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Abstract: Much of the literature on how to avoid bubbles in international financial markets has addressed
the role of monetary policy and macroprudential regulation. This paper focuses on the role of information
disclosure,  which  has  recently  emerged  as  a  new  financial  risk  management  tool.  It  does  so  in  a
consumption-based asset pricing model in which fluctuations in asset prices are persistently driven by time-
varying  expectations  due  to  learning  on  the  fundamental  process  from agents  who weight  more  recent
observations  relative  to  earlier  ones.  When  the  regulator  knows  the  true  law  of  motion  driving  the
fundamental  process,  perfect  information  disclosure  about  the  unknown  fundamental  process
straightforwardly rules out non-fundamental fluctuations in asset prices. However, as highlighted by various
commentators of the recent financial crisis in 2007-2008, the regulator might also have to learn the true
fundamental  process  and  be  recency-biased.  I  investigate  the  consequences  of  this  assumption  on  the
efficiency of public disclosure about the model actual parameter and identify under which conditions on the
regulator  learning  process,  information  dissemination  could  have  contributed to  significantly reduce  the
boom and bust episode in the US S&P 500 price index in the run-up to the recent financial crisis. I show that
persistent imprecision in the regulator’s estimate, which arises as soon as the regulator is recency-biased, can
significantly  call  into  question  the  efficiency  of  information  disclosure  for  mitigating  non-fundamental
volatility in asset prices.
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Prix des actifs et divulgation d'information en présence de biais d'apprentissage 

en faveur du présent

Résumé : La littérature étudiant comment éviter les bulles sur les marchés financiers internationaux s’est
essentiellement intéressée au rôle de la politique monétaire et de la régulation macro-prudentielle. Ce papier
étudie le rôle de la divulgation d’information, qui a émergé récemment comme instrument de gestion des
risques financiers. Dans notre modèle, les agents ont une rationalité limitée : leur apprentissage du processus
fondamental  pondère  davantage  les  observations  récentes.  Les  variations  dans  les  anticipations  qui  en
résultent génèrent des fluctuations persistantes dans le prix des actifs. Un régulateur qui connaît la vraie loi
dynamique  de  l’économie  peut  éliminer  les  fluctuations  non-fondamentales  dans  le  prix  des  actifs  en
diffusant  une  information  non-bruitée.  Néanmoins,  comme  cela  a  été  souligné  par  de  nombreux
commentateurs de la crise financière de 2007-2008, le régulateur est lui aussi susceptible de ne pas connaître
le  vrai  processus  fondamental  et  d’être  biaisé  en  faveur  du  présent.  Ce  papier  identifie  sous  quelles
conditions sur le processus d'apprentissage du régulateur la diffusion d'information aurait pu permettre de
réduire significativement la hausse du S&P 500 dans la période qui a précédé la crise financière, suivie de
son effondrement. Lorsque le régulateur est biaisé en faveur du présent, la diffusion d’information échoue à
réduire les fluctuations non-fondamentales dans les prix des actifs.

Mots-clefs : Prix d’actifs, apprentissage bayésien, biais en faveur du présent, divulgation d’information,
Booms et Busts.
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1 Introduction

During the early 2000s Australian housing and credit bubble, the Reserve Bank of Australia

(RBA) implemented original ’open mouth operations’ in order to mitigate the steep increase in

asset prices and leverage ratios. Such communication policy aimed at warning economic agents

against the risk that this increase was not driven by fundamental factors, and thus not sustain-

able, and might end up in a very costly bust. To this aim, officials from the RBA made public

statements highlighting this concern from mid-2002 onwards. This ’public awareness campaign’

(Bloxham et al. (2010)), combined with other tools such as monetary policy and regulation tight-

ening, proved rather successful, as the boom ended up in late 2003.

This example suggests that communication policy on the risk of a costly bust when a bubble is

identified on a specific financial market –that is when the price deviates from its fundamental

value– could be an alternative measure to other standard tools directed at slowing the pace of

non-fundamental increase in asset prices. The need for such an alternative measure matters all

the more so that much debate subsists on whether monetary policy authorities should consider

an asset prices stability objective when setting the interest rate, even after the global financial cri-

sis. Thus, Mishkin (2011) and Woodford (2012), among others, argue that including a financial

stability objective in the monetary policy reaction function may generate trade-offs with stan-

dard monetary policy objectives, which provides incentives to look for other tools for managing

asset prices booms and busts.

In particular, there is room for information dissemination policy as soon as the dynamics of

prices are shown to be driven –at least partly– by time-varying expectations. Thus, Williams

(2014) emphasizes the role of subjective expectations in explaining fluctuations in asset prices,

suggesting that information disclosure aiming at directly impacting expectations and bringing

them closer to their rational counterparts could be a relevant alternative tool. Similarly, empiri-

cal literature has emphasized that expectations on the future evolution of economic and financial

variables are subjective and extrapolated from past realizations of the data. Lovell (1986) shows

that the rational expectations assumption does not withstand empirical scrutiny in many eco-

nomic fields. More specifically, regarding financial markets, de Bondt and Thaler (1985) high-

light that stocks of firms which performed badly over the prior years are undervalued whereas

stocks of firms which performed well are overvalued. Malmendier and Nagel (2011) provide
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further evidence that economic agents learn from the past on financial markets.

Drawing upon recent developments in the literature on the impact of learning in macro-finance,

this paper provides simple theoretical foundations by relaxing the rational expectations assump-

tion in what regards the law of motion of the exogenous random payoff on a risky asset. This

enables to explain several long-standing empirical puzzles in asset pricing theory, unlike the

model’s rational expectations version, and paves the way for the role of information disclosure

about the actual model’s parameters in mitigating asset prices fluctuations. Indeed, these fluc-

tuations are shown to be persistently driven by the uncertainty on an unknown parameter of the

model, and thus by the endogenous dynamics of beliefs. More specifically, agents learn the loca-

tion parameter of the law of motion of the risky asset random payoff’s growth rate over time, by

inferring it from the history of past observations of the economic outcome through Bayesian in-

ference in a standard consumption-based asset pricing model (Lucas (1978)). The only departure

from optimal rational behavior that is introduced in the setting, relying on growing empirical

evidence (de Bondt and Thaler (1990), Cheung and Friedman (1997), Agarwal et al. (2013), Erev

and Haruvy (2013), Gallagher (2014)), is that agents are recency-biased.1 This means that they

react more to recent observations than to earlier ones, as they put recursive weights on past

observations, what Fudenberg and Levine (2014) call ’informational discounting’. In particular,

Agarwal et al. (2013) evaluate the informational discount rate to be around 90% per month (or

equivalently the knowledge depreciation rate is around 10% per month), based on empirical

data on the credit card market. In the face of empirical evidence, this assumption of gradual

decreasing attention has become rather standard in theoretical literature on financial markets

dynamics as well (Bansal and Shaliastovich (2010), Nakov and Nuno (2015)) and enables to gen-

erate persistent fluctuations in expectations2. In our setting, agents are constrained by limited

1Agents are also assumed to be adaptive learners, in the sense that in each period t they condition their
expectations on their beliefs in period t but do not take into account the possibility that their future beliefs
might change following new realizations of the data (which are still unknown in period t). This assumption
is often implicitly made in the Bayesian learning literature and has even more intuitive appeal for recency-
biased agents. Indeed, it would be unclear how agents with limited cognitive or technical ability to fully
take into account the past would on the contrary be able to account perfectly for all the possible future paths
of beliefs when making their forward-looking decision. However, the learning scheme presented here is
distinct from stricto sensu adaptive learning as agents are Bayesian learners in the sense that they rely
on prior information and take the unknown parameter as a random variable. For a comparison between
adaptive and rational Bayesian learning, see Koulovatianos and Wieland (2011).

2Initially, recency effects have been studied in models of learning in games in which players choose a
best response to what they learned most recently. This characterizes Cournot learning in comparison with
fictitious play learning. See for instance Fudenberg and Levine (2014).
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cognitive ability to process information and pay less attention to earlier data, what is reflected in

recursive discounting of the precision of past observations, in the context of Bayesian inference.

In this framework, disclosure of the actual model’s parameter by the regulator (may it be a cen-

tral bank or a financial market regulation authority) can thus bring subjective expectations back

to their rational counterparts, causing non-fundamental fluctuations in prices to vanish. Never-

theless, this straightforward mechanism relies on the assumption that rational expectations hold

specifically for the regulator. This implies that the regulator knows with certainty the true law

of motion of the growth rate of the risky asset’s payoff and thus the asset fundamental value.

