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ABSTRACT

ESTIMATION FROM CROSS-SECTIONS
OF INTEGRATED TIME-SERIES

This paper studies under which conditions a cross-section regression
yields unbiased estimates of the parameters of an individual dynamic
model with �xed e�ects and individual-speci�c responses to macro
shocks. We show that the OLS estimation of a system of non stationary
variables on a cross-section yields estimates which converge to the true
value when calendar time tends to in�nity.

RESUME

Estimation en coupe de variables int�egr�ees

Cet article �etudie les conditions sous lesquelles une r�egression en coupe
donne des estimations non biais�ees des param�etres d'un mod�ele dy-
namique �a e�ets �xes et �a chocs macro�economiques sp�eci�ques. Nous
montrons qu'une estimation en coupe par les moindres carr�es lin�eaires
d'un mod�ele o�u les variables sont non stationnaires donne des estimations
non biais�ees lorsque l'origine des processus tend vers moins l'in�ni.
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1 Introduction

A considerable number of microeconometric studies rely on cross-section estimates. Yet,

a fast growing number of other microeconometric studies use panel data and individual

models involving more and more often state dependence. Were they obtained from cross-

sections of such data generating processes, the former cross-section estimates would

generally not be consistent. This note shows that if the underlying dynamics of the

regressors are integrated, the cross-section estimates do not indeed converge to the true

value when the sample size tends to in�nity, but the asymptotic bias becomes eventually

negligible when the origin of the individual processes is far enough remote in time. This

result holds for a very general speci�cation of the error term, allowing �xed e�ects,

speci�c macro shocks and correlations between shocks. We also show that the rate

of convergence depends on whether the variables are cointegrated or not in the time

dimension.

These results build on other results of the time series literature, initiated by Phillips

and Durlauf (1986), Park and Phillips (1988) and Park and Phillips (1989). They are

more speci�cally related to the the literature on cointegration in panel data (see Pedroni

(1996) and Pedroni (1997)).

The plan of this note is as follows. Section 2 presents the assumptions and the

results. Section 3 illustrates this property by using the Summers-Heston data on annual

domestic consumption and GDP for 152 countries from 1950 to 1992. By performing

Monte-Carlo simulations on the calibrated model, we explore the �nite sample properties

of the cross section estimates. Section 4 concludes.

2 Model and Assumptions

Suppose that, at the individual level, the following linear model is true:�
yht = axht + �ht ;
xht = bxht�1 + �ht ;

h = 1; :::; H; t = 1; :::; T; (1)

where yht and xht are two random variables, with xh0 = 0 for all h and jbj � 1, and�
�ht = uh + �hut + uht ;
�ht = vh + �hvt + vht ;

(2)

where ut and vt are two scalar macro-shocks. Notice that we allow for the presence of

individual �xed e�ects uh and vh, and of individual responses to macro-shocks �hut and

�hvt: To keep things simple, we have assumed all variables scalar. But it would be easy

to generalize the following results to the case of vectors.

We make the following assumptions on error components. First, we assume that

�xed e�ects have asymptotically �nite, non zero sample variances.



Assumption 1 Cross-section variances.
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where R�+ is the set of positive real numbers and where plimH!1 is the limit in Proba-

bility.

Second, all error components have zero cross-sectional means.

Assumption 2 Cross-section means. For all t, for all H;PH
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This assumption may seem restrictive. Typically, one does not expect the aggregate

macro-shock
PH

h=1 �
hut to vanish. Suppose, however, that

PH
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h
t and

PH
h=1 �
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not zero, then it is possible to rewrite system (1) with errors (2) satisfying assumption
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1
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PH
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t and xht �

1
H

PH
l=1 x

l
t are used in place of yht and xht . This is therefore

without loss of generality that we assume all variables centered around their cross-section

mean, as long as the only parameters of interest are the slope coe�cients a and b.

Thirdly, idiosyncratic components uht and vht are mutually uncorrelated and uncor-

related with individual �xed e�ects.
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when H !1; where \
P
!" means \convergence in probability".

Note that macro shocks ut and vt can be correlated, as well as the �xed e�ects, uh and

vh.

The next assumption is on the dynamics of the idiosyncratic errors uht and vht .

Assumption 4 The idiosyncratic errors uht and vht are covariance-stationary processes

with absolutely summable autocovariances and zero means.

