry diffusion︷ ︸︸ ︷
ηin,t

∑
n′ 6=n

πinn′,t
1−βi

λin′,t
βi

+

domestic interindustry diffusion︷ ︸︸ ︷∑
i′ 6=i

ηii
′

n,tπ
i′

nn,t

1−βi
λi
′

n,t

βi

+

international interindustry diffusion︷ ︸︸ ︷∑
i′ 6=i

ηii
′

n,t

∑
n′ 6=n

πi
′

nn′,t

1−βi
λi
′

n′,t

βi

, (12)

where ηin,t ≡ Γ(1 − βi)η̃in,t, and ηii
′

n,t ≡ Γ(1 − βi)η̃ii′n,t. In the equation above, πnn′,t is directly

observed in trade data and λin,t can be estimated from production and trade data. The

main objective of my empirical exercise is to obtain diffusion parameters, ηin,t, η
ii′
n,t, and βi.

In the most general setting, there are too many diffusion parameters, so I impose further

assumptions on those parameters in the empirical specification.

It might already be noticed that intraindustry domestic knowledge diffusion is observa-

tionally equivalent at the industry level to an alternative formulation through the standard

narrative of learning by doing (Young, 1991). Therefore, unlike the development economics

literature using microeconomic data (Foster and Rosenzweig, 1995), I do not distinguish

learning by doing from knowledge diffusion, so the empirical interpretation of this channel

encompasses both mechanisms. Moreover, unlike Buera and Oberfield (2016), I only consider

the channel called learning from sellers in their original model. Since exporters must also

sell in their own domestic market due to the triangle inequality of trade cost, by taking into

account learning from domestic sellers, the industry-level diffusion process already captures

the idea that domestic producers could learn from each other. Having additional learning

channels may potentially improve the prediction of the model, but as suggested by my em-

pirical results, focusing on “learning from sellers” already captures the salient features in the

trade data.

I close this part by discussing the earlier simplifying assumption: θi = θ for any i. Ac-

cording to Caliendo and Parro (2014), there is substantial variation in industrial productivity

dispersion across industries. In the presence of heterogeneous θi, when producers in industry

i with little productivity dispersion (high θi) adopt ideas from producers in industry i′ with

substantial productivity dispersion (low θi
′
), the recipient industry’s productivity distribu-

tion tends to be largely shaped by the extreme values drawn from the source distribution. It

can be formally shown that the diffusion process becomes degenerate if and only if θi
′ ≤ βiθi.

Therefore, to relax the assumption on homogeneous θi, I have to assume that the diffusion

process is adjusted for industrial dispersion so as to maintain the analytical tractability of the

model. In particular, an adjustment parameter τii′ is introduced into interindustry diffusion.

When producers in industry i draw a new insight zG from productivity distribution G of

industry i′ as well as a random noise zH from the exogenous distribution H, the actual pro-

ductivity of this new insight is given by zτ
ii′βi

G z1−β
i

H with τ ii
′
= θi

′
/θi. Under this assumption
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of dispersion adjustment, the law of motion of industrial productivity (Equation 12) will be

unchanged even when productivity dispersion is not uniform across industries.22

3.2.3 Evolution of Endowment

To complete the dynamic setting of the model, I specify the laws of motion of labor and

capital. The population growth rate χn,t is country specific and time varying:

dLn,t
dt

= χn,tLn,t.

The equation of capital accumulation is given by

dKn,t

dt
= In,t − δn,tKn,t,

where In,t is investment and δn,t is the depreciation rate. Since international borrowing

and lending is allowed in this model, domestic saving is not necessarily equal to domestic

investment. The following accounting identity always holds.

Dn,t = Pn,t(In,t − Sn,t),

where Sn,t is the domestic saving, and Pn,t is the price index of final goods given by

Pn,t =

(
N∑
i=1

ωin

(
P i
n,t

φn

) κ
κ−1

)κ−1
κ
φn (

P I+1
n,t

1− φn

)1−φn

.

As in Levchenko and Zhang (2016), the model features both Ricardian and Heckscher–

Ohlin motives for international trade. However, since the main theme of the paper targets

productivity dynamics, the evolution of the endowment structure is treated exogenous. At

each moment of time, consumers treat saving rates, trade deficits, and investment rates as

given. By abstracting away from the complex intertemporal consumption-saving decision, a

country’s investment level goes hand in hand with its total output. This simplifying assump-

tion makes it feasible to conduct a variety of counterfactual analyses on the Ricardian side

of the model.

4 Empirical Specification and Data

4.1 Sample Construction

My sample construction mainly follows Levchenko and Zhang (2016). The baseline sample

consists of 72 countries and regions among which 42 are non-OECD economies. Unlike

22The proof can be found in Appendix B.3.
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innovation-based growth models, an empirical implementation of this model does not require

industry-level R&D data. Hence, a much larger set of non-OECD countries is included in the

sample. Data from OECD economies typically have longer time span. Since my second-stage

estimation requires a balanced panel, I use data from 1990 to 2010 to maximize the number

of countries. As a robustness check, similar analysis will also be performed in a longer time

span from 1970 to 2010, but most countries in the former Soviet Union will no longer be

included. Although the trade and production data is at the annual frequency, I choose the

length of each period to be five years to ensure that productivity estimates and calibration

of diffusion parameters are not contaminated by short-term business fluctuations. Therefore,

the baseline sample is a four-period balanced panel. All the variables are averaged within

each period. The sample contains 17 tradable industries. They are slightly aggregated up

from two-digit ISIC (revision 3) manufacturing industries.23

My sample is constructed from two main data sources.24 Bilateral trade variables are

obtained from the UN Comtrade database and further aggregated up from four-digit SITC to

two-digit ISIC. Production variables including industry-level output, value added, and wage

bills come from the UNIDO INDSTAT2 (2015 edition) database. Country-specific variables

like wage and rental rates, labor supply, and capital stock are taken from the Penn World

Table (version 8.1).

4.2 Empirical Specification

My empirical specification has two stages. The first stage uses the gravity structure in

each instantaneous equilibrium to estimate industry-level trade costs dinn′,t, industry-level

productivity parameters λin,t, and other cross-sectional structural variables. Estimation of

industry-level productivity parameters λin,t further consists of two steps. The first step is to

estimate productivity parameters relative to a benchmark country, the United States, fol-

lowing the procedure originally proposed by Shikher (2012). The second step is to estimate

US industry-level productivity parameters (λiUS) taking into account the mechanism of Ri-

cardian selection (Finicelli et al., 2013). The second stage calibrates the diffusion parameters

ηin,t, η
ii′
n,t and βi. This stage requires solving the instantaneous equilibrium every period and

applying model-implied trade and production variables to the law of motion of industry-level

productivity.

4.2.1 First Stage: Trade and Production Variables

The first stage estimates trade costs and industry-level productivity. The estimation strategy

is to exploit the gravity structure of international trade arising from each instantaneous

equilibrium. The subscript t is omitted if doing so does not cause confusion. I first derive

23In the appendix, Table A1 reports the sample coverage, and Table A2 describes industries.
24The details of sample construction are relegated to Appendix C. Table A3 outlines construction of key

variables and data sources.
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the empirical version of the gravity equation from the model. Equation 4 implies

ln

(
πinn′

πinn

)
= ln

(
λin′c

i
n′
−θi
)
− ln

(
λinc

i
n

−θi
)
− θi ln(dinn′). (13)

As in Eaton and Kortum (2002), I define the competitiveness measure Sin as the industry-level

productivity parameter adjusted by the unit cost of an input bundle. That is, Sin ≡ λinc
i
n
−θi

.

The bilateral trade cost is of the form

ln(dinn′) = Distnn′ +GravityV arnn′ + Expin′ + εinn′ , (14)

where Distnn′ captures the impact of bilateral distance on trade cost and the impact is

discretized by categorizing distance in miles into six intervals, [0, 375), [375, 750), [750,

1500), [1500, 3000), [3000, 6000), [6000, maximum). GravityV arnn′ includes a set of gravity

variables capturing such effects on trade cost as having a common border, sharing the same

language, and belonging to a common currency union or free trade area. I also include the

industry-level exporter fixed effect Expin′ , forcefully advocated by Waugh (2010), to generate

implications more consistent with data than the approach using importer fixed effects. The

last term εinn′ is an error term orthogonal to all the importer and exporter fixed effects and

bilateral observables mentioned above.

Combining Equations 13 and 14, I obtain

ln

(
πinn′

πinn

)
= lnSin′ − θiExpin′ − lnSin − θiDistnn′ − θiGravityV arnn′ − θiεinn′ , (15)

where (lnSin′ − θiExpin′) and (− lnSin) can be captured by two fixed effects. Since we take

the United States as the benchmark country, the competitiveness measure relative to it can

be obtained from the importer fixed effects,

Sin
SiUS

=
λin
λiUS

(
cin
ciUS

)−θi
. (16)

In the benchmark estimation, I pick θi to be four, the same value across industries (θi ≡ θ).

In the robustness check, I will report results using other values of θi, including industry-

specific estimates from Caliendo and Parro (2014). According to the expression above, to

obtain estimates of relative productivity parameters, λin/λ
i
US, what remains to estimate are

relative unit costs cin/c
i
US. As a benchmark, I assume I–O shares are country invariant. Using

Equation 3, I have

cin
ciUS

=

(
wn
wUS

)γiL (
rn
rUS

)γiK I∏
i′=1

(
P i′
n

P i′
US

)γii′ (
P I+1
n

P I+1
US

)γi(I+1)

, (17)

where all the Cobb–Douglas coefficients can be calculated using production data and I–O
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tables. The I–O shares are calibrated to US values in the benchmark exercise, while country-

specific I–O tables will be used as a robustness check. Relative wage rates and relative rental

rates are obtained from the Penn World Table. The relative price indices in the nontradable

sector are obtained from the International Comparison Program. To obtain relative price

indices in tradable industries, I follow Shikher (2012). Using Equation 4 and 5, I can show

πinn
πiUS US

=
Sin
SiUS

(
P i
n

P i
US

)θ
. (18)

Collecting Equations 16–18, I finally have

λin
λiUS

=
Sin
SiUS

(
wn
wUS

)θγiL (
rn
rUS

)θγiK (
P I+1
n

P I+1
US

)θγi(I+1) I∏
i′=1

(
πi
′
nn

πi
′
US US

Si
′
US

Si′n

)γii′
, (19)

where all the relative terms on the right-hand side are either estimated or directly measur-

able.25 For the nontradable sector, estimation of relative productivity parameters is even

simpler. Equation 5 implies

λI+1
n

λI+1
US

=

(
cI+1
n

cI+1
US

P I+1
US

P I+1
n

)θ
,

where cI+1
n /cI+1

US is obtained from Equations 17 and 18, and P I+1
n /P I+1

US can be directly ob-

tained from data.

Estimation of Equation 15 also yields the relative competitiveness measure Sin′/S
i
n for

every country pair. Plugging this back into Equation 13, I obtain a panel of trade costs dinn′ .

Trade-cost estimates will be used as exogenous parameters in the second-stage calibration.