However, the recurrence of very costly unexpected busts in financial markets through economic

history – not the least of which being the one which occurred over the period 2007-2009 – tends

to prove strikingly that determining an asset fundamental value remains very tricky, even for

a regulator having very sophisticated models of risk assessment and big data at his disposal in

comparison with standard economic agents. Thus, Andrew Haldane, a Chief Economist with

the Bank of England, highlighted that the sophistication of financial risk assessment models in

the banking sector in the early 2000s did not help identifying anomalous patterns in financial

markets because the regulation authorities suffered from short memory while using these mod-

els. Sophisticated stress tests models were only fed with macroeconomic and financial data from

the most recent decade, characterized by very low variance, even though the sub-sample distri-

bution was very distinct from the long-run historical distribution (Haldane (2009)). Academic

literature has also put recent emphasis on the biases the regulator faces when making its deci-

sion (Cooper and Kovacic (2012)). Therefore, it seems justified to investigate the case in which

the regulator is not necessarily better informed than economic agents and might not know the

true underlying fundamental process of the economy either, neither nor be exempt from recency

bias, which may reduce the stabilizing impact of information dissemination. Consequently, this

paper aims at assessing to what extent information disclosure about the actual model’s param-

eter can be an efficient tool in helping to mitigate non-fundamental fluctuations in asset prices,

depending on the precision of the regulator’s estimate.

As an illustration, focusing on one specific period of boom on the stock market and the subse-

quent bust, the model is calibrated on the US S&P 500 aggregate index and results are compared

to monthly data over the 2003-2009 period, that is from the beginning of the boom period on the

US stock market to the bust during the global financial crisis, in order to provide quantitative
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results. It appears that the efficiency of information disclosure for mitigating non-fundamental

asset prices fluctuations exhibits strong dependence on the precision of the regulator’s estimate

of the true parameter (inversely related to its degree of recency bias).3

This stems from the fact that when the regulator is recency-biased, even to a really small ex-

tent, precision always remains significantly smaller than that in the case where the regulator is

not recency-biased, and never reaches infinity. Therefore, this constrains the regulator’s public

signal on the actual model’s parameter to remain imprecise, even if the regulator decides to dis-

close perfectly its own estimate. This affects the volatility of the price-dividend ratio following

public announcement, notably because investors’ beliefs react more strongly to new data real-

izations –whatever the number of past observations– when the regulator’s signal is less precise,

as investors are then more uncertain about their estimate, even after information disclosure.

Counter-factual simulations indeed show that excess volatility in asset prices would be signif-

icantly reduced by information dissemination if and only if the regulator’s learning process

converged to the optimal one, that is the regulator’s degree of recency bias tends to zero. This

result suggests that information disclosure can only be a relevant tool in helping to mitigate non-

fundamental asset prices fluctuations provided that the precision of the regulator’s information

is high relative to that of standard economic agents, which questions its efficiency.

This paper relates to the growing strand of literature which inserts learning schemes in standard

asset pricing models, among which Timmerman (1993), Timmermann (1996), Koulovatianos

and Wieland (2011), Adam et al. (2015a) and Adam et al. (2015b). Nevertheless, the learning

mechanism is distinct from those investigated in this literature. First, it relies on Bayesian learn-

ing (slightly modified in order to account for recency bias), which implies, differently to non-

Bayesian learning specifications such as Timmerman (1993), Timmermann (1996) and Adam

et al. (2015b) that agents take into account the uncertainty about their estimate of the param-

eter of the underlying fundamental process when forming their beliefs. Second, differently to

Koulovatianos and Wieland (2011) who investigate the impact of learning on the probability of a

rare disaster, introducing learning on the mean parameter of the dividend’s growth rate allows

3Note that differently to usual settings in which the impact of information dissemination on aggregate
outcomes was investigated, here informational frictions do not result from imperfect information – mean-
ing that agents observe noisy realizations of the data and implying that information dissemination regards
the unknown realized fundamental– but from the relaxation of the rational expectations assumption –
meaning that agents do not know at least one parameter of the true laws of motion of economic variables
and implying that the information which is disseminated is on the unknown parameters. In this setting,
realizations of the fundamental process are perfectly observed by agents.
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to generate fluctuations in the price-dividend ratio that are not smooth4, which is consistent

with the high frequency non-monotonous fluctuations observed in the data and allows to repli-

cate additional empirical features. Third, in my model, expectations dynamics are impacted by

agents’ recency bias. The latter affects the mean value of beliefs, the evolution of the uncertainty

associated with these beliefs over time and their degree of persistence. Fourthly, agents derive

rationally the equilibrium price as a function of their beliefs on the dividend process, which im-

plies no restriction on the agents’ knowledge of the mapping of fundamentals into prices and

no additional assumption on the agents’ perceived law of motion of prices5, differently to Adam

et al. (2015a) and Nakov and Nuno (2015).

In this setting, a closed-form solution for stock prices can be derived, which enables to make ex-

plicit the dependence of the price-dividend ratio on expectations. Furthermore, this closed-form

solution has proper microfoundations, as it is directly derived from the representative investor’s

maximization program.

Even though learning on prices proves very successful in replicating the long-run moments

and historical evolution in the US price-dividend ratio thanks to feedback effects (Adam et al.

(2015a)), it is less helpful in explaining recent evolution (see also Nakov and Nuno (2015) who

replicate well the US price-dividend ratio from 1920 onward but miss the last 25 years). Explain-

ing simultaneously historical features on the US stock market and recent ones with a unique

learning scheme and unique parameters seems difficult to achieve. In a sense, this is not very

surprising as the underlying fundamental processes are subject to structural breaks and some

periods are characterized by much higher uncertainty than others. In particular, strong bust

episodes are likely to lead to reassessments of learning processes. Therefore, this paper fo-

cuses on the US stock market fluctuations in the run-up to the subprime financial crisis that

other models, specified and calibrated in order to target long-term moments, have had more

difficulties to explain, suggesting that this period displays specific features. Focusing on some

particular episode of boom and bust cycle on the US stock market is of specific relevance when

4Indeed, learning only the probability of disaster risk implies that the price-dividend ratio increases
monotonously in between two rare disaster realizations. In addition, the authors impose that rare disasters
occur in two specific periods whereas I just feed the model with the empirical realizations of the dividend
growth rate

5In models in which agents learn the stock price process rather than (or in addition to) the dividend
process, the perceived law of motion of prices is distinct from the true one in the general case not only
regarding the parameters values but also regarding its general specification, and is thus assumed exoge-
nously.
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addressing the question of the impact of information disclosure on asset prices movements. In-

deed, information dissemination policies, as those implemented by the RBA in the early 2000s,

are short-term conjectural policies, responding temporarily to newly identified risks of bubble

and of subsequent costly bust on financial markets.

It appears that a parsimonious model with learning on dividends allows to replicate quanti-

tative and qualitative features of the price-dividend ratio evolution in the early 2000s to a rather

good extent given the simplicity of the model, even though it generates slightly too much volatil-

ity.

In addition, the model allows to replicate (i) the autocorrelation in the price-dividend ratio, (ii)

some qualitative features of the dynamics of stock returns and (iii) the positive correlation be-

tween expected returns and the current price-dividend ratio in the recent period we focus on,

even though slightly overvaluing it.

The impact of several distinct policies on asset prices volatility was investigated in similar frame-

works with expectations-driven booms and busts in prices. Thus, Adam et al. (2014) show that

a lump-sum tax on financial transactions may deepen volatility in asset prices even though it

reduces trading volumes. Winkler (2015) argues that if, under rational expectations, a reaction

of monetary policy to asset prices does not improve welfare, it does improve it under subjective

expectations.

However, rather paradoxically given that those models explain excess volatility by fluctuations

in expectations, much less attention was devoted to the acquisition of information by the regula-

tor through its own –possibly also recency-biased– learning process and to the subsequent role

of the regulator’s communication policy about the actual fundamental process to private agents.

This paper aims at filling this gap. To the best of my knowledge, the impact of the regulator’s

recency bias on the efficiency of its information disclosure policy about the parameters of the

actual law of motion of the economy was never investigated.

Section 2 presents the standard rational expectations model for benchmark purposes and shows

how its predictions contradict the data in several ways. Section 3 derives the subjective expec-

tations model with Bayesian learning on the location parameter of the dividend growth rate
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process and recency bias. Section 4 introduces the regulator’s learning process and information

disclosure policy about the location parameter and assesses analytically its impact on agents’

expectations and aggregate price. Section 5 illustrates the impact of information dissemination

depending on the precision of the regulator’s signal through counter-factual simulations on the

US S&P 500 price-dividend ratio in the run-up to the global financial crisis. Section 6 concludes.