As far as macro shocks are concerned, we assume that they can be either I(0) or I(1).

Note that, if macro shocks are covariance-stationary and jbj = 1, then the �rst equation

of equation (1) de�nes a cointegration relationship. If vt is I(1), then xht are I(2) and



whether ut is I(0) or I(1), the �rst equation of equation (1) again de�nes a cointegration

relationship. Clearly, in these cases, one already knows that system's parameters can

be consistently estimated with one in�nite time-series. But if jbj = 1, vt is I(0) and ut is

I(1), all three variables yht ; x
h
t and �ht are I(1) and yht and xht are not cointegrated. The

cross-section dimension then becomes crucial to identify the system's parameters.

Let aH;t de�ne the Ordinary Least Square estimator of a in the cross-section regres-

sion of yht on xht :

aH;t =

"
HX
h=1

yht x
h
t

#"
HX
h=1

(xht )
2

#�1
:

And let

Bt = plim
H!1

[aH;t � a] (3)

be the asymptotic bias of cross-section-t estimate aH;t. We now show the following

proposition.

Proposition 5 If jbj = 1, then, under the preceding assumptions, plimt!1 Bt = 0 and

the rate of convergence of Bt to 0 is as in the following table:

ut is I(0) ut is I(1)
vt is I(0) OP (t

�1) OP (t
�1=2)

vt is I(1) OP (t
�3=2) OP (t

�1)

where Bt is of order OP (t
�); for all real �; if for all " > 0; there exists M" such that

Prft��Bt �M"g � 1� " for all t.

If xht is covariance-stationary (jbj < 1 and vt is covariance stationary) then the

asymptotic bias Bt tends in general to a non null constant when t becomes large.

We refer the reader to appendix A for a proof. Provided that xht is a random

walk, proposition 5 shows that a cross-section estimation yields estimates for which the

asymptotic bias (when sample size H goes to in�nity) tends to zero when the time

origin of processes xht and yht is far remote. The rate of convergence of the asymptotic

bias depends on the relative order of integration of �ht and �ht . For example, if "ht and

�ht are stationary, the �rst equation of the system forms a cointegration relationship,

and the rate of convergence of the asymptotic bias is of order t�1. If the �rst equation

of the system is not cointegrated but variables xht and yht are I(1), then the rate of

convergence is only of order t�1=2. When estimating a relationship on cross section

data, we can expect the estimation to yield more precise results with older cohorts and

if the estimated system is cointegrated. Moreover, proposition 5 shows that whatever the



nature of the error term in (1), a cross section regression on levels always identi�es the

structural parameters. At the macro level, the identi�cation relies on either a regression

on levels if the system is cointegrated, or a regression on �rst-di�erences in the alternate

case.

This proposition will be easily generalized to the multivariate case where yht , x
h
t and

the macro shocks are vectors. If b has all its eigenvalues strictly inside the unit circle,

then the cross section estimates are generally biased. And when b is the identity matrix,

the bias becomes negligible when t tends to in�nity. The apparently intermediate case

where b � Id, where Id is the identity matrix, is not of full rank and non null is a

particular case of the case b = Id after integrating a subset of the components of xt into

yt.

Moreover, it is straightforward to show that exactly the same asymptotics apply to

the case of pooled cross-sections, i.e. when the OLS estimator aH;t is the one obtained

by regressing yht�i on xht�i in the sample f(xht�i; y
h
t�i); i = 0; :::; t� 1; h = 1; :::; Hg. For

example, Bt = OP (t
�1) when both ut and vt are I(0).

1

There is a growing number of evidence that economic series are integrated even at

the micro level (see Deaton and Paxson (1994) for instance). The next section assesses

the empirical relevance of these results, by using real data to calibrate Monte-Carlo

simulations.