Based on estimation of the gravity equation at the annual frequency, Figure 4 shows how

average trade costs decline during the postwar era and the trend is generally downward across

most industries. The unbalanced panel of trade-cost estimates exhibits a similar pattern, with

a slight increase of the median trade cost from the 1960s to the 1980s due to compositional

changes.26 The only anomaly is that the trade cost of the petroleum/fuel industry picked up

early 2000s, which is most likely to be driven by the 2000s’ energy crisis.

The second step of the first-stage estimation is to estimate US industry-level produc-

tivity parameters λiUS. By aggregating up output, capital, production and nonproduction

worker hours, and materials from four-digit SIC to two-digit ISIC, I first estimate four-factor

productivity, TFP i
US, of tradable industries (Bartlesman and Gray, 1996). US TFP in the

nontradable sector is obtained by combining information from the NBER-CES database and

the Penn World Table. However, the observed TFP may overestimate a country’s underlying

25As a cross validation, I compare the first-stage TFP estimates with those reported in Fadinger and Fleiss
(2011). In a similar Ricardo–Heckscher–Ohlin framework but with monopolistic competition, they also obtain
industry-level TFP estimates relative to the United States. The cross-sectional comparison is based on 1996
data and the correlation is above 0.5 for the vast majority of industries.

26Many country pairs with greater geographic separation started international trade during this sample
period.
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Figure 4: Evolution of Median Trade Costs from 1960 to 2010
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productivity level because trade openness forces many unproductive domestic producers to

exit the market. According to Finicelli et al. (2013), the true productivity level needs to be

adjusted by the share of domestic absorption27

λiUS = (TFP i
US)θπiUS US. (20)

Combining Equations 19 and 20, I obtain for every period the estimates of productivity

parameters across all countries and industries.

4.2.2 Second Stage: Diffusion Parameters

The second stage calibrates the diffusion parameters. To proceed, I assume that each diffusion

parameter can be written as a product of country- and industry-specific terms: ηin,t = ηn,tη
i,

ηii
′

n,t = ηn,tη
ii′
t . In the benchmark exercise, I further impose three assumptions: The diffusion

parameter βi is industry invariant (βi = β); the arrival rate is the same across countries

(ηn,t = ηt); interindustry knowledge linkages are proportional to production I–O linkages.

Therefore, I end up with only two parameters to calibrate in each period, a diffusion inten-

sity parameter ηt capturing average global productivity growth, and an adoption parameter,

β ≡ βi, capturing dispersion in industry-level productivity growth. Later, I will check the

robustness of the benchmark setting by relaxing each of these assumptions.

Calibration of β and η works as follows. First, I take an initial guess at the diffusion

parameters. Given the first-period estimates of productivity parameters λin,t0 , I solve the

instantaneous equilibrium for bilateral trade shares.28 Using the law of motion of the produc-

tivity parameters (Equation 12), I obtain λin,t for the next period. Then, given the predicted

productivity parameters, I solve the next-period instantaneous equilibrium. Iterating this

process until the last period of the sample, I obtain a full panel of bilateral trade shares and

production variables. Diffusion and parameters are updated until the model-implied country-

level TFP growth rates are close enough to the data. Since the calibration exercise does not

draw any industry-level information, I will use predicted industry-level productivity measures

and trade patterns to test the model for internal validity.

The evolution of the endowment structure is treated as exogenous. In each period, total

labor supply Ln,t is obtained from the data. The capital series is constructed using the

equation of capital accumulation and exogenous investment rates from the Penn World Table.

Exogenous trade deficits Dn,t are introduced as a wedge between a country’s total income

and expenditures.

27Note that TFP iUS needs to be exponentiated, because the mean of a Fréchet distribution with F (z) =
exp(−λz−θ) is proportional to λ1/θ.

28Details of the solution algorithm can be found in Levchenko and Zhang (2016).
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5 Empirical Results

5.1 Baseline Results

Panel I of Table 1 reports the goodness of fit under a full panel of estimated industry-level

TFP. The target variables for each cross-sectional equilibrium are country-level labor and

capital. The implied trade pattern matches the actual trade pattern well. Correlation is

consistently above 0.85, and median and mean trade shares are quite close. Panel II reports

the goodness of fit under my baseline calibration. The first-period TFP is chosen as the

estimated TFP from the data, so goodness of fit for 1990–1995 stays the same. It is expected

that as the number of iterations increases, it becomes difficult for the model to match the

data. However, correlation between bilateral trade share is still consistently above 0.75.

I now turn to the model’s key implication, convergence in Ricardian comparative advan-

tage. Figure 5 compares the pattern of convergence in RCA implied by the model with data.

It can be clearly seen that the simulated trade data also exhibits strong convergence. In-

dustries with little export volume in 1990 enjoy much higher export growth in the next two

decades. To establish the pattern of convergence more formally, I regress the growth rate of

the variable of interest on the initial value of that variable and a set of fixed effects,

4 lnX = α lnXt0 + FixedEffects + ε. (21)

There are many measures of comparative advantage. I consider three alternatives for X:

Industry level TFP, the central variable of interest, precisely capturing Ricardian comparative

advantage; the RCA index,29 a measure that is directly observable and widely used; and

export capability index30 proposed by Hanson et al. (2016). I also include bilateral trade

shares (not taking the logarithm) to check if convergence occurs on a bilateral base. To

ensure robustness, I consider four calibration strategies. Methods I and II fully solve the

model iteratively and apply model-implied trade shares to the law of motion of industry-level

TFP. Methods III and IV directly apply actual trade shares to update industry-level TFP.

Methods I and III fix β to be time invariant, while Methods II and IV allow a time-specific

β.

Table 2 presents regression results over cross-sectional observations of a 20-year window.

The first row reports convergence coefficients of the actual trade and productivity data.

They are all estimated negative and statistically significant, which echoes earlier findings in

the literature. The second row reports the convergence coefficients of my baseline calibration

using Method I. The adoption parameter β is calibrated to be 0.301. Given parsimony of

the parameters in my calibration exercise, it is surprising to see that the model-implied

convergence coefficients are remarkably close to the actual data. OECD countries tend to

29The results are robust if symmetric or weighted RCA indices are used (Yu et al., 2009).
30Formally, it is obtained as the exporter fixed effect by running the standard gravity model by industry

and time.
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Table 1: Goodness of Fit

Period Data Mean Model Mean Data Median Model Median Corr.

Panel I: Actual TFP

Wage (2005 US $)
1990-1995 6,165 5,071 4,647 3,995 0.96
1996-2000 6,451 5,337 4,759 4,407 0.96
2001-2005 6,651 5,344 4,728 3,958 0.94
2006-2010 6,934 5,993 5,053 4,116 0.93

Rent
1990-1995 0.18 0.16 0.17 0.16 0.66
1996-2000 0.18 0.15 0.16 0.14 0.61
2001-2005 0.19 0.14 0.16 0.13 0.40
2006-2010 0.20 0.12 0.17 0.12 0.05

Bilateral Trade Share
1990-1995 4.5e-3 3.8e-3 0 0 0.89
1996-2000 5.2e-3 4.4e-3 1.5e-5 1.7e-5 0.91
2001-2005 4.9e-3 4.2e-3 4.0e-5 3.7e-5 0.89
2006-2010 4.6e-3 3.9e-3 3.7e-5 1.3e-5 0.87

Domestic Absorption Share
1990-1995 0.61 0.66 0.67 0.75 0.91
1996-2000 0.55 0.62 0.59 0.69 0.92
2001-2005 0.51 0.56 0.54 0.63 0.92
2006-2010 0.47 0.52 0.50 0.59 0.90

Panel II: Model-implied TFP

Wage (2005 US $)
1990-1995 6,165 5,127 4,647 4,044 0.97
1996-2000 6,451 5,350 4,759 4,302 0.97
2001-2005 6,651 5,717 4,728 4,485 0.96
2006-2010 6,934 5,872 5,053 4,517 0.94

Rent
1990-1995 0.18 0.16 0.17 0.16 0.67
1996-2000 0.18 0.19 0.16 0.16 0.73
2001-2005 0.19 0.21 0.16 0.18 0.77
2006-2010 0.20 0.24 0.17 0.20 0.72

Bilateral Trade Share
1990-1995 4.5e-3 3.8e-3 0 0 0.89
1996-2000 5.2e-3 4.7e-3 1.5e-5 0.9e-5 0.86
2001-2005 4.9e-3 4.5e-3 4.0e-5 3.2e-5 0.83
2006-2010 4.6e-3 4.0e-3 3.7e-5 1.6e-5 0.78

Domestic Absorption Share
1990-1995 0.61 0.66 0.67 0.75 0.91
1996-2000 0.55 0.64 0.59 0.70 0.62
2001-2005 0.51 0.64 0.54 0.70 0.42
2006-2010 0.47 0.66 0.50 0.71 0.27

Note: Goodness of fit is reported for the baseline sample. Panel I reports simulation

using actual TFP estimates. Panel II reports simulation using industry-level TFP series

obtained from Method I.

25



Figure 5: Convergence in RCA: Model versus Data

−
4

−
2

0
2

4
C

ha
ng

e 
of

 R
C

A
 fr

om
 1

99
0 

to
 2

01
0

−6 −4 −2 0 2 4
log(RCA) in 1990, model

−
4

−
2

0
2

4
C

ha
ng

e 
of

 R
C

A
 fr

om
 1

99
0 

to
 2

01
0

−6 −4 −2 0 2 4
log(RCA) in 1990, data

have lower convergence rates than non-OECD countries in the data. This fact is also well

captured by the model. In the sample of non-OECD countries, the convergence rate matches

almost perfectly with the data, while in the sample of OECD countries, the model slightly

underpredicts the convergence rate. It should also be noticed that this convergence pattern

is not an artifact of my calibration exercise: In the baseline calibration, no country-specific

or industry-specific trend is fed into the model. The results are largely unchanged under

different calibration methods. Under Method II, β takes different values across periods:31

β90−95 = 0.169, β95−00 = 0.119, β00−05 = 0.500, suggesting that knowledge diffusion becomes

less noisy in the post-2000 episode. Method IV suggests a similar picture: β90−95 = 0.158,

β95−00 = 0.009, β00−05 = 0.484. However, Method IV raises the concern that the value of β

seems to be sensitive to calibration strategy. Therefore, I redo the benchmark exercise by

fixing β to 0.5 or 0.7 and report the results in the last two rows. They further confirm the

finding that the convergence pattern delivered by the model is quite robust.

Another important implication of the model concerns the turnover of export industries.

Following Proudman and Redding (2000), I construct a transition matrix in terms of industry-

level TFP. To account for industrial variation, I normalize the TFP estimates by the 90th

percentile for each industry. I then rank 17 tradable industries by their normalized TFP

measures. In each subtable of Table 3, the ijth element in a transition matrix represents

the conditional probability that a group-i industry in 1990 moves to the jth group in 2010.