2 The benchmark rational expectations model

I first characterize the model’s rational expectations equilibrium. Such an equilibrium can be

interpreted as the efficient benchmark equilibrium, arising when the economy is not subject to

any kind of friction, in particular informational ones.

The theoretical setting features a simple endowment economy, drawn upon the Lucas (1978)’

tree model. In each period, a representative risk-averse agent with CRRA utility function decides

what to consume and what to invest in a risky asset (stock) which pays exogenous perishable

dividends and a risk-free asset (bonds) which pays an endogenous interest rate. All quantities

are expressed in units of a single consumption good. The representative agent’s maximization

program is the following6:

maxE0

J∑
t=0

βt
C1−γ
t

1− γ
(1)

s.t.

PtSt + Ct +Bt = (Pt +Dt)St−1 + (1 + rt−1)Bt−1,

where β is the discount factor, γ > 0 is the relative risk aversion coefficient, Ct is consumption

in period t, Pt is the stock price, St the quantity of stocks, Dt the dividends earned on stocks and

rt−1 the real interest rate on bonds which is known already at the end of period t− 1 and Bt the

quantity of bonds in period t (the price of bonds is normalized to 1).

6As highlighted by Pesaran et al. (2007), in the subjective expectations case with infinitely-lived agents,
under general conditions, stock prices do not converge. Pesaran et al. (2007) show that for prices to con-
verge under Bayesian learning, the size of the sample of past observations has to tend towards infinity and
grow fast enough relative to the forecast horizon. However, there is no reason for the size of the sample of
past observations to be related to the planning horizon. In addition, the previous condition does not allow
to study the transition dynamics of the model when the sample of past observations is finite. Therefore,
for comparison purposes, I restrict the maximization program under rational expectations to be solved by
finitely but very long-lived agents in order to stand close to an infinitely-lived agents set-up. When t << J ,
as is the case in the simulation exercise in Section 5, asset prices are insensitive to the choice of J.
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The standard Euler equation with respect to stocks writes:

C−γt = βEt[C
−γ
t+1Zt+1], (2)

with Zt = Pt+Dt
Pt−1

the gross return on stocks. The Euler equation with respect to bonds writes:

C−γt = β(1 + rt)Et[C
−γ
t+1]. (3)

Stocks are in one unit exogenous supply (as in the Lucas’ model), S−1 = 1 and bonds are in

zero net supply. Therefore, the budgetary constraint reduces to Ct = Dt. Incorporating this

market clearing condition in the above Euler equations characterizes the model’s equilibrium.

As is standard in the literature, the dividends growth rate follows a log-normal process with

parameters d and σ: 7

log(
Dt

Dt−1
) = d+ σεt, (4)

with d > 0, σ > 0 and εt white noise with unit variance. This implies notably that the persistent

component of the dividend growth rate d is constant over time and the process innovations (the

transitory component) are unpredictable.

When stock market clears, the first Euler equation (with respect to stocks), reduces to:

D−γt = βEt[D
−γ
t+1(

Pt+1 +Dt+1

Pt
)]. (5)

Given the dividend growth process specification, an explicit expression for the price of stocks

can be derived. It is as follows:

Pt = δtDt, (6)

where δt = βθ−(βθ)J−t+1

1−βθ and θ = exp(d(1− γ) + (1−γ)2σ2

2 ) (see proof in Appendix A). It appears

immediately that the price-dividend ratio in period t (that is δt) only depends on the model’s

fundamental parameters and on time t. Therefore, fluctuations in prices only reflect dividend

7See for instance LeRoy and Parke (1992) as an example using the geometric random walk model for
dividends on the empirical side and Pesaran et al. (2007) and Adam et al. (2015a) as examples of papers
relying on this specification on the theoretical side.
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shocks (and time-varying consumption decisions due to the changing distance to the last pe-

riod). Prices are not impacted by any other variable in the model. Therefore, non-fundamental

bubbles cannot arise. This is even more obvious when t << J with J being very high and βθ < 1

(which is the case in the calibrated version of the model in section 5), as δt → βθ
1−βθ and thus the

price-dividend ratio tends to be constant. As stated by Lucas (1978), price is then ’a function

of the physical state of the economy’, being a constant share of current payoffs on stocks. In all

cases, there is no role for time-varying expectations, which makes any information disclosure

unnecessary. We will see below that this no longer holds when one relaxes the rational expecta-

tions assumption.

In addition, under the rational expectations assumption, volatility in stock returns stems only

from unpredictable dividend shocks, as:

Pt +Dt

Pt−1
=

1 + δt
δt−1

Dt

Dt−1
=

1

βθ
exp(d+ σεt). (7)

Furthermore, expected returns are constant:

Et[
Pt+1 +Dt+1

Pt
] =

1

βθ
exp(d+ 0.5σ2). (8)

All these implications of the rational expectations standard asset pricing model are at odds with

several features of the data on the US S&P 500, as shown in Appendix B. First, the price-dividend

ratio displays large variations and thus excess volatility relative to the prediction of the rational

expectations model, suggesting that non-fundamental fluctuations in asset prices do arise. Sec-

ond, realized stock returns also display excess volatility. Third, expected returns are not constant

over time and they are positively correlated with the price-dividend ratio. On the contrary, by

allowing agents to learn the location parameter of the logged dividend growth distribution, one

can replicate simultaneously all these features. Interestingly, even though alternative theories

of excess volatility in asset prices do exist, only the relaxation of the rational expectations as-

sumption enables to generate simultaneously excess volatility and positive correlation between

expected returns and the price-dividend ratio, as thoroughly discussed in (Adam et al., 2015a).
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3 The subjective expectations model

I now introduce one specific kind of informational friction and assume that agents no longer

know the true location parameter of the logged dividend growth process d and learn it over

time through recency-biased Bayesian updating.8

3.1 Beliefs dynamics

Agents observe the change in dividends, that is the realization of the random variable

yt = log( Dt
Dt−1

), but they do not observe separately its permanent fixed component d and its

transitory component εt. Agents are Bayesian learners, which means that they take d as a ran-

dom variable, they take into account the uncertainty on their estimate. At the beginning of each

period, they have prior beliefs on the distribution of d that they update following the new real-

ization of the dividend growth that they observe, according to Bayes’ rule. The only departure

from rational behavior that I impose is that agents are recency-biased; they have limited abil-

ity to pay full attention to earlier data. Less recent data is thus more imprecise for the agents.

Therefore, the precision of earlier observations is discounted relative to more recent ones with

an informational discount factor 0 ≤ α < 1. Thus, in period t, the precision of observations

going back to period t − k is discounted by αk. α being a discount rate, the higher α, the lower

the degree of recency bias.

Bayes’ rule applied in period t writes:

P (d | It, σ) ∝ L(yt | d, σ)P (d | I0, σ), (9)

with P (d | It, σ) the posterior distribution, P (d | I0, σ) the prior distribution and L(yt | d, σ) the

likelihood function. It is the information set available at date t, which includes the history of past

and current realizations of the logged dividend growth yt = {y1, y2, ..., yt−1, yt}. Recency bias

modifies the Bayesian inference process only to the extent that the precision of past realizations

is discounted. Thus, only parameters are affected.

8The location parameter of the logged dividend growth is the only parameter agents have to learn.
They know that dividend growth follows a log-normal distribution and they know the dispersion para-
meter. Assuming that agents know the true precision parameter allows to identify directly the impact of
the evolution in one specific belief on asset prices as agents only learn one parameter. In addition, with
standard conjugate priors, the posterior distribution for the variance does not exist as shown in Pesaran
et al. (2007).
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Given that the logged dividend growth process follows a normal distribution, a natural prior

distribution for d is the normal conjugate prior, which allows to derive the posterior distribution

analytically as it has the same form than the prior distribution. The prior distribution thus

writes P0 ∼ N(m0, σ0). Therefore, applying Bayes’ rule under recency-biased learning yields

the posterior distribution at the end of period t, d v N(mt, σt) with:

mt =
yt ∗ ρ+ yt−1αρ+ yt−2α

2ρ+ ...+m0 ∗ τ0 ∗ αt

(1 + α+ α2 + ...+ αt−1) ∗ ρ+ αt ∗ τ0
, (10)

with τ0 = 1
σ2
0

the prior precision. The posterior mean belief is the average of the discounted prior

belief and of past and current observations weighted by their respective discounted precision in

time t (the precision associated with each observation or the prior evolves in each period because

of the recency-bias).