3 Application and Simulations

In this section we illustrate the results established above by some Monte Carlo esti-

mations. The motivation is to analyze the asymptotic results with real data. We use

the database provided by Summers and Heston (1991) which reports annual domestic

consumption and GDP for 152 countries from 1950 to 1992 to provide an empirically

sensible calibration for the Monte Carlo simulations. We denote as yht the logarithm of

consumption, and as xht the logarithm of GDP. We postulate the following statistical

model for yht and xht :�
yht = a0 + axht + uh + �hut + uht ;
xht = b0 + bxht�1 + vh + �hvt + vht ;

h = 1; :::; H; t = 1; :::; T; (4)

with �
ut = �uut�1 + "ut;
vt = �vvt�1 + "vt;

(5)

1This is due to the fact that the numerator of Bt is OP (t) and the denominator is OP (t
2). If all

cross-sections from the origin to t are pooled together, then the numerator of the bias of the OLS
estimator of a is still OP (t) and the denominator OP (t

2); because one can easily show that, in the
present context, averaging over time produces a time process which has the same order in probability
than the averaged process.



and where uh; �h; uht ; "ut; vh; �h; vht ; "vt are independent normal random variables

with means, respectively, 0, �, 0, 0, 0, �, 0, 0, and non zero variances. Moreover, we �x

u0 = v0 = xh0 = 0.2

Consistent estimates of the parameters of the error-component model (4) are reported

in table 1. We then use these parameters to simulate paths of log GDP and log of

consumption for a large number of periods (years), for di�erent values of b; �u and �v

corresponding to the di�erent alternative cases of proposition 5. For each set of values,

we constructed 100 panel data sets with 152 \countries" and 4000 periods. Table 2

displays the di�erent experiments.

Figure 1 displays a graph of the average absolute bias (absolute percentage deviation

from the true value), as a function of the distance from the origin for the 5 cases.

Coordinates are log-coordinates so that the bias paths asymptotically become straight

lines. Consistent with the theory developed above, the bias is a decreasing function of

time, except in the stationary case. In the stationary case, the average bias is always

bigger even for small t. It appears that there exists a middle range set of values for t

for which the bias is converging to zero much faster when the variables are I(2). For

the \true" case, which corresponds to the estimated parameters, it takes approximately

50 years to reduce the bias by one half, and approximately 160 years to reduce it by 5.

Finally, the slopes of bias paths, when t is large, are as predicted by the theory.

Table 1: Estimated Parameter Values

a b s.d.(uh)(1) s.d.(ut) �u s.d.(uht ) s.d.(vh) s.d.(vt) �v s.d.(vht )
0.85 0.99 0.16 0.009 0.9 0.086 0.024 0.046 0.2 0.05

Note: \s.d." : standard deviation.

Table 2: Parameter Values Used in Experiment

Case
True conver-
gence rate

�u �v

ut � I(0); vt � I(0); b = 0 (0) 0 0
ut � I(0); vt � I(0); b = 1 (1=2) 1 0
ut � I(1); vt � I(0); b = 1 (1) 0.9 0.2
ut � I(0); vt � I(1); b = 1 (1) 1 1
ut � I(1); vt � I(1); b = 1 (3=2) 0 1

Note: Estimation results obtained on 200 simulated panel
data sets of 152 "countries" and 800 periods. Est. refer to the
average estimated convergence rate, and s.d. to its standard
deviation.

2Note that �h and �h do not necessarilly average to 0. Yet the OLS estimate of a implies centering
of the yh

t
and xh

t
variables and thus brings this case back to the previous set-up.



4 Conclusion

In this note we have shown that the OLS estimation of a system of non stationary vari-

ables on a cross-section yields estimates which converge to the true value when calendar

time tends to in�nity. We emphasize the importance of the variability of idiosyncratic

responses. We provide empirical evidence on the elasticity of domestic consumption to

the GDP, for 152 countries, and explore the predictions of our proposition with real

data. Given the variability of the di�erent shocks in our example, the convergence of

the bias to values of the order of 10% takes several decades, if not centuries, depend-

ing on the order of integration of the series. This result casts serious doubts on the

conclusions that can be drawn from cross-sectional estimations when the regressors are

known to be dynamic processes. To refer to only one empirical case, we can mention

demand system estimation where one of the conditioning variables, total expenditure if

not relative prices, is known to be highly autocorrelated, if not a random walk.
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Appendix A. Proof of Theorem 5

Replacing yht by axht + �ht in the formula for aH;t yields:

aH;t = a +
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#"
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2
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:

Moreover, let

�t(L) = 1 + bL + :::+ bt�1Lt�1;

where L is the lag-operator. Then:
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Hence, for all t, assumption 3 implies that:
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where oHP (1) is a random variable which converges to 0 in probability when H tends to

in�nity.