More concretely, according to the first subtable in Table 3, if an industry is among the top

four industries in 1990, this industry is expected to remain top four after 20 years with

31I denote the adoption parameter over a time window from year y0 to y1 by βy0−y1 .
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Table 2: Convergence: Model versus Data

(1) (2) (3) (4) (5) (6)

Variable RCA Index TFP TFP TFP Trade Share
Export

Capability
Sample Full Full OECD Non-OECD Full Full

Data -0.310 -0.258 -0.243 -0.342 -0.065 -0.248
(0.023)*** (0.037)*** (0.062)*** (0.054)*** (0.011)*** (0.024)***

Method I -0.395 -0.287 -0.186 -0.358 -0.072 -0.363
(β = 0.285) (0.035)*** (0.022)*** (0.033)*** (0.028)*** (0.009)*** (0.040)***

Method II -0.394 -0.282 -0.177 -0.352 -0.071 -0.361
(0.035)*** (0.021)*** (0.032)*** (0.027)*** (0.009)*** (0.040)***

Method III -0.383 -0.257 -0.158 -0.325 -0.066 -0.351
(β = 0.240) (0.035)*** (0.021)*** (0.031)*** (0.027)*** (0.009)*** (0.041)***

Method IV -0.385 -0.268 -0.181 -0.331 -0.068 -0.357
(0.036)*** (0.022)*** (0.038)*** (0.027)*** (0.009)*** (0.042)***

Method I -0.396 -0.286 -0.179 -0.357 -0.071 -0.358
Fix β = 0.5 (0.035)*** (0.022)*** (0.031)*** (0.027)*** (0.009)*** (0.040)***

Method I -0.389 -0.283 -0.170 -0.355 -0.073 -0.358
Fix β = 0.7 (0.036)*** (0.021)*** (0.029)*** (0.027)*** (0.009)*** (0.040)***

Exporter FE Yes Yes Yes Yes Yes Yes
Importer FE Yes
Industry FE Yes Yes Yes Yes Yes Yes

No. of Obs. 967 992 483 509 83,464 952

Notes: (1) Growth rate of each variable is calculated between 1990–1995 and 2005-2010. The table only reports

the convergence parameter α specified in Equation 21; (2) Top and bottom 1% observations in terms of growth

rate are dropped; (3) Robust standard errors are reported in parentheses. *, **, and *** indicate significance

at the 10%, 5%, and 1% levels, respectively.

27



probability 49%. Diagonal terms in a transition matrix indicate persistence in specialization,

while off-diagonal terms capture mobility in specialization.

Table 3: Transition Probability in TFP: Model versus Data

Data Model

Non-OECD Countries

2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
90

R
an

k

1-4 0.49 0.21 0.15 0.14

19
90

R
an

k

1-4 0.74 0.22 0.04 0.00

5-8 0.29 0.33 0.25 0.13 5-8 0.15 0.49 0.31 0.04

9-12 0.14 0.33 0.29 0.24 9-12 0.03 0.19 0.38 0.41

13-17 0.06 0.11 0.25 0.59 13-17 0.07 0.08 0.22 0.64

OECD Countries

2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
90

R
an

k

1-4 0.51 0.22 0.18 0.09

19
90

R
an

k

1-4 0.89 0.11 0.00 0.00

5-8 0.27 0.38 0.25 0.10 5-8 0.05 0.79 0.16 0.00

9-12 0.11 0.29 0.30 0.30 9-12 0.01 0.07 0.73 0.20

13-17 0.09 0.09 0.21 0.61 13-17 0.04 0.03 0.09 0.84

Notes: Each transition matrix is constructed using 1990–1995 and 2005–2010 sample.

Comparing the two transition matrices in each panel of Table 3, I find that the model pre-

dicts substantial mobility in specialization despite the fact that the actual turnover rate is even

higher. For non-OECD countries, the model’s prediction about catch-up from the bottom is

in line with what is observed in the data. It captures well the dynamic patterns of those in-

dustries that are initially at the bottom of the distribution. The model tends to underpredict

the fraction of industries that fall back in ranking because I do not introduce negative TFP

shocks to my calibration. The model delivers less mobility in specialization among OECD

countries, because the innovation channel, an important mechanism for productivity growth

on the frontier, is not incorporated in the model. The results once again suggest that this

model of knowledge diffusion is more applicable to emerging-market economies, precisely the

group of countries that receive little attention from empirical assessment of innovation-based

growth models.32

Moreover, the calibration exercise suggests that knowledge diffusion could reconcile two

salient but seemingly contradictory features in the trade data: hyperspecialization and strong

mean reversion in comparative advantage (Hanson et al., 2016). The upper panel in Figure

32The contrasting findings for these two country groups underscore the insight in Acemoglu et al. (2006)
that countries switch to an innovation-based growth strategy only when they get close to the world technology
frontier.
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6 plots the distribution of the export share of the top export industry over 72 countries.

Consistent with the actual data, the calibrated model implies that the top industry accounts

for about 37%, more than a third, of a country’s total export volume. The lower panel plots

the distribution for the export share of the top three export industries. On average, top

three export industries amount to two thirds of the export volume. Therefore, in a world

where productivity growth is driven by knowledge diffusion, high skewness in comparative

advantage, namely, hyperspecialization, is perfectly compatible with strong convergence in

Ricardian comparative advantage.

Figure 6: Share of Top Export Industries
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Given the assumptions on diffusion parameters, the law of motion of industry-level pro-

ductivity can be rewritten as

dλin,t
dt

= ηt

(
γiiπinn,t

1−β
λin,t

β
+ γii

N∑
n′=1

πinn′,t
1−β
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+
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γii
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γii
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nn′,t
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′

n′,t

β

)
, (22)

where, in the baseline calibration, γij are the input–output coefficients in the US I–O table.

This equation can be used to decompose productivity growth into four different channels:

intra- and interindustry idea flows within and across borders. Although diffusion parameters

are not country specific, decomposition of productivity growth still varies across countries

because each country has different trade partners, thereby different learning opportunities.

Figure 7 illustrates the decomposition of productivity growth. The domestic knowledge dif-
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fusion on average accounts for about 36% of the overall industry-level productivity growth,

while the rest, 64% of the productivity growth, can be attributed to international knowledge

diffusion. In other words, producers tend to learn more from foreign sellers in the domestic

markets than from their domestic fellow producers. Under the assumption that interindus-

try diffusion intensity is proportional to I–O coefficients, I find that interindustry knowledge

diffusion can explain about 58% of the overall productivity growth. This suggests that ig-

noring interindustry knowledge linkages may substantially bias the prediction of productivity

dynamics at the industry level.

Figure 7: Contribution to Productivity Growth: 1990–2010
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The decomposition of productivity growth is very similar between OECD and non-OECD

economies (see Figure A1 in the appendix). At first glance, this may seem counterintuitive

because rich countries tend to trade more with rich countries, thus having better sources of

learning. However, rich countries also have higher domestic productivity, so this balances

out international knowledge diffusion and makes the contribution of each channel similar in

developing countries. Decomposition by industry (see Figure A2) reveals that although the

structure of knowledge diffusion varies substantially across industries, international knowledge

diffusion consistently plays a dominant role in boosting productivity growth.

One might suspect that β plays little role in understanding the dynamics of comparative

advantage because, according to Table 2, different values of β lead to similar rates of con-

vergence in comparative advantage. However, as is evidenced in Figure 8, the contribution

of each channel of knowledge diffusion to productivity growth crucially depends on β. The

contribution of domestic knowledge diffusion decreases with β. This is a direct consequence

of the diffusion specification as in Buera and Oberfield (2016). As the diffusion becomes
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more noisy, high-quality ideas from foreign exporters get heavily discounted and sources with

different quality of ideas become less distinguishable from each other.

Figure 8: Contribution to Productivity Growth versus β
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5.2 Robustness Check

The first set of robustness checks concerns the choice of diffusion matrices. In the first panel

of Table 4, I report the convergence pattern using country-specific, time-variant I–O tables as

diffusion matrices. Compared with the benchmark simulation, the results are highly robust.

Moreover, since the pattern of interindustry knowledge diffusion could be different from what

is suggested by production I–O tables, I also construct a matrix of interindustry knowledge

flow in light of Cai and Li (2014). Each element in the diffusion matrix is defined as the

share of patent citation from industry i to j. The simulated model slightly outperforms the

one using I–O tables.

The second robustness check concerns the sample choice. Table 5 reports the results of

convergence from 1970 to 2010. The downside of extending to a longer sample period is

that I end up with only 55 countries, among which 25 are OECD countries. The results are

generally consistent with those obtained from the benchmark sample. The model predicts

lower rates of convergence in TFP than the data, partly because some important sources

of idea flows like Germany are no longer in the sample and neither are many technology

recipients such as Eastern European countries.33 Column (5) reports convergence results in

import share, an indirect reduced-form measure of a country’s export capability. The rate

of convergence suggested by the model is remarkably similar to that of the data. Table

33For similar reasons, the bilateral trade share tends to be overestimated. The issue becomes increas-
ingly severe over time because those emerging-market economies that are excluded from the sample play an
increasingly important role in global trade.
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Table 4: Convergence: Alternative Diffusion Matrices

(1) (2) (3) (4) (5) (6)

Variable RCA Index TFP TFP TFP Trade Share
Export

Capability
Sample Full Full OECD Non-OECD Full Full

Data -0.310 -0.252 -0.239 -0.320 -0.066 -0.248
(0.023)*** (0.037)*** (0.062)*** (0.053)*** (0.011)*** (0.024)***

Country-specific I–O Table

Method I -0.398 -0.304 -0.200 -0.372 -0.076 -0.362
(β = 0.318) (0.036)*** (0.021)*** (0.037)*** (0.026)*** (0.010)*** (0.038)***

Method II -0.399 -0.295 -0.191 -0.362 -0.078 -0.366
(0.036)*** (0.020)*** (0.034)*** (0.026)*** (0.010)*** (0.039)***

Method III -0.387 -0.276 -0.175 -0.342 -0.072 -0.343
(β = 0.244) (0.036)*** (0.020)*** (0.036)*** (0.026)*** (0.009)*** (0.037)***

Method IV -0.393 -0.280 -0.175 -0.349 -0.074 -0.347
(0.036)*** (0.021)*** (0.034)*** (0.027)*** (0.009)*** (0.038)***

Patent Citation Matrix

Method I -0.368 -0.282 -0.194 -0.334 -0.065 -0.322
(β = 0.416) (0.036)*** (0.023)*** (0.040)*** (0.028)*** (0.009)*** (0.040)***

Method II -0.366 -0.282 -0.192 -0.336 -0.065 -0.320
(0.036)*** (0.024)*** (0.040)*** (0.028)*** (0.009)*** (0.040)***

Method III -0.360 -0.251 -0.171 -0.300 -0.063 -0.310
(β = 0.397) (0.036)*** (0.022)*** (0.038)*** (0.027)*** (0.009)*** (0.039)***

Method IV -0.356 -0.273 -0.202 -0.313 -0.061 -0.316
(0.037)*** (0.021)*** (0.045)*** (0.028)*** (0.009)*** (0.041)***

Exporter FE Yes Yes Yes Yes Yes Yes
Importer FE Yes
Industry FE Yes Yes Yes Yes Yes Yes

No. of Obs. 967 992 483 509 83,464 952

Notes: (1) Growth rate of each variable is calculated for 1990–1995 and 2005–2010. The table only reports the

convergence parameter α specified in Equation 21; (2) Top and bottom 1% observations in terms of growth

rate are dropped; (3) TFP estimates are based on country-specific I–O tables; (4) Robust standard errors are

reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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6 compares convergence in TFP by industry.34 For a majority of industries, the rate of

convergence is comparable. For industries that are heavily endowment-driven like Coke and

petroleum products, the model fails to capture a lack of convergence in the data, which

suggests that alternative mechanisms might be at work in these industries.