σ2
t =

1

(1 + α+ α2 + ...+ αt−1) ∗ ρ+ αt ∗ τ0
. (11)

See Proof in Appendix C.

As α < 1, this reduces to σ2
t = 1

ρ(1−αt)
(1−α)

+αtτ0
. This term represents the uncertainty on the posterior

estimate of d in time t. Unsurprisingly, it decreases in the informational discount rate α (which

means that it increases in the degree of recency bias). This is related to the fact that when the

weight allocated to earlier data is higher, the precision of the information on the true parameter

provided by each past realization of the data is higher, and thus the overall precision is higher.

As is standard in learning models, I now assess how such subjective beliefs nest inside rational

expectations.

Proposition 2: Subjective expectations converge to rational ones in the limit if and only if α = 1.

Indeed,

lim
t→+∞

σ2
t =

1

(1 + α+ α2 + ...+ αt−1) ∗ ρ+ αtτ0
= 0⇐⇒ α = 1. (12)

Under standard Bayesian learning (α = 1), uncertainty on the posterior estimate of d in period

t is equal to 1
t∗ρ+τ0 . Therefore, when the sample of observations increases, uncertainty on the

estimate of d decreases and converges to zero. Thus, in the limit, agents are no longer uncertain

regarding their mean belief and the law of large numbers ensures that the Bayesian estimate of

11



d is equal to lim
t→+∞

mt = d. The posterior estimate of d then converges to its true value when the

number of past observations tends towards infinity.

Under recency-biased Bayesian learning (α 6= 1), beliefs never converge to rational expectations

ones. Indeed, lim
t→∞

1
ρ(1−αt)
(1−α)

+αtτ0
= 1−α

ρ . Thus, precision on the estimate is never infinite and

agents’ estimates continue to evolve following new realizations of logged dividend growth even

in the limit.

Time-varying subjective expectations then impact the price-dividend ratio, as shown in what

follows.

3.2 Closed-form solution for stock prices under recency-biased Bayesian learn-

ing

The agents’ maximization program now writes

maxEP0

J∑
t=0

βt
C1−γ
t

1− γ
(13)

s.t.

PtSt + Ct +Bt = (Pt +Dt)St−1 + (1 + rt−1)Bt−1,

with P the representative agent’s subjective probability measure.

The first-order condition with respect to stocks now depends on this subjective probability mea-

sure and writes: C−γt = βEPt [C−γt+1
Pt+1+Dt+1

Pt
]. In combination with the market clearing condition

on the stock market, this yields the subjective expectations equilibrium stock price.

Under recency-biased Bayesian learning, stock prices now write:

Pt = Dt

J−t∑
j=1

βjEPt [(
Dt+j

Dt
)1−γ ], (14)

(see details in Appendix D). Hence, conditionally on d and σ and information up to period t, we

have:

EP [(
Dt+j

Dt
)1−γ | It, d, σ] = exp[(1− γ)jd+ 0.5(1− γ)2jσ2]. (15)

12



Therefore, when d is no longer known, agents integrate the previous expression over the whole

distribution of d:

EP [exp((1− γ)jd+ 0.5(1− γ)2σ2j2) | It, σ] = exp(0.5(1− γ)2σ2j)E[exp((1− γ)jd) | It, σ]. (16)

As d is believed to follow a normal distribution with parameters mt and σt in period t,

exp((1− γ)jd) ∼ Log −N((1− γ)jmt, (1− γ)jσt). Therefore,

EP [(
Dt+j

Dt
)1−γ | It, σ] = exp(0.5(1− γ)2σ2j2) exp((1− γ)jmt + 0.5(1− γ)2j2σ2

t ). (17)

Eventually, this yields the following pricing function.

Proposition 3 Under recency-biased learning, stock prices write:

Pt = Dt

J−t∑
j=1

βj exp((1− γ)mtj + 0.5(1− γ)2j(σ2
t j + σ2)).9 (18)

It is immediate to see that under learning, the price-dividend ratio is no longer a constant share

of dividends when t << J , nor a function only of the model’s parameters and of the time

period in the general case. Indeed, it now depends on the hyperparameters mt and σt which

are updated every period and are therefore time-varying. Therefore, fluctuations in the price-

dividend ratio over time –that is, fluctuations in prices which do not reflect directly changes

in dividend realizations– are driven by expectations. This generates excess volatility in asset

prices. Comparative statics show that the price-dividend ratio in t increases in mt if and if only

γ < 1, increases in σt, in σ, in β and increases in γ if mt < 0 (see Appendix E).

In addition, under subjective expectations, stock returns are likely to display greater volatility

than under rational expectations. Indeed,

Pt +Dt

Pt−1
=

1 + δt,SE
δt−1,SE

Dt

Dt−1
=

1 + δt,SE
δt−1,SE

exp(d+ σεt), (19)

9It is obvious that when j → ∞, the term of the sum depending on j does not converge; that is why J
is assumed to be finite.
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with δt,SE =
∑J−t
j=1 β

j exp((1 − γ)mtj + 0.5(1 − γ)2j(σ2
t j + σ2)). Differently to the rational ex-

pectations case, volatility in stock returns does not only stem from volatility in the dividends

growth rate, as the ratio 1+δt,SE
δt−1,SE

is now time-varying and reflects the additional impact of divi-

dend shocks on expectations.

Regarding expected returns, they are now given by:

Et[
Pt+1 +Dt+1

Pt
] =

1

δt,SE
(

J−t−1∑
j=1

[βj exp(mt((1− γ)j + 1) + 0.5((1− γ)j + 1)2σ2
t

+0.5((1− γ)2j + 1)σ2)] + exp(mt + 0.5(σ2
t + σ2))).

(see Proof in Appendix F). Current prices (in the denominator) are positively correlated with

the current price-dividend ratio, as a higher price-dividend ratio reflects more optimistic be-

liefs on the dividend process and thus leads to higher demand for stocks. Similarly, expected

future prices and dividend payments (in the numerator) are positively correlated with more

optimistic beliefs, and through this, they are also positively correlated with the current price-

dividend ratio. This generates the possibility for a correlation between expected returns and the

price-dividend ratio – even though the sign of this correlation is analytically ambiguous–, as

evidenced in survey data.

Recency-biased Bayesian learning thus allows to match several qualitative features of the data

which are not replicated by the rational expectations benchmark model. The learning process

implies that non-fundamental fluctuations in asset prices arise as soon as uncertainty on the esti-

mated parameters is not null, bringing the equilibrium price-dividend ratio away from the value

it takes in the efficient rational expectations model. Such fluctuations bring the stock price away

from its fundamental value and generates additional volatility relative to that in dividends, due

to informational frictions. To this respect, those fluctuations are inefficient. As they are driven

by expectations, a natural policy to mitigate these fluctuations is to bring expectations closer to

their rational expectations counterpart through communication policy and thus information dis-

closure.10 In the next section, I investigate the impact of information disclosure from a regulator

(a central bank or a financial market authority) which does not know the true parameter of the

10Due to some simplifying assumptions such as a representative investor and exogenous stock supply
which enable to obtain closed form solutions easily interpretable, proper welfare analysis cannot be per-
formed in our simple set-up. However, due to their non-fundamental dimension, it matters to assess how
to mitigate those inefficient fluctuations.
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logged dividend growth process either and learns it through Bayesian updating as well.

4 Information disclosure and asset prices

I now model the regulator’s own inference process on the true location parameter of the logged

dividend growth.

4.1 The regulator’s estimate

It learns it through the same inference process as economic agents, except that its degree of re-

cency bias 0 ≤ αR ≤ 1 and its prior distribution d v N(mR,0, σR,0) are not restricted to be similar

to that of participants in the stock market. In the limiting case in which αR = 1, the regulator

does not suffer from recency bias. Therefore, in that case, even if the regulator is not omniscient

and does not know the true parameter, its estimate converges to the true one in the limit.