Similarly,

1

H

HX
h=1

(xht )
2 = �t(1)

2

"
1

H

HX
h=1

(vh)2

#
+

"
1

H

HX
h=1

(�h)2

#
[�t(L)vt]

2 +
1

H

HX
h=1

�
�t(L)v

h
t

�2

+ 2�t(1)

"
1

H

HX
h=1

vh�h

#
[�t(L)vt] + 2�t(1)

1

H

HX
h=1

vh
�
�t(L)v

h
t

�

+ 2
1

H

HX
h=1

�h
�
�t(L)v

h
t

�
[�t(L)vt] :

And by assumption 3
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Step 2 : computation of limit bias plimt!1 Bt when b = 1:

We now show that Bt
P
! 0 if b = 1: When b = 1; �t(1) = t and
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We �rst prove three lemmas which will be helpful in deriving the �nal results.

Lemma A1 If vt is a covariance stationary variable, then t�1=2
Pt

j=0 vt�j = OP (1). If

vt is integrated of order one, then t�3=2
Pt

j=0 vt�j = OP (1).

Proof: See Park and Phillips (1988).

Lemma A2 With the notation de�ned above,

1

t

tX
j=0

�j
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Proof: The lemma is a simple consequence of
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since (t + 1)�1�j � 2 and where the last inequality follows from the fact that vht is

covariance stationary.

Lemma A3

1

t!
ut

tX
j=1

vt�j
P
! 0

in one of the three cases de�ned below,

1. ut and vt are I(0), with ! = 1.

2. ut is I(1) and vt is I(0), with ! = 3=2.



3. ut is I(0) and vt is I(1), with ! = 2.

Proof: Lets de�ne the variables ~ut and ~vt such as

1. if ut and vt are I(0), ~ut = ut and ~vt =
1
t

Pt
j=0 vt�j.

2. if ut is I(1) and vt is I(0), ~ut = ut=t
1=2 and ~vt =

1
t

Pt
j=0 vt�j.

3. if ut is I(0) and vt is I(1), ~ut = ut and ~vt =
1
t2

Pt
j=0 vt�j.

Then from lemma A1 we have ~vt
P
! 0 when t tends to in�nity.

As ~ut is covariance stationary, E ~ut
2 is equal to some �nite constant �2 independent

of t. Chebyshev's inequality then applies to show that:
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�2

for all positive �. Moreover, it is true that
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Hence
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for all positive numbers � and �. Then remark also that
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Consequently
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For all positive number �, the convergence of j~vtj to 0 in probability makes possible

to �nd � such as
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q

2�2

�
yields that
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This achieves to show that

~ut~vt
P
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when t tends to in�nity.



Using the lemmas A1 through A3, we are now able to calculate the limit bias

p limt!1 Bt.

If both ut and vt are I(0), dividing equation (A.1) by t and applying lemmas A1

through A3, gives
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where otP (1) is a random variables which converges to 0 in probability when t tends to

in�nity. Dividing equation (A.2) by t2 gives,

plim
H!1

1

t2
1

H

HX
h=1

(xht )
2 = plim

H!1

1

H

HX
h=1

(vh)2 + otP (1): (A.3)

Hence,

Bt =
1

t

plimH!1

h
1
H

PH
h=1 u

hvh
i
+ plimH!1

h
1
H

PH
h=1 �

hvh
i
ut

plimH!1 H!1

h
1
H

PH
h=1(v

h)2
i + otP (t

�1) (A.4)

If ut is I(1) and vt is I(0), dividing equation (A.1) by t3=2 and applying lemmas A1

through A3, gives
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Dividing equation (A.2) by t2 and using equation (A.3) gives
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If ut is I(0) and vt is I(1), dividing equation (A.1) by t3=2 and applying lemmas A1

through A3, gives
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where otP (t
�3=2) is a random variables such that t3=2otP (t

�3=2) converges to 0 in probability

when t tends to in�nity.

If ut and vt are I(1), dividing equation (A.1) by t
2 and applying lemmas A1 through A3,

gives

plim
H!1

1

t2
1

H

HX
h=1

�ht x
h
t =

ut
t2

"
tX

j=0

vt�j

#"
plim
H!1

1

H

HX
h=1

�h�h

#
+ otP (1)

and dividing equation (A.2) by t3 gives,
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This �nishes to show proposition 5.