The third set of robustness checks concerns different methods of estimating the baseline

industry-level TFP. Table A4 in the Appendix summarize the convergence pattern of the

variables of interest under five alternative estimates of industry-level TFP. The first panel

reports the convergence pattern of the alternative TFP estimates from data. The second panel

reports for comparison the convergence pattern of simulated TFP from the model where the

first-period TFP is obtained from corresponding alternative specifications. The last panel

reports convergence in trade patterns suggested by the model. In Column (1), I reestimate

the main gravity equation using the Poisson pseudo-maximum likelihood method (PPML)

proposed by Silva and Tenreyro (2006) to address the issue of “zeros” in bilateral trade flows.

Accordingly, bilateral trade costs are also obtained from PPML regressions. Columns (2)–(5)

reestimate the model using country-specific and time-variant I–O tables.35 In Columns (2)

and (3), I maintain the baseline setting that the trade elasticity is the same across industries

and simulate the model using both OLS and PPML TFP estimates. According to Caliendo

and Parro (2014), trade elasticity varies substantially across industries, so Columns (4) and

(5) are based on TFP estimates using their industry-specific θi. Overall, the model delivers

a similar degree of convergence in TFP as data in terms of both statistical and economic

significance. It might be noticed that the simulated model in Columns (4) and (5) suggests

much stronger convergence in trade variables. This is due to the fact that some industries

have very high trade elasticity (for example θi = 50 for petroleum industry), which leads to

more outliers of λi in the first-stage estimation. The convergence rate largely agrees with the

data if these outliers are dropped.36

I further allow the diffusion parameter to be industry specific. The convergence results

are comparable to the benchmark simulation. Table 7 reports calibrated industry-specific βi

under two methods. Interestingly, βi is very similar across industries, ranging from 0.280 to

0.455. This suggests that the baseline calibration, which assumes an industry-invariant β, is

a reasonable approximation.

34I also report convergence in RCA by industry in Table A5 in the Appendix.
35The country-specific I–O tables are constructed from the WIOD database (Timmer et al., 2015). Details

can be found in the appendix.
36In light of Levchenko and Zhang (2016), I also reestimate the model using alternative interest rates:

marginal product of capital (Caselli and Feyrer, 2007), full financial integration, and WDI lending rates. The
baseline results are essentially unchanged.
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Table 5: Convergence: 1970–2010

(1) (2) (3) (4) (5)
Variable RCA Index TFP TFP TFP Import Share

Sample Full Full OECD Non-OECD Full

Data -0.500 -0.596 -0.533 -0.665 -0.746
(0.028)*** (0.048)*** (0.054)*** (0.075)*** (0.045)***

Benchmark

Method II -0.493 -0.356 -0.287 -0.454 -0.752
(0.038)*** (0.025)*** (0.045)*** (0.030)*** (0.049)***

Method IV -0.482 -0.334 -0.263 -0.432 -0.732
(0.036)*** (0.025)*** (0.044)*** (0.030)*** (0.050)***

Country-specific I–O Tables

Method II -0.492 -0.363 -0.287 -0.439 -0.747
(0.037)*** (0.025)*** (0.043)*** (0.029)*** (0.049)***

Method IV -0.485 -0.340 -0.260 -0.419 -0.729
(0.038)*** (0.025)*** (0.042)*** (0.030)*** (0.050)***

Patent Citation Matrix

Method II -0.479 -0.357 -0.294 -0.455 -0.723
(0.037)*** (0.029)*** (0.048)*** (0.038)*** (0.050)***

Method IV -0.473 -0.340 -0.277 -0.443 -0.733
(0.039)*** (0.029)*** (0.048)*** (0.038)*** (0.053)***

Country FE Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes

No. of Obs. 782 732 377 355 908

Notes: (1) Growth rate of each variable is calculated for 1970–1975 and 2005–2010. The table only

reports the convergence parameter α specified in Equation 21; (2) Top and bottom 1% observations

in terms of growth rate are dropped; (3) TFP estimates are based on country-specific I–O tables; (4)

Robust standard errors are reported in parentheses. *, **, and *** indicate significance at the 10%,

5%, and 1% levels, respectively.
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Table 6: Convergence in TFP by Industry: 1970–2010

(1) (2) (3) (4)
Data Benchmark WIOD Patent Obs.

Food, tobacco -0.388 -0.417 -0.369 -0.482 51
(0.082)*** (0.042)*** (0.042)*** (0.040)***

Textiles -0.344 -0.540 -0.516 -0.502 49
(0.162)** (0.069)*** (0.072)*** (0.070)***

Apparel, footwear -0.458 -0.104 -0.091 -0.085 35
(0.137)*** (0.015)*** (0.014)*** (0.013)***

Wood -0.188 -0.441 -0.409 -0.478 48
(0.088)** (0.038)*** (0.037)*** (0.033)***

Paper -0.349 -0.543 -0.659 -0.533 49
(0.072)*** (0.041)*** (0.032)*** (0.041)***

Printing, publishing -0.126 -0.011 -0.017 -0.008 49
(0.098) (0.002)*** (0.003)*** (0.002)***

Coke, petroleum 0.157 -0.779 -0.652 -0.908 51
(0.143) (0.035)*** (0.050)*** 0.015)***

Chemical -0.360 -0.357 -0.292 -0.313 43
(0.089)*** (0.033)*** (0.031)*** (0.031)***

Rubber, plastic -0.461 -0.267 -0.281 -0.215 48
(0.090)*** (0.033)*** (0.034)*** (0.028)***

Nonmetallic mineral -0.339 -0.163 -0.149 -0.164 47
(0.064)*** (0.023)*** (0.022)*** (0.022)***

Basic metals -0.118 -0.429 -0.449 -0.408 42
(0.100) (0.023)*** (0.027)*** (0.022)

Fabricated metal -0.159 -0.172 -0.143 -0.122 48
(0.068)** (0.016)*** (0.015)*** (0.014)***

Machinery, equipment -0.311 -0.568 -0.597 -0.483 41
(0.125)** (0.047)*** (0.048)*** (0.053)***

Electronics -0.370 -0.349 -0.415 -0.274 40
(0.114)*** (0.045)*** (0.052)*** (0.041)***

Medical, precision 0.069 -0.026 -0.029 -0.012 33
(0.171) (0.013)** (0.014)** (0.006)**

Vehicles -0.230 -0.393 -0.409 -0.279 46
(0.152) (0.031)*** (0.031)*** (0.026)***

Other manufacturing -0.310 -0.075 -0.078 -0.055 47

(0.140)** (0.024)*** (0.026)*** (0.017)***

Notes: (1) Calibration (Method III) is performed on the sample from 1970 to 2010 estimated using

country-specific TFP (2) Robust standard errors are reported in parentheses. *, **, and *** indicate

significance at the 10%, 5%, and 1% levels, respectively.
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Table 7: Industry-specific Diffusion Parameter βi

(1) (2) (3) (4)

Method I Method III Method I Method III

Food, tobacco 0.361 0.364 Textiles 0.368 0.383

Apparel, footwear 0.284 0.337 Wood 0.299 0.424

Paper 0.284 0.402 Printing 0.349 0.305

Coke, petroleum 0.312 0.448 Chemical 0.443 0.353

Rubber, plastic 0.421 0.331 Non-metallic 0.289 0.379

Basic metals 0.387 0.343 Fabricated metal 0.312 0.317

Machinery, equipment 0.455 0.336 Electronics 0.320 0.306

Medical, precision 0.347 0.307 Vehicles 0.451 0.304

Other manufacturing 0.280 0.334

Notes: (1) Calibration is performed on the baseline sample (2) βi is industry specific but time invariant

The implied decomposition of each channel’s contribution to TFP growth is similar across

different specifications and samples. The calibrated model consistently suggests that in-

ternational knowledge diffusion contributes about 60–70% to TFP growth while domestic

knowledge exchange contributes the other 30–40%. The only exception is when I use the

patent-citation matrix as the diffusion matrix (see Figure A3). In this case, international

knowledge diffusion explains almost 80% of productivity growth, because the adoption pa-

rameter β is calibrated highest under this specification.37 Moreover, interindustry diffusion

also plays a larger role because off-diagonal terms are much larger in the patent-citation

matrix than in the production I–O tables.

Various specifications also yield comparable transition matrices. The model tends to

underpredict transition probability in TFP, but for non-OECD countries, the model produces

closer predictions to the data. Table A6 compares transition matrices over the longer sample

period from 1970 to 2010 and suggests a similar finding. Given how well the convergence

pattern has been reproduced in the model, it calls for additional channels to explain dynamics

in industrial productivity beyond convergence.

37The data are obtained from Method III (β = 0.397) using the patent-citation matrix.
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6 Implications

6.1 “Key Players” in Knowledge Diffusion

The calibrated model suggests a complex network of industry-level knowledge diffusion. By

putting industries into play, complexity arises from both the international and interindustry

dimensions. For example, textile producers in Pakistan could draw insights and benefit from

machinery exporters in Germany through imports and interindustry spillovers. Therefore,

each country–industry pair potentially draws insights from N × I sources (N countries, I

industries). Denote the direct knowledge contribution from industry i′ in country n′ to

industry i in country n by αii
′

nn′ . I obtain αii
′

nn′ using Equation 22 and, by construction,∑
n′,i′ α

ii′

nn′ = 1. If each country–industry pair is treated as a node, then the matrix α ≡
{αii′nn′}NI×NI is the adjacency matrix of a weighted, directed network.

To find “key players,” that is, countries or country–industry pairs that contribute most

to global productivity growth through knowledge diffusion, I define centrality measures38 in

the global diffusion network. The first centrality measure is simply defined as a country or

country–industry pair’s average direct contribution to world productivity growth:

CDirect
n =

∑
n′,i,i′ α

i′i
n′n∑

n,n′,i,i′ α
i′i
n′n

; CDirect
n,i =

∑
n′,i′ α

i′i
n′n∑

n,n′,i,i′ α
i′i
n′n

.

Table 8 reports the top five OECD country’s contributions to global knowledge diffusion

from 1990 to 2010. I also report the weighted-average contribution of which weights are

given by industry-level output share. It can be seen from the table that the simple average

yields rankings similar to those of the weighted average, but the share of contribution varies

substantially. The weighted-average centrality measure suggests that the United States and

Germany contribute to almost 40% of global knowledge diffusion. For comparison, I include

five major emerging-market economies (“BRICS”) in the table, among which China’s con-

tribution is very close to those leading OECD countries. Similar rankings can be obtained

under two alternatives of the diffusion matrix: country-specific production I–O tables and

the patent-citation matrix. In the Appendix, Table A7 reports contributions to TFP growth

by period. Clearly, China plays an increasingly important role in global knowledge diffusion.

By the end of the sample, China’s contribution to global TFP growth surpassed major in-

dustrialized economies like the United Kingdom, Italy, and France, and approached Japan,

the third main contributor to idea flows for the last two decades.