The regulator’s posterior distribution for d is d ∼ N(mR,t, σR,t) with:

mR,t =
ytρ+ yt−1αRρ+ ...+ y1α

t−1
R ρ+mR,0α

t
RτR,0

(1 + αR + ...+ αt−1
R )ρ+ αtRτR,0

, (20)

where τR,0 = 1
σ2
R,0

and

σ2
R,t =

1

(1 + αR + ...+ αt−1
R ) ∗ ρ+ αtRτR,0

. (21)

When αR = 1, the regulator is not recency-biased:

mR,t =
(yt + yt−1 + ...+ y1)ρ+m0τR,0

t ∗ ρ+ τR,0
, (22)

and

σ2
R,t =

1

t ∗ ρ+ τR,0
. (23)

We can now investigate the impact of information disclosure about the actual parameter from

the regulator on agents’ expectations and stock prices.
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4.2 Information disclosure, agents’ expectations and volatility: some analyt-

ical results

The regulator’s objective is to minimize non-fundamental volatility in asset prices, that is, to

minimize the volatility of the price-dividend ratio, which depends on agents’ expectations and

can thus be impacted by affecting expectations. To achieve this aim, the regulator can disclose

information to agents on the distribution of the true model’s parameter d ∼ N(mt(αD), σt(αD))

with:

mt(αD) =
ytρ+ yt−1αDρ+ yt−2α

2
Dρ+ ...+mR,0α

t
DτR,0

(1 + αD + α2
D + ...+ αt−1

D )ρ+ αtDτR,0
,

and

σt(αD)2 =
1

(1 + αD + ...+ αt−1
D ) ∗ ρ+ αtDτR,0

.

αD is the informational discount factor used to derive the parameters disclosed in the public

signal. αD is distinguished from αR, which is the informational discount factor of the regulator

constrained by the regulator’s recency bias, in order not to impose a priori that it is necessar-

ily optimal for the regulator to disclose its own estimate, as this has to result ex-post from the

constrained maximization of its objective function. Therefore, in order to set its optimal commu-

nication policy when it does not hold rational expectations, the regulator solves the following

maximization problem:

min
αD

Var[

J−t∑
j=1

βj exp(0.5(1− γ)2σ2 + (1− γ)mpost,t + 0.5(1− γ)2σ2
post,tj)

j ] (24)

s.t.

0 ≤ αD ≤ αR,

with

mpost,t = 1Dmt(αD) + (1− 1D)mt,

and

σpost,t = 1Dσt(αD) + (1− 1D)σt,

where 1D = 1 if α < αD and 1D = 0 if α ≥ αD. Indeed, given that estimates (both of the

agent and of the regulator) are endogenously formed from the observation of past and current
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realizations of the logged dividend growth process and consequently are not independent, in

the case in which the regulator displays information, the representative investor processes it

by substituting it to its own beliefs when the regulator’s signal is strictly more precise than his

private signal (that is when αD > α) and by ignoring it when it is less precise (that is when

αD ≤ α). Accordingly, in the case in which the regulator’s estimate is less precise than that of

the agent (that is, the regulator is more recency-biased than the agent), if the regulator discloses

information about the true model’s parameter, this does not impact the agent’s expectations, as

the signal is constrained to be at most as precise as the regulator’s estimate. Therefore, it does

not impact the investor’s optimal decision, and it is optimal for the regulator not to disclose

information. On the reverse, when the regulator forms more precise beliefs than the agent, it is

able to spread a public signal with higher precision than the agent’s private signal. In that case,

the agent adopts the estimate disclosed by the regulator when making its decision, as it provides

him with more precise information on the true model’s parameter, what makes communication

policy optimal if and only if it allows to mitigate asset prices excess volatility.

Following the regulator’s decision regarding information disclosure, the new price-dividend

ratio in each period t writes:

Pt
Dt

=

J−t∑
j=1

βj exp(0.5(1− γ)2σ2 + (1− γ)mpost,t + 0.5(1− γ)2σ2
post,tj)

j . (25)

As it depends on mpost,t and on σpost,t, the price-dividend ratio is thus modified by information

disclosure as soon as this latter is optimal from the regulator’s point of view. In this case, the

representative agent’s beliefs are affected by the degree of recency bias of the regulator, as this

latter restricts the maximal precision of the regulator’s public signal.

In the limiting case in which the regulator knows the true parameter in the initial period (that

is, it holds rational expectations), mR,t = d and σR,t = 0 for t ≥ 1. In this case, it is optimal

for the regulator to disclose information about the true model’s parameter and more specifically

to disclose its own estimate. Indeed, consequently, agents adopt the regulator’s beliefs in the

first period and no longer update their beliefs in the following periods, as the precision of their

estimate is infinite. The price-dividend ratio following information disclosure writes:

Pt
Dt

=

J−t∑
j=1

βj exp((1− γ)dj + 0.5(1− γ)2σ2j) = δt.
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For all 1 ≤ t ≤ J , it thus reduces to the rational expectations price-dividend ratio, which tends

not to vary over time. Therefore, in that extreme case, it is obvious that disclosure of the re-

gulator’s own estimate to agents is optimal for mitigating non-fundamental fluctuations in asset

prices.

In the general case, it is not possible to derive analytically the optimal αD of the regulator, as all

expressions depend on the sequence of realizations of the data.

However, it is possible to derive analytical results which provide intuition on the mechanism

through which information disclosure from the regulator about the true model’s parameter can

mitigate non-fundamental fluctuations in asset prices and how differences between the case

where the regulator is recency-biased and the case where it is not arise.

Thus, the quantity ∂mpost,t
∂yt

measures how the mean belief reacts to the current realization of the

data following information disclosure. In the case where agents adopt the estimate disclosed

in the public signal in period t (that is they rely on the estimate which is derived based on the

parameter αD), for any 0 ≤ αD < 1 it writes:

∂mpost,t

∂yt
=

ρ

ρ
1−αtD
1−αD + αtDτ0

≥ 0. (26)

In accordance with intuition, the higher the realization of the logged growth rate of the di- vi-

dends, the higher the mean belief on the mean of the fundamental process. For αD = 1, it writes:

∂mpost,t

∂yt
=

ρ

ρt+ τ0
≥ 0. (27)

In both cases, ∂2mpost,t
∂yt∂αD

is negative. This means that the lower the degree of recency bias, the

lower the reaction of the mean belief to new realizations of the data. Intuitively, this stems from

the fact that when the degree of recency bias in the estimate disclosed by the regulator is higher,

the precision of the information provided by the sample of past data is lower, and thus the cur-

rent estimate is more sensitive to new data relative to earlier one. Therefore, agents are more

likely to overreact to new data realizations, updating their mean belief strongly upwards if the

new data is higher than their prior mean belief and strongly downwards if it is lower. Beliefs

are thus more volatile. In particular, the variation is clearly higher when αD < 1 in comparison
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with αD = 1, as 1−αtD
1−αD ≤ t for any t > 1.11 This is even more obvious when t tends to infinity.

Then ∂mpost,t
∂yt

→ ρ
ρ

1−αD
= 1−αD when αD < 1 and ∂mpost,t

∂yt
→ 0 when αD = 1, reflecting the fact

that in the absence of recency bias, uncertainty on the model’s parameter vanishes in the limit.

In addition, it appears that non-linearities in the impact of a marginal decrease in recency bias

on the volatility of beliefs arise. This is obvious when the number of observations becomes very

high, as ∂2mpost,t
∂yt∂αD

→ −1 when αD < 1, whereas ∂2mpost,t
∂yt∂αD

→ −1
2 when αD = 1, implying that a

marginal decrease in the recency bias is more efficient for mitigating the volatility in the mean

belief when the regulator’s recency bias is not negligible.

The impact of the recency bias on the volatility of the dispersion parameter of the posterior

distribution σt is more ambiguous, except in the limit, where it becomes constant at ρ
1−α when

αD < 1 and at 0 when αD = 1 due to convergence to the true parameter. Analytical results

thus suggest that when the number of observations is high, it is optimal for the regulator to set

α∗D = αR if αR > α, as information disclosure about the actual parameter enables to mitigate

more non-fundamental volatility in the mean belief, which is the only time-varying factor in the

limit. Nevertheless, those results also suggest that such volatility tends to zero only when the

regulator is not recency-biased. In addition, unsurprisingly, the gap between post-disclosure

volatility in the case with recency bias in the regulator learning process and in the case without

recency bias is higher the higher the regulator’s degree of recency bias. However, it seems to be

more rewarding for the regulator to try to decrease marginally its degree of recency bias when

this latter does not tend to zero, as it then decreases more the reaction of the mean belief to the

current data realization.

This analytical analysis only enables to provide qualitative results on the efficiency of informa-

tion disclosure regarding the actual model’s parameter for mitigating non-fundamental fluctu-

ations, which justifies to rely on a simulation exercise applied to the recent period in order to

assess quantitatively the impact of such policy.

I now illustrate the mechanism of the model with a simulation exercise on the US stock market,

starting in the run-up to the most recent bust in the stock market, which followed the initial

shock on the subprime loans market. Simulation results then allow to provide some elements

of an answer to the maximal recency bias required in order to achieve a significant reduction in

11Applying the mean value theorem to the function f(x) = xt on the interval [0, 1], given that ∂f
∂x

=

txt−1 ≤ t, one get | f(1)−f(αD)
1−αD

|≤ t.
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non-fundamental fluctuations. Quantitatively, in accordance with analytical results, it appears

that only a very low degree of recency bias in the regulator’s learning process enables to achieve

a significant decrease in volatility, but that an attempt to decrease marginally the recency bias has

more impact on non-fundamental fluctuations when past observations are paid less attention.

5 An illustration on the S&P 500 US stock market in the run-up

to the subprime financial crisis

5.1 Simulation results

In order to assess quantitatively the impact of the regulator’s recency bias on the efficiency of

information disclosure, I now calibrate the model on the US S&P 500 monthly data (Robert

Shiller’s dataset12) in order to replicate some features of the evolution in the price-dividend ra-

tio in the run-up to the 2008-2009 financial crisis. The objective of this small calibration exercise

is to focus on one specific period of boom followed by a very strong bust on the US stock market

in order to illustrate to what extent information disclosure about the fundamental process could

help avoid the occurrence of costly busts such as the one that was observed in the first half of

the year 2009 in the US stock market.

Parameters of the real dividend growth process are chosen so as to match those in the data over

the period January 1960-June 2009 (Table 1). Indeed, as shown by Pesaran et al. (2007), a struc-

tural break in the dividend process occurred in the year 1960. June 2009 corresponds to the end

of our period of study, just after the climax of the bust was reached. Subsequent data is likely to

present structural breaks and the learning process agents relied on in the former period is likely

to have suffered strong changes, both in terms of underlying parameters and learning mecha-

nism. The monthly discount rate β is set at 0.998, based on prior literature in which it is standard

to assume a quarterly discount rate of 0.99. The monthly informational discount rate α is set to

0.92, relying on empirical studies which have evaluated it in distinct markets (see in particular

(Agarwal et al., 2013)). The constant relative risk aversion parameter for risk-averse investors

0 < γ (which is also the inverse of the intertemporal elasticity of substitution) is constrained

to be inferior to 1 in order not to produce counter-intuitive features that would contradict the

12Monthly data on the US S&P 500 stock market is retrieved from Shiller’s dataset available online.
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data. Indeed, if γ > 1, then the wealth effect dominates the substitution effect, meaning that

when the discounted expected present value of future real dividends streams is expected to be

higher, demand for stocks decreases whereas consumption increases, leading to a decrease in

stock prices. Nevertheless, as empirical assessments of risk aversion coefficients usually show

them to be relatively high, γ is chosen so as to be the closest possible to 1 while still generating

a consistent order of magnitude for the rational expectations value of the price-dividend ratio.

J is chosen so as to be high enough not to impact prices over the simulation period but such that

simulations can still be computationally possible.

As the prior distribution d ∼ N(m0, σ0) sums up the initial information the agent has on the

estimated parameter, the parameters m0 and σ0 are derived from pre-sample dividend realiza-

tions. As a structural break occurred in the dividend process around the year 1960, the prior

parameters are retrieved from dividend realizations over the period 1960-2003 in a way which

is consistent with the in-sample agents’ learning process: m0 is the weighted average of past

observations relying on the informational discount rate α,13 with the realization in January 1960

being discounted the most and the realization in December 2002 not being discounted, and σ2
0

is the inverse of the discounted sum of the precision of the information provided by each data

point, that is of the precision of the fundamental process ρ. Finally, the model is fed with the

exact same dividends realizations as those observed in the data in the period of interest when

deriving the model-implied price-dividend ratio. The subjective expectations model performs

Parameter Calibrated value
d 0.0011
σ 0.0056
β 0.998
γ 0.9
α 0.92
m0 -0.0013
σ0 0.0016
J 20 000

Table 1: Calibration

strikingly much better than the rational expectations benchmark. First and second order short-

13Note that agents’ prior belief, based on pre-sample dividend information, is such that they undervalue
the actual parameter (Table 2).

21



term moments of the subjective expectations model-implied price-dividend ratio over the period

of interest replicate rather well those in the data, even if they have not been directly targeted in

the calibration strategy (Table 2). The mean of the subjective expectations price-dividend ratio

is significantly above its rational expectations value, which reflects the boom episode on the

US stock market in the run-up to the recent financial crisis. The subjective expectations price-

dividend ratio standard error is much closer to that in the data than the rational expectations

one, which is negligible (but non-null due to finite time). The model generates though slightly

too much volatility in comparison with what is observed in the data. However, despite the sim-

plicity of the model and the fact that the only source of variation in the price-dividend ratio in

the model is the variation in beliefs regarding one parameter only, some qualitative features of

the data are also replicated to a relatively good extent (Figure 1).

First, the model replicates the boom period in the US stock market in the aftermath of the dot-

com bubble bust, with the price-dividend ratio increasing significantly and remaining persis-

tently above its rational expectations value (what can be identified as a bubble). Second, the

model replicates the deep decrease in the price-dividend ratio, reaching values well below the

rational expectations value (the bust). The bust in the price-dividend ratio results from the

transmission of a strong negative dividend shock (which may reflect exogenous deteriorating

financial and economic conditions in the context of the subprime crisis) to beliefs on the actual

fundamental process due to persistent parameter uncertainty, and then to demand for the risky

asset. As agents are risk averse, this makes stock prices collapse. The extent of the bust is all the

more so strong that the actual parameter of the fundamental process was overvalued in the pre-

vious periods due to a series of positive fundamental shocks. Indeed, the strong negative shock

thus induces a higher reassessment of the parameter estimate. The simulation exercise thus

makes obvious how the alternation of phases of overvaluation and undervaluation of stocks’

fundamental value generates significant booms and busts episodes in the stock market. Finally,

these results suggest that time-varying backward-looking expectations played a non-negligible

role in explaining stock prices fluctuations over the recent boom and bust period, all the more

so that the model is able to replicate additional features of the data.

Thus, firstly, the model replicates well the strong autocorrelation in the price-dividend ratio be-

havior over the period (Table 2). Secondly, the dynamics of the realized monthly stock returns

are more consistent with those observed empirically than those generated by the rational ex-
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Figure 1: 2003-2009 Monthly price-dividend ratio

pectations benchmark model (Figure 2). Third, the subjective expectations model generates a

positive correlation between expected stock returns, as observed in survey data on expected re-

turns (Table 2),14 even though it tends to overestimate it.

RE model SE model Data
P/D ratio Mean 528.0844 674.3400 640.7275

P/D ratio Standard deviation 4.5769*10−13 113.5691 108.9037
Autocorrelation in the P/D ratio 1 (0.0000) 0.9747 (0.0000) 0.9777 (0.0000)
Correlation between one-year ahead expected returns (CFO survey) and the price-dividend ratio

Monthly NaN 0.9837 (0.0000) 0.7420 (0.0000)
Quarterly NaN 0.9814 (0.0000) 0.6743 (0.0002)

Table 2: Simulation results

Finally, in order to make clear what drives the dynamics of asset prices in the model, Figure

3 displays the joint dynamics of model-implied beliefs and the price-dividend ratio. It shows

how the mean belief mt regarding the value of the true parameter d (left-hand scale) fluctuates

around d, with first a sustained period of optimism –in which mt > d– and second a sudden

peak of pessimism –in which mt goes far below d–, which drives the dynamics of the price-

dividend ratio (right-hand scale). The uncertainty parameter σt being constant in the simulation

14Model-implied one-year ahead expected returns are simply annualized monthly returns. The CFO
survey being published quarterly and the model time period being a month, for comparability issues, I
linearly interpolate quarterly expected returns in the CFO survey in order to get monthly data. In order to
get an additional result which is independent of interpolation methods, I compare quarterly data as well,
by taking model-implied annualized monthly expected returns of the last month of each quarter as a proxy
for each quarter one-year ahead expected returns.
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results,15 it is obvious that the dynamics of the mean belief parameter directly translate into the

dynamics of the price-dividend ratio. Consequently, this enables us to assess quantitatively un-
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Figure 3: Joint dynamics of beliefs and the price-dividend ratio

der which condition on the regulator’s precision of information, the alternation of booms and

15This is due to informational discounting with prior information gathering a significant number of past
pre-sample observations, which implies that even though more data is accumulated by agents over time,
precision of information is not improved as the earliest data is allocated a zero weight. For the given
model’s parameter values, the constant precision of agents’ information on the unknown parameter is
equal to 3.9 ∗ 105 (that is the uncertainty on this parameter is equal to 2.5 ∗ 10−6). Therefore, the results
show that even for a very low value of uncertainty, beliefs’ updating still generates significant volatility in
the price-dividend ratio.
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busts episodes in the price-dividend ratio can be significantly mitigated following information

disclosure.