Table 9 reports the top ten country–industry pairs’ contributions to global knowledge

diffusion. The rankings largely agree with each other under different diffusion matrices. The

list is predominantly comprised of four high-tech industries (vehicles, machinery, electronics,

38In the context of the global trade network, a variety of centrality measures have been recently proposed to
study the structure of international trade in relation to economic growth (Kali and Reyes, 2007; Duernecker
et al., 2014; Pinat, 2015).
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Table 8: Key Players: Direct Contribution to TFP Growth

Simple Average (%) Weighted Average (%)
OECD “BRICS” OECD “BRICS”

USA 11.29 Brazil 2.16 USA 20.88 Brazil 1.77
Germany 7.52 Russia 1.28 Germany 18.31 Russia 0.70
Japan 6.95 India 1.77 Japan 8.23 India 1.15
Italy 5.26 China 3.78 Italy 5.10 China 5.43
France 4.73 S. Africa 1.13 France 4.88 S.Africa 0.48

Note: This table is based on baseline calibration from 1990 to 2010. Centrality

measures are calculated using diffusion parameters obtained from calibration and

actual trade and production data. I obtain similar rankings if simulated trade and

production data is used.

and measurement) from three major knowledge creators, USA, Japan, and Germany. This

table also suggests that the distribution of contribution to knowledge diffusion is extremely

skewed. According to the weighted-average centrality, among 1224 (72 countries × 17 indus-

tries) country–industry pairs, the top ten country–industry pairs contribute more than one

quarter to global productivity growth.

Table 9: Key Players: Direct Contribution to TFP Growth

Simple Average (%) Weighted Average (%)

Country Industry Contribution Country Industry Contribution

USA Measurement 2.23 Japan Vehicles 3.91

Japan Vehicles 1.81 USA Vehicles 3.57

USA Machinery 1.44 USA Measurement 2.98

USA Vehicles 1.40 Japan Electronics 2.98

USA Electronics 1.27 USA Food 2.75

Germany Machinery 1.11 Japan Machinery 2.72

Japan Electronics 1.09 USA Machinery 1.84

Germany Vehicles 1.07 USA Printing 1.75

Germany Measurement 1.07 Germany Vehicles 1.74

Japan Machinery 1.05 USA Electronics 1.65

Note: This table is based on the baseline calibration from 1990 to 2010. Alternative diffusion

matrices yield similar rankings. Centrality measures are calculated using diffusion parameters

obtained from calibration and actual trade and production data. I obtain similar rankings if

simulated trade and production data are used.

The second centrality measure concerns the extensive margin of global knowledge flows.
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Define a country’s or country-industry pair’s degree centrality as follows

CDegree
n =

∑
n′,i,i′

1αi′i
n′n≥ζ

; CDegree
n,i =

∑
n′,i′

1αi′i
n′n≥ζ

,

where 1 is an indicator function and ζ is a prespecified cutoff.

Figure 9: Degree Distribution of Global Diffusion Network: 1990–2010
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Notes: (1) The diffusion network is constructed using diffusion parameters obtained from the baseline cali-

bration (Method II); (2) The cutoff of 10−4 is about the average contribution to global productivity growth

and 10−5 is the 75-percentile.

The list of “key players” can be found in Table A8. Under this definition, the global dif-

fusion network is reduced to an unweighted directed graph. Figure 9 illustrates the evolution

of the global diffusion network. When ζ = 10−4, the approximately linear fitted line in the

log–log plot suggests that the degree distribution resembles a scale-free distribution39 and this

line flattens out over time. When I pick a smaller cutoff, ζ = 10−5, the degree distribution

39However, it is a not a scale-free network, because the estimated scale parameter (slope of the fitted line)
is close to one, not between two and three.
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Figure 10: Lorenz Curve of Degree: 1990–2010
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Notes: (1) The diffusion network is constructed using diffusion parameters obtained from the baseline calibra-

tion (Method II); (2) The average contribution to global productivity growth is about 1.4%; (3) Country-level

degree data are pooled together for all three periods.

becomes more interesting. In the last period, the distribution is U-shaped with a very heavy

right tail, suggesting that many country–industry pairs play a nonnegligible role in global

knowledge diffusion. Following Kali and Reyes (2007), Figure 10 plots the Lorenz curve

of degree in knowledge diffusion as well import share for comparison. The global diffusion

network is highly asymmetric: knowledge mainly comes from a handful of countries.

The third centrality measure concerns substitutability of a country in the global diffusion

network. Suppose that country n completely closes its border. In the absence of trade

between country n and the rest of the world, the structure of idea flows changes. A country’s

importance in knowledge diffusion can be assessed by the change of TFP growth under

this counterfactual. Table 10 reports the change of TFP growth from 1990 to 2010 if a

given country becomes autarkic. The second and fifth columns are the simple average of

counterfactual TFP growth of the rest of the world. Dropping a country from the global trade

network always has a negative impact on world TFP growth, although the TFP growth may

accelerate for some countries under the counterfactual. Consistent with the first centrality

measure, the United States, Germany, and Japan remain the top three countries that have

the greatest impact on knowledge diffusion. Interestingly, China, an important contributor

to knowledge diffusion, is no longer in the list, mainly due to its relatively low industry-

level TFP. Moreover, taking into account the endogenous change in the trade pattern, the

counterfactual exercise suggests that substitutability of a country from the perspective of

knowledge diffusion is not as high as is traditionally thought, because if a country’s trade

partner becomes autarkic, this country can always find a second best from the rest of the

world. On the other hand, the third and sixth columns indicate that a country’s TFP growth

is significantly dampened under autarky, and this is even true for developed countries. The
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average decline of TFP growth of a country is comparable between OECD and non-OECD

economies.

Table 10: Key-Player: Counterfactual Change of TFP Growth

Change of TFP Growth from 1990 to 2010 (%)

OECD World Average Own Non-OECD World Average Own

Japan -5.81 -27.89 Taiwan -3.50 -25.82

USA -5.13 -44.70 Brazil -1.63 -50.60

Germany -3.75 -57.31 India -1.42 -47.64

France -2.82 -54.58 South Africa -1.38 -54.21

Italy -2.78 -50.65 Malaysia -1.37 -33.84

UK -2.71 -59.05 Russia -1.37 -63.56

Canada -2.51 -52.01 Thailand -1.36 -55.31

Korea -2.16 -48.09 Indonesia -1.35 -45.46

Spain -2.09 -54.34 Ukraine -1.28 -58.68

Switzerland -1.96 -26.61 Egypt -1.25 -60.17

Average -1.94 -52.15 Average -1.18 -52.20

Note: This table computes the percentage change of TFP growth by assuming that one

country becomes autarkic. The diffusion parameter is from the method II of the baseline

calibration. The world average decline of TFP growth is weighted by PPP-adjusted GDP.

6.2 Dynamic Gains from Trade

Another important implication of the quantitative model is that idea flows give rise to dy-

namic gains from trade. As opening up to trade exposes a country to exporters with bet-

ter technology, improved learning opportunity speeds up TFP growth and thus real income

growth. To decompose total gains from trade into static and dynamic components, I conduct

two thought experiments. I first consider the change of real income for a country to move

from autarky to the level of openness of the period 2005–2010. This captures the standard

static gains from trade. On average, the static gains from trade are about 20% of a country’s

real income, which echoes the earlier findings in the literature that static gains from trade

are generally modest (Arkolakis et al., 2012; Costinot and Rodŕıguez-Clare, 2014). Notice

that static gains from trade decreases with trade elasticity (θ) and elasticity of substitution

(1/(1 − κ)) across industries. Therefore, the static gains from trade become substantially

larger if Cobb–Douglas aggregator is used for final consumption goods (κ = 0). In contrast,

if higher trade elasticity is picked in the calibration, then the gains from trade become much

smaller.40

40For example, the gains from trade decline by two thirds if I choose θ = 8.28.

41



Figure 11: Gains from Trade
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Note: (1) The benchmark period is 2000–2005, and diffusion parameters are borrowed from benchmark

calibration Method I; (2) The annual discount rate is 3% and the results are robust for the plausible range

of annual discount rates (1% to 10%).

The second thought experiment concerns dynamic gains from trade. It is defined as the

percentage-point change of a country’s real income if this country learns from its trade part-

ners rather than only its domestic producers, conditional on the fact that in both scenarios it

opens up to international trade. In other words, the dynamic gains from trade are the addi-

tional welfare gains for a country to move from autarky to openness in the sense of knowledge

diffusion. Similar to earlier theoretical work (Redding, 1999), I calculate the discounted sum

of future real income to measure the dynamic effects of international trade. The dynamic

gains from trade amount to, on average, 6.07% of real GDP for OECD economies and 12.34%

for non-OECD economies. Non-OECD economies enjoy much higher dynamic gains because

of the strong convergence effects. According to the baseline calibration, dynamic gains from

trade are about one third of the static gains from trade, but this should be treated as a lower

bound. I use the baseline calibrated diffusion parameters (β = 0.285; η = 14.18) for all the

future periods, which has the long-run implication that the TFP growth rate of the global

economy converges to zero. If η is also allowed to grow (as is suggested by the data), the

dynamic gains from trade can be much larger.
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7 Conclusion

In this paper, I build a multi-industry model of international trade and knowledge diffu-

sion to investigate the dynamic pattern of Ricardian comparative advantage. Borrowing

the strengths from both the trade and growth literature, my model generates quantitative

implications on the evolution of Ricardian comparative advantage. The dynamic proper-

ties implied by the calibrated model are broadly consistent with two salient features in the

data: strong convergence in industry-level productivity and substantial turnover of export

industries. The decomposition exercise shows the major roles played by international and

interindustry knowledge diffusion. According for its positive effects on productivity growth,

the model suggests that gains from trade are at least 40% higher than is implied by a static

model of international trade. Analysis based on the global diffusion network further reveals

the complex structure of idea flows. In line with the theoretical prediction in Buera and

Oberfield (2016), my calibrated model suggests that composition of trade partners matters

for the evolution of a country’s comparative advantage and its overall economic growth.41

This paper can be extended in several dimensions. First, it would be of great interest

to incorporate multinational production into this framework. A large literature studies how

multinational production affects productivity of domestic firms, but little work has been done

at the industry level concerning how knowledge diffuses through multinational production

in a dynamic general-equilibrium framework. The main barrier is the availability of data.

Even the most comprehensive industry-level database of multinational production covers less

than 10 years of data and predominantly consists of OECD countries (Alviarez, 2015; Fukui

and Lakatos, 2012). Second, while the assumption of perfectly competitive markets buys

tractability of the model, it also eliminates the problem of free-riding that Hausmann and

Rodrik (2003) identify as the major hurdle to successful localization of foreign technology

in developing countries. Introducing alternative market structures that lead to negative

externality of knowledge diffusion is another promising avenue for future research. Last,

since firms do not internalize the benefits of idea flows, the door is open for government

intervention. Questions on optimal trade and industrial policies call for a richer framework

amenable for quantitative policy analysis.

41This relates to the discussion of trade and industrial policies. Cross-country regressions by Hausmann
et al. (2007) suggest that a country tends to achieve higher economic growth if its export basket is more
similar to those of rich countries. Their finding spurs a huge debate on the industrial policy (Lederman and
Maloney, 2012). In contrast, this paper suggests that import structure could also be relevant in explaining
cross-country growth differentials.
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Costinot, Arnaud and Andrés Rodŕıguez-Clare, “Trade Theory with Numbers: Quantifying the Con-

sequences of Globalization,” Handbook of International Economics, 2014, 4, 197–261.

, Dave Donaldson, and Ivana Komunjer, “What Goods Do Countries Trade? A Quantitative Explo-

ration of Ricardo’s Ideas,” Review of Economic Studies, 2012, 79 (2), 581–608.

Duernecker, Georg, Moritz Meyer, and Fernando Vega-Redondo, “The Network Origins of Economic

Growth,” Working Paper, 2014.

Easterly, William and Ariell Reshef, “African Export Successes: Surprises, Stylized Facts, and Expla-

nations,” NBER Working Paper, 2010.

Eaton, Jonathan and Samuel Kortum, “International Technology Diffusion: Theory and Measurement,”

International Economic Review, 1999, 40 (3), 537–570.

and , “Trade in Capital Goods,” European Economic Review, 2001, 45 (7), 1195–1235.

and , “Technology, Geography, and Trade,” Econometrica, 2002, 70 (5), 1741–1779.

Fadinger, Harald and Pablo Fleiss, “Trade and Sectoral Productivity,” Economic Journal, 2011, 121

(555), 958–989.

Feenstra, Robert C, Robert E Lipsey, Haiyan Deng, Alyson C Ma, and Hengyong Mo, “World

Trade Flows: 1962-2000,” NBER Working Paper, 2005.

, Robert Inklaar, and Marcel P Timmer, “The next generation of the Penn World Table,” The

American Economic Review, 2015, 105 (10), 3150–3182.

Finicelli, Andrea, Patrizio Pagano, and Massimo Sbracia, “Ricardian Selection,” Journal of Interna-

tional Economics, 2013, 89 (1), 96–109.

Foster, Andrew D and Mark R Rosenzweig, “Learning by Doing and Learning from Others: Human

Capital and Technical Change in Agriculture,” Journal of Political Economy, 1995, pp. 1176–1209.

Fukui, Tani and Csilla Lakatos, “A Global Database of Foreign Affiliate Activity,” Working Paper, 2012.

Gisselquist, David and Grether Jean-Marie, “An Argument for Deregulating the Transfer of Agricul-

tural Technologies to Developing Countries,” World Bank Economic Review, 2000, 14 (1), 111–127.

Hall, Bronwyn H, Adam B Jaffe, and Manuel Trajtenberg, “The NBER patent citation data file:

Lessons, insights and methodological tools,” NBER Working Paper, 2001.
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A List of Symbols

N, I number of countries, number of industries

wn,t, rn,t wage rate, rental rate

sn,t saving rate

Dn,t trade deficit

En,t total expenditure

In,t total investment

Yn,t, Y
i
n,t country-level, industry-level demand of final goods

Ln,t, L
i
n,t, `

i
n,t country-, industry-, variety-level input of labor

Kn,t, K
i
n,t, k

i
n,t country-, industry-, variety-level input of capital

Pn,t, P
i
n,t, p

i
n,t country-, industry-, variety-level price

Qi
n,t, q

i
n,t industry-level, variety level total demand

cin,t industry-level unit cost of an input bundle

F i
n,t industry-level productivity distribution (Fréchet)

Gi
n,t source distribution of intraindustry knowledge diffusion

Gii′
n,t source distribution of interindustry knowledge diffusion

zin,t variety-level productivity

mii′
n,t variety-level input of composite intermediate goods from industry i′

dinn′,t iceberg shipping cost from country n′ to n

κ elasticity of substitution across tradable industries = 1/(1− κ)

φn share of tradable consumption

χn,t population growth rate

δn,t depreciation rate

βi Cobb–Douglas share of learning from other firms

νi variety of industry i

σi elasticity of substitution across varieties

θi dispersion parameter of Fréchet distribution (trade elasticity)

τ ii
′

dispersion adjustment parameter in interindustry diffusion

ωin share parameter of industry i across tradable goods

γiLn , γ
iK
n variety-level labor share, capital share

γii
′

n variety-level input share from industry i′ to industry i

λin,t location parameter of Fréchet distribution (industrial productivity)

ηin,t arrival rate of intraindustry learning from domestic and foreign producers

ηii
′

n,t arrival rate of interindustry learning from domestic and foreign producers

πinn′,t share of expenditure on imports from country n′
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B Proofs and Theoretical Extensions

B.1 Instantaneous Equilibrium

Given labor and capital endowment {Ln}Nn=1 and {Kn}Nn=1, trade deficits {Dn}Nn=1, bilateral

industry-level trade costs {dinn′}
N,N,I+1
n=1,n′=1,i=1 instantaneous equilibrium is obtained by solving

Equation 1 - 10 for total expenditures {En}Nn=1, wage rates {wn}Nn=1, rental rates {rn}Nn=1,

industrial price levels {P i
n}

N,I+1
n=1,i=1, industrial final demand {Y i

n}
N,I+1
n=1,i=1, industrial unit costs of

input bundle, {cin}
N,I+1
n=1,i=1, industrial total demand {Qi

n}
N,I+1
n=1,i=1, industrial labor employment

{Lin}
N,I+1
n=1,i=1, industrial capital stock {Ki

n}
N,I+1
n=1,i=1, and industrial trade flows {πinn′}

N,N,I+1
n=1,n′=1,i=1.

There are in total N2(I + 1) + 6N(I + 1) + 3N unknowns. Equilibrium conditions 1 - 10

consist of N2(I + 1) + 6N(I + 1) + 4N equations, but N equations are redundant, which can

be seen as follows

En = wnLn + rnKn +Dn

=
I+1∑
i=1

(
γiL

N∑
n′=1

P i
n′Q

i
n′π

i
n′n + γiK

N∑
n′=1

P i
n′Q

i
n′π

i
n′n + P i

nQ
i
n −

N∑
n′=1

P i
n′Q

i
n′π

i
n′n

)

=
I+1∑
i=1

(
γiL

N∑
n′=1

P i
n′Q

i
n′π

i
n′n + γiK

N∑
n′=1

P i
n′Q

i
n′π

i
n′n −

N∑
n′=1

P i
n′Q

i
n′π

i
n′n

)

+
I+1∑
i=1

(
I+1∑
i′=1

γi
′i
n

N∑
n′=1

P i′

n′Q
i′

n′π
i′

n′n + P i
nY

i
n

)

=
I+1∑
i=1

P i
nY

i
n

B.2 Derivation of the Law of Motion of Industrial Productivity

I first derive the law of motion of industry-level productivity in the general diffusion process

which follows Buera and Oberfield (2016). New ideas arrive as a Poisson process with the

arrival rate η̃. A firm draws a new idea of productivity level zG from a source distribution

Gi
n,t(·). The new idea is adopted by this firm if and only if zβ

i

G z
1−βi
H is greater than the pro-

ductivity level of its current technology z, where zH is random draw from a noise distribution

H i, capturing randomness in knowledge diffusion. This process of adopting new ideas yields

the following law of motion of industrial productivity distribution F i
n,t

d

dt
lnF i

n,t(z) = −η̃
∫ ∞
0

[
1−Gi

n,t

(
z1/β

i

x(1−βi)/βi

)]
dH i(x).

Assume that H i(·) follows a Pareto distribution, H i(z) = 1 − (z/z0)
−θ̃i , for z > z0. Let
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θi ≡ θ̃i/(1− βi) and normalize η ≡ η̃zθ̃0 to be a constant. It can be further shown that

lim
z0→0

d

dt
lnF i

n,t(z) = −ηz−θi
∫ ∞
0

xβ
iθidGi

n,t(x),

provided that limx→∞[1 − Gi
n,t(x)]xβ

iθi = 0. Therefore, I obtain the industrial productiv-

ity distribution F i
n,t(z) = exp(−λin,tz−θ

i
), with the law of motion of the key productivity

parameter λin,t given by dλin,t/dt = η
∫∞
0
xβ

iθidGi
n,t(x).

I now turn to deriving the law of motion of industrial productivity under specific channels

in consideration. Recall that the general form of law of motion of industry-level productivity

under multiple channels of idea flows is given by

dλin,t
dt

=
∑
s

ηs
∫ ∞
0

xβ
iθidGi,s

n,t(x). (B.1)

In light of Buera and Oberfield (2016), I first derive expression of
∫∞
0
xβ

iθidGi,s
n,t(x) for each

channel.

1. Intraindustry knowledge diffusion

∫ ∞
0

xβ
iθidGi

n,t(z) =

∫ ∞
0

xβ
iθi

N∑
n′=1

∏
n′′ 6=n′

F i
n′′,t

(
cin′′,td

i
nn′′,t

cin′,td
i
nn′,t

x

)
dF i

n′,t(x)

=
N∑

n′=1

∫ ∞
0

xβ
iθi exp

− ∑
n′′ 6=n′

λin′′,t

(
cin′′,td

i
nn′′,t

cin′,td
i
nn′,t

x

)−θi d exp
(
−λin′,tx−θ

i
)

=
N∑

n′=1

∫ ∞
0

y−β
i

exp

− N∑
n′′=1

λin′′,t

(
cin′′,td

i
nn′′,t

cin′,td
i
nn′,t

)−θi
y

 d(λin′,ty)

=
N∑

n′=1

∫ ∞
0

y−β
i

exp

(
−
λin′,ty

πinn′,t

)
d(λin′,ty)

= Γ(1− βi)
N∑

n′=1

πinn′,t
1−βi

λin′,t
βi
. (B.2)
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2. Interindustry knowledge diffusion

∫ ∞
0

xβ
iθidGii′

n,t(z) =

∫ ∞
0

xβ
iθi

N∑
n′=1

∏
n′′ 6=n′

F i′

n′′,t

(
ci
′

n′′,td
i′

nn′′,t

cjn′,td
i′
nn′,t

x

)
dF i′

n′,t(x)

=
N∑

n′=1

∫ ∞
0

xβ
iθi exp

− ∑
n′′ 6=n′

λi
′

n′′,t

(
ci
′

n′′,td
i′

nn′′,t

ci
′
n′,td

i′
nn′,t

x

)−θi′ d exp
(
−λi′n′,tx−θ

i′
)

=
N∑

n′=1

∫ ∞
0

y−β
iθi/θi

′

exp

− N∑
n′′=1

λin′′,t

(
cin′′,td

i
nn′′,t

cin′,td
i
nn′,t

)−θi
y

 d(λin′,ty)

=
N∑

n′=1

∫ ∞
0

y−β
iθi/θi

′

exp

(
−
λin′,ty

πinn′,t

)
d(λin′,ty)

= Γ(1− βiθi/θi′)
N∑

n′=1

πi
′

nn′,t

1−βiθi/θi′
λi
′

n′,t

βiθi/θi
′

. (B.3)

In the benchmark case, θi = θ for any industry i. Given Equation B.2 and B.3, I obtain

the law-of-motion of productivity as Equation 12.