5.2 The impact of information disclosure

I now assess quantitatively under which condition on the precision of the public signal on the pa-

rameter of the actual fundamental process – which depends on αD – information disclosure can

be a relevant solution for mitigating volatility in asset prices through a simple stylized counter-

factual simulation exercise. I consider only cases in which αR ≥ α (that is the regulator is less

recency-biased than economic agents). As explained above, when αR < α, the private signal

of the representative agent is necessarily more precise than that of the regulator (which is not

independent), and it is optimal for the investor just to ignore it. The price-dividend ratio thus

remains unchanged.

Figure 4 presents the evolution in the price-dividend ratio following information disclosure for

distinct levels of the regulator’s informational discount rate αR (and thus for distinct degrees of

the regulator’s recency bias or alternatively for distinct degrees of precision of its information on

the actual parameter). As αD ≤ αR (meaning that the informational discount factor used in the

derivation of the public signal is not restricted a priori to be equal to the regulator’s constrained

informational discount factor but cannot logically be higher), results obtained by making αR

vary hold for αD, which is the decision variable of the regulator when setting its information

disclosure policy.

At first glance, it is striking that there are strong differences in the impact of information disclo-

sure on the volatility of the price-dividend ratio, depending on the regulator’s degree of recency

bias. First, volatility in the price-dividend ratio tends to zero only when the regulator is not

recency-biased, confirming analytical results. Even for a very small informational discount rate

of αR = 0.98, the post-information disclosure price-dividend ratio remains significantly away

from its rational expectations ’fundamental’ value. However, decreasing the recency-bias al-

ways decreases the volatility, what suggests that α∗D = αR. Second, it appears that the impact

of similar decreases in the regulator’s degree of recency bias does not impact the price-dividend

ratio in the same extent whatever the level of the regulator’s informational discount rate, reflect-

ing the existence of non-linearities in the impact of an increase in the precision of the regulator’s
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Figure 4: The impact of information disclosure on the price-dividend ratio for various
degrees of the regulator’s recency bias

information on the price-dividend ratio volatility. To complement this finding, the following

chart presents the variance of the subjective expectations price-dividend ratio and the mean of

the squared distance of the subjective expectations price-dividend ratio to its rational expecta-

tions value as functions of the regulator’s recency bias.

First, it appears that a lower degree of recency bias monotonically reduces the variance of the

subjective expectations price-dividend ratio and its average squared distance to the rational ex-

pectations value but both variables tend to zero only when the precision of the regulator’s infor-

mation under subjective expectations is maximal. Second, a marginal increase in the precision of

the regulator’s information (due to lower recency bias) seems to be more efficient in mitigating

non-fundamental fluctuations in the price-dividend ratio when the regulator’s informational

discount rate is higher, to the striking exception of the case where it is already very close to 1.

Finally, I assess under which condition on the degree of the regulator’s recency bias distinct

objectives in terms of mitigating the volatility in the price-dividend ratio and bringing it closer

to its rational expectations value could be achieved.16 The simulation results are displayed in

Table 3. It appears that very small degrees of recency bias in the regulator learning process in

16As a comparison, when there is no information disclosure, the standard error of the price-dividend
ratio over time is equal to 16.84% of its mean, and the squared root of the mean squared distance of the
price-dividend ratio to its rational expectations value is equal to 34.98% of the rational expectations value.
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Figure 5: Statistical features of the price-dividend ratio after information disclosure de-
pending on the regulator’s degree of recency bias αR

Objective Minimal αR (order −4)
Standard error of P/D: <5% of the mean 0.9908
Standard error of P/D: <10% of the mean 0.9762

Squared root of the
mean squared distance of P/D to its RE value: <5% of the RE value 0.9933

Squared root of the
mean squared distance of P/D to its RE value: <10% of the RE value 0.9864

Squared root of the
mean squared distance of P/D to its RE value: <20% of the RE value 0.9695

Table 3: Minimal degree of the regulator’s recency bias required in order to achieve
distinct objectives

comparison with the agent’s recency bias are required so as to achieve significant decrease in

the price-dividend ratio volatility and in the average distance of the price-dividend ratio to its

rational expectations value. Therefore, if information disclosure about the actual fundamen-

tal process seems to be a relevant tool whenever the regulator is not recency-biased, as soon

as it is itself recency-biased, this raises serious concerns on its ability to significantly mitigate

non-fundamental fluctuations in asset prices. These results thus suggest that, in order to make

information disclosure a useful tool in mitigating inefficient fluctuations in asset prices, more

attention has to be paid to longer-span historical series of data, as recommended by Haldane

(2009) or Reinhart and Rogoff (2009).
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6 Conclusion

A parsimonious standard consumption-based asset pricing model in which agents learn the lo-

cation parameter of the dividend growth process through recency-biased Bayesian inference,

providing microfoundations to investors’ decision without implying any restrictive assump-

tion on agents’ knowledge of the pricing function, enables to derive a closed-form solution for

stock price. This makes obvious how the latter depends on investors’ expectations and how

this triggers fluctuations in the price-dividend ratio and thus generates the potential for non-

fundamental bubbles. The specificity of the model is that the extent and the persistence of these

fluctuations over time are due to the representative investor’s recency bias, relying on growing

empirical evidence.

Even with a small degree of parameter uncertainty, the model proves able to replicate several

features of the US stock market in the run-up to the subprime crisis: the price-dividend ratio dis-

plays significant volatility over time and evolves according to surprise effects –thus displaying a

steep decrease in the beginning of 2009–, it is strongly autocorrelated, and positively correlated

with expected future returns. The model also replicates qualitative features of the dynamics of

stock returns.

Modelling the dynamics of subjective expectations in an otherwise standard asset prices model

thus leads to new predictions relative to those of rational expectations models. It enables to

predict that, unsurprisingly, expectations-driven booms and busts do arise. This paves the way

for information disclosure from the regulator about the actual parameter of the fundamental

process in order to warn market participants against possible over or undervaluation of as-

sets. Nevertheless, information disclosure about the actual parameter significantly mitigates

expectations-driven fluctuations only when the regulator’s recency bias tends to zero.

Those results suggest that recency bias in the regulator’s learning process may deprive financial

regulation authorities of a tool that could otherwise prove useful in mitigating excess volatility

in asset prices. To this aim, it matters that persistent attention is paid not only to recent data

but also to earlier historical ones. This would allow to better identify unusual behavior in asset

prices and other macro-financial variables relative to their historical behavior and would prevent

mixing-up transitory recent trends with permanent structural evolution, which has potentially

disastrous consequences for financial stability.
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A Proof of Proposition 1

The first Euler equation (with respect to quantity of stocks St) after market clearing writes:

D−γt = βEt[D
−γ
t+1(

Pt+1 +Dt+1

Pt
)],

for 1 ≤ t ≤ J − 1. Isolating Pt on the left hand side yields:

Pt = βEt[(
Dt+1

Dt
)−γ(Pt+1 +Dt+1)].

Substituting Pt+1 by its expression in the iterated forward version of the previous equation leads

to:

Pt = βEt[(
Dt+1

Dt
)−γ(βEt+1[(

Dt+2

Dt+1
)−γ(Pt+2 +Dt+2)]) + (

Dt+1

Dt
)−γDt+1]

Applying the law of iterated expectations with nested conditioning sets (Et[Et+1(X)] = Et[X])

and iterating forward again yields:

Pt = Et[β
J−t(

DJ

Dt
)−γPJ ] + Et[β(

Dt+1

Dt
)−γDt+1 + β2(

Dt+2

Dt
)−γDt+2 + ...+ βJ−t((

DJ

Dt
)−γDJ))].

In the last period J , under the non-bequest assumption according to which all remaining wealth

at the beginning of period J is consumed in J , stocks are no longer traded and thus PJ = 0.