B.3 Adjustment of Industry-level Productivity Dispersion

Consider firms in industry i draw insights from firms in industry i′. Once a new insight

is drawn (with arrival rate η̃), the actual productivity is given by zτ
ii′βi

G z1−β
i

H where zG is

a random drawn from the source distribution Gii′
n,t(·) and zH is drawn from an exogenous

distribution H i(·). With the adjustment parameter τ ii
′

of industrial productivity dispersion,

the law of motion of industrial productivity can be rewritten as

d

dt
lnF i

n,t(z) = −η̃
∫ ∞
0

[
1−Gii′

n,t

(
z1/(β

iτ ii
′
)

x(1−βi)/(βiτ ii
′ )

)]
dH i(x).

Assume that H i(z) = 1 − (z/z0)
−θ̃i . Let θi ≡ θ̃i/(1 − βi) and normalize η ≡ η̃zθ̃0 to be a

constant. It can be shown that

lim
z0→0

d

dt
lnF i

n,t(z) = −ηz−θi
∫ ∞
0

xβ
iθiτ ii

′

dGi
n,t(x),

if limx→∞[1−Gi
n,t(x)]xβ

iθiτ ii
′

= 0. Therefore, the industry-level productivity distribution still

follows Fréchet with the law of motion of the position parameter λin,t given by

dλin,t
dt

= η

∫ ∞
0

xβ
iθiτ ii

′

dGi
n,t(x). (B.4)

52



Let τ ii
′
= θi

′
/θi. Equation B.3 is modified as follows

∫ ∞
0

xβ
iθidGii′

n,t(z) = Γ(1− βi)
N∑
m=1

πi
′

nm

1−βi
λi
′

m

βi

(B.5)

which coincide the results under the assumption of homogeneous industrial productivity dis-

persion.

C Data Description

C.1 Sample

Following Levchenko and Zhang (2016), my sample consists of 72 countries and 17 manu-

facturing industries. The original data covers from 1963 to 2011. Details of the sample can

be found in Table A1 and A2. I treat each five-year window as one period. To maximize

the number of countries, especially non-OECD countries, the baseline sample is chosen to

start from 1990 and end in 2010, so there are four periods in the baseline sample: 1991-1995,

1996-2000, 2001-2005, and 2006-2010. Within each five-year window, I calculate the median

of each trade and production variable.

Table A1: Sample Coverage

Non-OECD Year Non-OECD Year Non-OECD Year Non-OECD Year
Argentina 80-11 Bangladesh 72-07 Bolivia 63-11 Brazil 80-11
Bulgaria 90-11 China 73-11 Colombia 63-11 Costa Rica 63-11
Ecuador 63-11 Egypt 63-11 El Salvador 63-11 Ethiopia 80-11
Fiji 63-11 Ghana 63-11 Guatemala 63-11 Honduras 63-11
India 63-11 Indonesia 63-11 Jordan 63-11 Kazakhstan 92-11
Kenya 63-11 Malaysia 63-11 Mauritius 63-11 Nigeria 63-11
Pakistan 63-11 Peru 80-11 Philippines 63-11 Romania 90-11
Russia 96-11 Senegal 70-11 S. Africa 63-11 Sri Lanka 63-11
Taiwan 73-11 Tanzania 63-11 Thailand 63-11 Trinidad Tbg 63-10
Ukraine 92-11 Uruguay 63-11 Venezuela 63-11 Viet Nam 91-11

OECD Year OECD Year OECD Year OECD Year
Australia 63-11 Austria 63-11 Belgium-Lux 63-11 Canada 63-11
Chile 63-11 Czech Rep 93-11 Denmark 63-11 Finland 63-11
France 63-11 Germany 91-11 Greece 63-11 Hungary 90-11
Iceland 63-11 Ireland 63-11 Israel 63-11 Italy 65-11
Japan 63-11 Korea Rep 63-11 Mexico 63-11 Netherlands 63-11
New Zealand 63-11 Norway 63-11 Poland 90-11 Portugal 63-11
Slovakia 93-11 Slovenia 92-11 Spain 63-11 Sweden 63-11
Switzerland 80-11 Turkey 63-11 UK 63-11 USA 58-11
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Table A2: Tradable Industries

ISIC (Rev. 3) Industry Description
15-16 Food products and beverages, tobacco products
17 Textiles
18-19 Wearing apparel, leather, luggage, footwear
20 Wood products except furniture, straw and plaiting materials
21 Paper and paper products
22 Publishing, printing and reproduction of recorded media
23 Coke, refined petroleum products and nuclear fuel
24 Chemicals and chemical products
25 Rubber and plastic products
26 Other non-metallic mineral products
27 Basic metals
28 Fabricated metal products, except machinery and equipment
29-30 Office, accounting and computing machinery, other machinery
31-32 Electrical machinery, communication equipment
33 Medical, precision and optical instruments, watches and clocks
34-35 Transport equipment
36 Furniture, other manufacturing

C.2 Trade data

The trade data is obtained from World Trade Flows bilateral data (Feenstra et al., 2005)

and further extended using UN comtrade database for post-2000 periods. The original trade

sample is organized at the level of 4-digit SITC code (rev. 2). It is aggregated up to the

level of 2-digit ISIC code (rev. 3) by using two concordances from 4-digit SITC (rev. 2) to

3-digit ISIC (rev. 2) and from 3-digit ISIC42 (rev. 2) to 2-digit ISIC43 (rev. 3). By restricting

the sample to 72 countries, about one quarter of the total trade volume is excluded. I also

include zero trade flows in the sample whenever PPML is employed in estimation.

C.3 Production data

The production data is obtained from UNIDO INDSTAT 2 database (version 2015). The

database includes key production variables at the cross-country industry level: output, value

added, and wage bills. Since the database contains information both at the industry level

and for the whole manufacturing sector, observations are dropped if the aggregated manufac-

turing total is more than 20% larger or smaller than the reported total. For countries with

missing production data but non-missing trade data, I impute industrial output level using

linear interpolation and extrapolation. Observations are dropped if total output (original or

imputed) is smaller than total export.

42Source: Marc Muendler’s personal website, last retrieved: 8/11/2015.
43Source: United Nations Statistics Division, last retrieved: 8/15/2015.
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Table A3: Construction of Variables and Data Sources

Variables/Parameters Data Source & Construction Method
Bilateral trade share πinn′,t UN Comtrade & UNIDO INDSTAT2

Trade deficit Dn,t UN Comtrade
Trade in value-added TiVA database (OECD.STAT)
Labor income share γiLt UNIDO INDSTAT2, (wage bill)/(industrial output)
Capital income share γiKt UNIDO INDSTAT2, (value-added − wage bill)/(industrial output)

Input–output coefficients γii
′

n,t BEA 1997 I–O accounts (grouped into 2-digit ISIC Rev.3); WIOD
Labor supply Ln,t Penn World Table
Capital stock Kn,t Penn World Table
Wage rate wn,t Penn World Table, (labor income)/(employment count)
Rental rate rn,t Penn World Table, (total income - labor income)/(capital)

World Development Indicators; Caselli and Feyrer (2007)
Saving rate sn,t Penn World Table, implied by capital series and depreciation rate

Nontradable price P I+1
n,t ICP, interpolate and extrapolate for non-survey years

Tradable exp share φn OECD national accounts, (fitting for non-OECD countries)
Trade elasticity θi 4; 8.28; Industry-specific (Caliendo and Parro, 2014)
Elasticity of subst. in consumption 1

1−κ 2 (Levchenko and Zhang, 2016); 1 (Caliendo and Parro, 2014)

Elasticity of subst. in production σi 2
Tradable consumption share ωin Levchenko and Zhang (2016)
US industry-level TFP NBER-CES manufacturing industry database
Other country variables Penn World Table
Other bilateral variables CEPII gravity dataset
Industry-level TFP KLEMS database (EU-, Asia, World- KLEMS)

C.4 Other data

Bilateral variables. CEPII gravity database (Head et al., 2013) provides most of the

bilateral gravity variables: bilateral distance weighted by population, dummy variables of

contiguity, common official primary language, common currency union, and free trade areas.

The database is updated until 2006, so it is extended to incorporate new regional trade

agreements44 and currency unions from 2006 onwards.

Production parameters. For tradable industries, share of wage bill γiL is obtained by

the cross-country median of industry-level wage and salary payment as share of industrial

output, and share of rental payment γiK is obtained by the cross-country median of difference

between value added and wage bill as share of output. These variables all come from UNIDO

INDSTAT database. For the nontradable industry, γiL and γiK are obtained from US 1997

I–O table. I also use US 1997 I–O table to obtain country-invariant I–O coefficients γii
′

and

cross check γiL and γiK of tradable industries obtained from cross-country data.

I also obtain country-specific and time-variant I–O tables from WIOD database (Timmer

et al., 2015). Among 72 economies in my sample, 34 economies are included in WIOD

database (Brazil, Bulgaria, Canada, China, Czech, Denmark, Finland, France, Germany,

Greece, Hungary, India, Indonesia, Ireland, Italy, Japan, Korea, Mexico, Netherlands, Poland,

Portugal, Romania, Russia, Solvakia, Slovenia, Spain, Sweden, Taiwan, Turkey, UK, USA).

I apply the rest-of-world (ROW) I–O table to the other 38 economies. The database covers

44Source: WTO Regional Trade Agreements Database, last retrieved: 6/20/2016.
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the period from 1995 to 2011. The data is at 2-digit ISIC level, which is slightly modified to

match the industry aggregation of the sample.

Preference parameters. share parameters of tradable goods ωi is obtained from Levchenko

and Zhang (2016). For the share of tradable goods consumption φn, I first aggregate up con-

sumption shares of current-price durable, semi-durable, and non-durable goods using national

accounts from OECD countries.45 Then I estimate the tradable consumption share of other

countries by fitting a linear relationship between the share of manufacturing consumption

and GDP per capita. Elasticity of substitution across tradable consumption goods 1/(1− κ)

is given by 2.

Relative cost terms. To calculate cross-country wage rate wn,t, I first obtain aggregate

labor income by multiplying PPP-adjusted real GDP by labor income share where both

variables are available in PWT. If labor income share is missing, I use the share of wage

bills in value-added from INDSTAT2 if available and fill out the rest missing observations by

interpolation. The total effective employment count is given by the product of the number

of persons engaged and average country-level human capital where both variables also come

from PWT. For very few countries (such as Ethiopia and Nigeria), I fill out their human

capital by fitting a linear relationship between human capital and real GDP per capita. As

a crude measure, rental rate rn,t is given by the non-labor income divided by real capital

stock. Relative price indices of tradable industries can be obtained from competitiveness

measure (estimated as fixed effect in the gravity equation) and domestic absorption rate

(obtained from bilateral trade and output data) according to Equation 18. Relative price

in the nontradable sector is obtained from the International Comparison Program. I use

observations from seven benchmark years (1970, 1975, 1980, 1985, 1996, 2005, and 2011)

to fit a linear relationship between nontradable price index and GDP per capita.46 Before

plugging in these relative terms for Equation 19, the last complication arises from the fact

that competitiveness estimates may not be available for each industry while it is essential for

calculation of relative costs due to input–output linkages. To address this, I scale up input

shares of those industries who competitiveness estimates are non-missing proportionally so

that the sum of input shares remains equal to one. All variables are normalized by US levels.

US TFP series. US industry-level TFP in the tradable sector is obtained from NBER-CES

Manufacturing Industry Database. The TFP series in the nontradable sector is obtained in

two steps. I first calculate the nontradable TFP for the benchmark year, 2005, by combining

information from NBER-CES database and PWT. Then the time series is obtained by using

TFP growth rate in the US nontradable sector from World-KLEMS database.

Country-specific variables: PWT also gives me the following country-specific variables:

labor and capital endowment Ln,t and Kn,t, saving rate Sn,t/(wn,tLn,t + rn,tKn,t), investment

rate In,t/(wn,tLn,t + rn,tKn,t), depreciation rate δn,t, country-level price index Pn,t, real GDP

45Source: OECD Final Consumption Expenditure of Households (Detailed National Accounts, SNA 2008),
last retrieved: 6/20/2016.

46A variety of alternative fitting schemes are discussed in detail by Feenstra et al. (2015).
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Yn,t, and country-level TFP growth rate.

Patent citation: The NBER US patent citation data (Hall et al., 2001) contains pairwise

patent citation information from 1976 to 2006. I construct the citation matrix at 2-digit ISIC

level by mapping international patent classification code to US SIC code47 and then to ISIC

code. The time-variant diffusion matrix is simply constructed by calculating the share of

interindustry patent citation for each 5-year window.

D Additional Figures and Tables

Figure A1: Contribution to Productivity Growth: OECD versus non-OECD
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47The concordance can be found in Brian Silverman’s personal website, last retrieved: 8/19/2016.
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Figure A2: Contribution to Productivity Growth by Industry
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Table A4: Convergence: Alternative Estimates of TFP

(1) (2) (3) (4) (5)

Country-specific Input–output Table
Benchmark θ = 4 Industry-specific θi

PPML OLS PPML OLS PPML

Industry-Level TFP: Data

Full Sample -0.309 -0.270 -0.347 -0.172 -0.182
(0.040)*** (0.037)*** (0.038)*** (0.036)*** (0.060)***

Non-OECD -0.351 -0.339 -0.389 -0.227 -0.266
(0.058)*** (0.054)*** (0.054)*** (0.047)*** (0.064)***

OECD -0.310 -0.254 -0.343 -0.126 -0.064
(0.059)*** (0.059)*** (0.057)*** (0.051)** (0.121)

Industry-Level TFP: Simulation

Full Sample -0.337 -0.298 -0.372 -0.191 -0.160
(0.020)*** (0.021)*** (0.021)*** (0.020)*** (0.013)***

Non-OECD -0.389 -0.359 -0.426 -0.206 -0.181
(0.026)*** (0.026)*** (0.028)*** (0.023)*** (0.018)***

OECD -0.265 -0.214 -0.280 -0.172 -0.129
(0.033)*** (0.040)*** (0.035)*** (0.035)*** (0.014)***

Trade Variables: Simulation

RCA -0.410 -0.387 -0.384 -0.800 -0.802
(0.031)*** (0.036)*** (0.031)*** (0.030)*** (0.028)***

πinm -0.102 -0.082 -0.100 -0.124 -0.139
(0.009)*** (0.009)*** (0.012)*** (0.011)*** (0.010)***

Exp. Capability -0.420 -0.345 -0.394 -0.876 -0.518
(0.034)*** (0.039)*** (0.034)*** (0.039)*** (0.030)***

Notes: (1) Growth rate of each variable is calculated between 1990–1995 and 2005-2010. The table

only reports the convergence parameter α specified in Equation 21 using Method II; (2) Top and

bottom 1% observations in terms of growth rate are dropped; (3) Industry and country fixed effects

are included in each regression; (4) Robust standard errors are reported in parentheses. *, **, and

*** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table A5: Convergence in RCA by Industry: 1970 - 2010

(1) (2) (3) (4)
Data Benchmark WIOD Patent Obs.

Food, tobacco -0.300 -0.424 -0.453 -0.395 51
(0.110)*** (0.116)*** (0.115)*** (0.119)***

Textiles -0.498 -0.459 -0.459 -0.433 49
(0.131)*** (0.178)*** (0.170)*** (0.181)**

Apparel, footwear -0.603 -0.149 -0.155 -0.142 35
(0.222)*** (0.164) (0.164) (0.162)

Wood -0.515 -0.584 -0.588 -0.585 48
(0.111)** (0.126)*** (0.124)*** (0.0128)***

Paper -0.753 -0.811 -0.894 -0.827 49
(0.101)*** (0.106)*** (0.104)*** (0.108)***

Printing, Publishing -0.423 -0.705 -0.725 -0.714 49
(0.103)*** (0.137)*** (0.139)*** (0.134)***

Coke, petroleum -0.776 -0.627 -0.605 -0.643 51
(0.166)*** (0.147)*** (0.144)*** (0.152)***

Chemical -0.604 -0.548 -0.509 -0.538 43
(0.073)*** (0.145)*** (0.153)*** (0.151)***

Rubber, plastic -0.670 -0.706 -0.714 -0.686 48
(0.068)*** (0.068)*** (0.066)*** (0.073)***

Non-metallic mineral -0.596 -0.511 -0.506 -0.530 47
(0.057)*** (0.082)*** (0.083)*** (0.082)***

Basic metals -0.596 -0.839 -0.842 -0.842 42
(0.057)*** (0.123)*** (0.124)*** (0.124)***

Fabricated metal -0.627 -0.682 -0.666 -0.667 48
(0.071)** (0.107)*** (0.108)*** (0.111)***

Machinery, equipment -0.517 -0.986 -1.017 -0.905 41
(0.085)*** (0.102)*** (0.097)*** (0.108)***

Electronics -0.490 -0.946 -0.967 -0.925 40
(0.121)*** (0.102)*** (0.134)*** (0.137)***

Medical, precision -0.418 -0.397 -0.409 -0.396 33
(0.066)*** (0.172)** (0.171)** (0.169)**

Vehicles -0.577 -0.654 -0.677 -0.593 46
(0.080)*** (0.090)*** (0.087)*** (0.096)***

Other manufacturing -0.639 -0.702 -0.706 -0.697 47

(0.116)*** (0.148)*** (0.146)*** (0.150)***

Notes: (1) Calibration (Method III) is performed on the sample from 1970 to 2010 estimated using

country-specific TFP (2) Robust standard errors are reported in parentheses. *, **, and *** indicate

significance at the 10%, 5%, and 1% levels, respectively.
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Table A6: Transition Probability in TFP: Model versus Data

Data Model

Full Sample
2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
70

R
an

k 1-4 0.39 0.22 0.17 0.21
19

70
R

a
n

k 1-4 0.83 0.14 0.03 0.00
5-8 0.24 0.30 0.20 0.26 5-8 0.09 0.63 0.25 0.04

9-12 0.21 0.29 0.26 0.24 9-12 0.04 0.14 0.54 0.28
13-17 0.13 0.15 0.29 0.43 13-17 0.04 0.08 0.15 0.74

OECD Countries
2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
70

R
an

k 1-4 0.37 0.26 0.14 0.23

19
70

R
an

k 1-4 0.90 0.09 0.01 0.00
5-8 0.28 0.27 0.23 0.22 5-8 0.04 0.82 0.12 0.02

9-12 0.19 0.31 0.25 0.25 9-12 0.02 0.04 0.78 0.16
13-17 0.13 0.13 0.30 0.44 13-17 0.03 0.04 0.07 0.86

Non-OECD Countries
2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
7
0

R
an

k 1-4 0.40 0.19 0.21 0.20

19
7
0

R
a
n

k 1-4 0.77 0.18 0.05 0.00
5-8 0.20 0.33 0.18 0.30 5-8 0.13 0.47 0.35 0.06

9-12 0.23 0.28 0.27 0.23 9-12 0.06 0.22 0.34 0.38
13-17 0.13 0.17 0.28 0.42 13-17 0.04 0.11 0.21 0.65

Notes: Each transition matrix is constructed using 1970-1975 and 2005-2010 sample.
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Table A7: Key Players: Direct Contribution to TFP Growth by Period

Simple Average (%) Weighted Average (%)
OECD “BRICS” OECD “BRICS”

1995 – 2000

USA 11.25 Brazil 2.23 USA 22.06 Brazil 1.93
Germany 7.94 Russia 1.71 Germany 21.14 Russia 0.97
Japan 7.81 India 1.57 Japan 9.11 India 0.91
UK 4.61 China 2.48 UK 4.61 China 3.64
Italy 4.08 S. Africa 1.04 Italy 4.08 S.Africa 0.43

2000 – 2005

USA 11.64 Brazil 2.00 USA 20.06 Brazil 1.73
Germany 7.44 Russia 0.97 Germany 17.93 Russia 0.44
Japan 6.76 India 1.75 Japan 7.62 India 1.18
Italy 5.72 China 3.44 Italy 5.27 China 4.72
UK 5.02 S. Africa 1.11 France 5.19 S.Africa 0.42

2005 – 2010

USA 10.98 Brazil 2.25 USA 19.43 Brazil 1.65
Germany 7.19 Russia 1.16 Germany 14.93 Russia 0.68
Japan 6.29 India 1.99 Japan 7.96 India 1.35
Italy 5.30 China 5.43 Italy 5.50 China 7.93
France 4.71 S. Africa 1.24 France 5.31 S.Africa 0.60

Note: This table covers the period from 1990 to 2010. Centrality measures

are calculated using diffusion parameters obtained from the baseline calibration

and actual trade and production data. I obtain similar rankings if simulated

trade and production data is used.
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Table A8: Key Players: Degree Centrality

Cutoff ζ = 0.02 Cutoff ζ = 0.005
OECD “BRICS” OECD “BRICS”

USA 0.99 Brazil 0.19 USA 1.00 Brazil 0.44
Germany 0.97 Russia 0.04 Germany 1.00 Russia 0.07
Japan 0.94 India 0.14 Japan 1.00 India 0.26
Italy 0.86 China 0.53 UK 0.99 China 0.86
France 0.84 S. Africa 0.06 France 0.99 S.Africa 0.09

Cutoff ζ = 1e− 4 Cutoff ζ = 1e− 5
Country Industry Degree Country Industry Degree

USA Measurement 0.99 USA Measurement 1.00
Germany Measurement 0.99 Japan Measurement 1.00
Japan Measurement 0.97 USA Vehicles 0.99
UK Measurement 0.96 UK Printing 0.99
Japan Vehicles 0.96 Japan Vehicles 0.99
France Measurement 0.95 USA Other Manuf. 0.99
Switzerland Measurement 0.95 Germany Vehicles 0.99
USA Vehicles 0.95 China Other Manuf. 0.99
Germany Vehicles 0.95 Germany Measurement 0.99
France Vehicles 0.94 Switzerland Measurement 0.99

Note: This table covers the period from 1990 to 2010 using the diffusion parameter obtained
from the baseline calibration (Method II). Country-level degree measure is normalized by N =
72 and industry-level degree measure is normalized by N × I = 1224.
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