Finally,

Pt = Et

J−t∑
j=1

βj(
Dt+j

Dt
)1−γDt.

Thus,

Et[(
Dt+j

Dt+j−1
∗ Dt+j−1

Dt+j−2
∗ ... ∗ Dt+1

Dt
)1−γ ] = Et[Et+1[(

Dt+1

Dt
)1−γ ∗ ... ∗ Et+j−1[(

Dt+j

Dt+j−1
)1−γ ]]].

Hence, when d and σ are known:

Et+j−1[(
Dt+j

Dt+j−1
)1−γ ] = Et+j−2[(

Dt+j−1

Dt+j−2
)1−γ ] = Et[(

Dt+1

Dt
)1−γ ] = exp(d(1− γ) +

(1− γ)2σ2

2
) = θ.

Therefore,

Et[(
Dt+j

Dt
)1−γ ] = θj ,

31



and

Pt = Dt

J−t∑
j=1

βjθj .

It is the sum of the J-t first terms of a geometric sequence with common ratio βθ and first term

βθ. Therefore,

Pt =
βθ − (βθ)J−t+1

1− βθ
Dt.

B Inconsistent features of the rational expectations model

B.1 Constant versus highly volatile price-dividend ratio

The following chart displays the US S&P 500 monthly price-dividend ratio over the recent period

and the rational expectations model implied one, which is (roughly) constant (the parameters

values used here are the same as those presented in the simulation exercise in Section 5.)
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B.2 Volatile stock returns

The following chart presents realized monthly returns on US S&P 500 stocks. They display very

low volatility, what strikingly contradicts the data.
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Monthly stock market returns: data versus rational expectations model

B.3 Positive correlation between one-year ahead time-varying expected stock

returns (CFO Survey) and the current price-dividend ratio
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One−year ahead expected stock returns as a function of the current price−dividend ratio

Expected stock returns as a function of the price-dividend ratio
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C Derivation of the posterior distribution under recency-biased

learning

Under recency-biased learning, in period t, the precision of the prior distribution is discounted

by αt. Thus, the normal prior distribution P (d | I0, σ) writes:

P (d | I0, σ) =

√
αtτ0
2π

exp(−1

2
αtτ0(d−m0)2).

Similarly, the precision of the realization of the data yk in period k < t is discounted by αk in the

joint likelihood:

L(yt | d, σ) =

t−1∏
k=0

√
αkτ

2π
exp(−1

2
αkτ(yt−k − d)2).

Therefore, the posterior distribution P (d | It, σ) is:

P (d | It, σ) ∝
√
αtτ0
2π

t−1∏
k=0

(

√
αkτ

2π
) exp(−1

2
αtτ0(d−m0)2) exp(−1

2
τ(

t−1∑
k=0

αk((yt−k− ¯yW )2+

t−1∑
k=0

αk( ¯yW−d)2)),

with ¯yW =
∑t−1
k=0 α

kyt−k∑t−1
k=0 α

k
the weighted average of past observations. This yields:

P (d | It, σ) ∝ exp(−1

2
(αtτ0(d−m0)2 + τ

t−1∑
k=0

αk(d− ¯yW )2))

Completing the square thus leads to:

P (d | It, σ) ∝ exp(−1

2
(αtτ0 + τ

t−1∑
k=0

αk)(d−
αtτ0m0 + τ

∑t−1
k=0 α

k ¯yW

αtτ0 + τ
∑t−1
k=0 α

k
)2).

Therefore, P (d | It, σ) ∼ N(
αtτ0m0+τ

∑t−1
k=0 α

k ¯yW

αtτ0+τ
∑t−1
k=0 α

k
, 1√

αtτ0+τ
∑t−1
k=0 α

k
).
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D Derivation of equation (14)

Starting from the Euler equation with respect to stocks under the subjective probability measure,

isolating Pt on the left-hand side and iterating forward as in Proof of Proposition 1 yields:

Pt =

J−t∑
j=1

βjDtE
P
t [(

Dt+1

Dt
)1−γ ∗ EPt+1[(

Dt+2

Dt+1
)1−γ ∗ ... ∗ EPt+j−1[(

Dt+j

Dt+j−1
)1−γ ]]],

=

J−t∑
j=1

βjDtE
P
t [EPt+1[EPt+2[...EPt+j−1[(

Dt+1

Dt
)1−γ ∗ (

Dt+2

Dt+1
)1−γ ∗ ... ∗ (

Dt+j

Dt+j−1
)1−γ ]]]],

for 1 ≤ t ≤ J − 1. Under the assumption of adaptive Bayesian learning, that is when agents take

into account the uncertainty on their estimates but not the probability distributions of future

beliefs (that is, agents do not take into account the fact that their current beliefs may change

following future realizations of the dividends growth rate), the law of iterated expectations can

still be applied, as Et[Et+1(X)] = Et[X]. Eventually, this yields:

Pt =

J−t∑
j=1

βjDtE
P
t [(

Dt+j

Dt
)1−γ ].

E Comparative statics

As Pt = Dt

∑J−t
j=1 β

j exp((1− γ)mtj + 0.5(1− γ)2j2(σ2
t + σ2)), the sign of its derivative with re-

spect to any variable is the same as the sign of the derivative of the term in the sum with respect

to that variable. For convenience, I now write βj exp((1− γ)mtj + 0.5(1− γ)2j2(σ2
t + σ2)) = xt.

∂xt
∂β

= jβj−1 exp((1− γ)mtj + 0.5(1− γ)2j2(σ2
t + σ2)) > 0.

When the discount rate is higher –that is preference for current consumption is lower– the de-

mand for stock prices increases and thus the equilibrium stock price increases.

∂xt
∂γ

= βjj exp((1− γ)mtj + 0.5(1− γ)2j2(σ2
t + σ2))(−mt − (1− γ)(σ2 + σ2

t )j).

∂xt
∂γ

< 0⇔ mt > (γ − 1)(σ2 + σ2
t )j.
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The sign of the derivative of the stock price with respect to the relative risk aversion coefficient

depends on the hyperparameters mt and σt and thus on the data realizations. When relative

risk aversion increases, the demand for stocks decreases if and only if the expected mean of the

logged growth rate of the payoff on stocks is high enough.

∂xt
∂σ

= βjj2 exp((1− γ)mtj + 0.5(1− γ)2j2(σ2
t + σ2))(1− γ)2σ > 0.

The demand for stocks increases when the (known) variance of the logged growth rate of the

payoff on stocks increases.

∂xt
∂σt

= βjj2 exp((1− γ)mtj + 0.5(1− γ)2j2(σ2
t + σ2))(1− γ)2σt > 0.

Similarly, the demand for stocks increases when the uncertainty on the expected mean of the

logged growth rate of the payoff on stocks increases.

∂xt
∂mt

= βjj exp((1− γ)mtj + 0.5(1− γ)2j2(σ2
t + σ2))(1− γ).

∂xt
∂mt

> 0 ⇔ γ < 1. When the substitution effect dominates the wealth effect, demand for stocks

increases when the expected mean of the logged growth rate of the payoff on stocks increases.

F Expected Returns

Conditionally on information up to time t and the value of the dividend process parameters d

and σ, expected returns write:

Et[
Pt+1 +Dt+1

Pt
| d, σ] =

1

Pt
(Et[Pt+1 | d, σ] +DtEt[

Dt+1

Dt
| d, σ]).

In particular,

Et[Pt+1 | d, σ] = Et[Dt+1

J−t−1∑
j=1

βjEt+1[(
Dt+1+j

Dt+1
)1−γ | d, σ] | d, σ]
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= Dt

J−t−1∑
j=1

βj exp(d((1− γ)j + 1) + 0.5((1− γ)2j + 1)σ2).

Let’s now assume that the parameter d is no longer known and is believed to follow a normal

distribution with parameters mt and σt in period t. In this case,

Et[Pt+1 | σ] = Dt

J−t−1∑
j=1

βj exp(mt((1− γ)j + 1) + 0.5((1− γ)j + 1)2σ2
t + 0.5((1− γ)2j + 1)σ2),

assuming that the law of iterated expectations still applies, because agents are adaptive Bayesian

learners.

Eventually,

Et[
Pt+1 +Dt+1

Pt
| σ] =

Dt

Pt
(

J−t−1∑
j=1

[βj exp(mt((1− γ)j + 1) + 0.5((1− γ)j + 1)2σ2
t

+0.5((1− γ)2j + 1)σ2)] + exp(mt + 0.5(σ2
t + σ2))).

37


