MONOPOLISTIC COMPETITION

Jean-Pascal BENASSY

January 1989 Revised February 1990

N° 9006

Forthcoming in the <u>Handbook of Mathematical Economics</u>, Volume 4, edited by W. Hildenbrand and H. Sonnenschein, North Holland.

MONOPOLISTIC COMPETITION

Jean-Pascal BENASSY

ABSTRACT

This paper, which has been prepared for the Handbook of Mathematical Economics, studies a number of results and conceptual problems in the field of monopolistic competition. After an historical introduction, it presents some first concepts in a partial equilibrium framework, discusses the issue of competitiveness of monopolistic competition, describes various representations of product differentiation, gives a number of general equilibrium formalizations and relates the field to some macroeconomic issues.

<u>Keywords</u>: Monopolistic Competition, Imperfect Competition, Product Differentiation, General Equilibrium, Chamberlin, Cournot, Bertrand, Edgeworth.

Journal of Economic Literature Classification Numbers: 021, 022, 023.

CONCURRENCE MONOPOLISTIQUE

RESUME

Cet article, préparé pour le "Handbook of Mathematical Economics", passe en revue un certain nombre de résultats et de problèmes conceptuels dans le domaine de la concurrence monopolistique. Après une introduction historique, on présente quelques concepts dans un cadre d'équilibre partiel, et on discute les déterminants du degré de concurrence en situation de concurrence monopolistique. On décrit ensuite diverses représentations de la différenciation des produits, on donne un certain nombre de formalisations en équilibre général, et on relie finalement le domaine à quelques problèmes de nature macroéconomique.

<u>Mots clefs</u>: Concurrence monopolistique, concurrence imparfaite, différenciation des produits, équilibre général, Chamberlin, Cournot, Bertrand, Edgeworth.

Codes J.E.L.: 021, 022, 023.

CONTENTS

		Pages
1.	INTRODUCTION	1
2.	HISTORY	3
3.	A BASIC MODEL AND EXISTENCE PROBLEMS	7
4.	HOW COMPETITIVE IS MONOPOLISTIC COMPETITION ?	13
5.	ENDOGENOUS PRODUCT DIFFERENTIATION	22
6.	GENERAL EQUILIBRIUM REPRESENTATIONS	34
7.	MONOPOLISTIC COMPETITION AND MACROECONOMIC ISSUES	45
8.	CONCLUSIONS	56
	FOOTNOTES	58
	BIBLIOGRAPHY	60

MONOPOLISTIC COMPETITION

1. INTRODUCTION (*

Monopolistic competition, a term coined in the famous contribution of Chamberlin (1933), (1) is usually defined as a situation of imperfect competition with the following features: (a) The products sold are differentiated. (b) Firms themselves set the price of these goods. (c) The number of sellers is large and each firm disregards the effects of its price decisions on the actions of its competitors. (d) Entry is unrestricted and proceeds until profits are reduced to zero, or the smallest possible number consistent with the fact that the number of firms is an integer.

What has been called by Samuelson (1967) the "Monopolistic Competition Revolution" was indeed quite a pathbreaking development in its time, as it replaced the Walrasian or Marshallian implicit "auctioneers" by explicit price setting agents internal to the economy, i.e. the firms. Since then an enormous amount of research has been devoted to this and related topics, but it seems fair to say that the domain of monopolistic competition has not reached the state of synthesis that the Walrasian system has reached (see notably Arrow-Debreu, 1954, Debreu, 1959, Arrow-Hahn, 1971). The reason for this is that the theory of monopolistic competition (and more generally all theories which endogeneize price making without an auctioneer) poses important and difficult conceptual problems. Our purpose in this chapter is to review a number of them. Of course, given the gigantic size of the literature on the subject, such a review can only be partial. As in the original monopolistic

competition contribution we shall mostly concentrate on models with a generally large number of price setters, and indicate in the conclusion a number of alternative presentations.

The plan of the chapter is the following: Section 2 briefly reviews early developments in imperfect competition prior to Chamberlin. Section 3 introduces a basic model and studies problems of existence of an equilibrium. Section 4 discusses the issue of competitiveness of monopolistic competition. Section 5 introduces endogenous product differentiation. Section 6 considers general equilibrium representations of monopolistic competition. Section 7 presents macroeconomic applications. Subsections at the end of each section indicate a list of further readings.

2. HISTORY

We shall now start, just as Chamberlin did, by briefly reviewing a few models of imperfect competition with homogeneous goods, notably associated with the names of Cournot, Bertrand and Edgeworth, whose conceptual problems led Chamberlin to the idea of monopolistic competition.

2.1. The basic framework

We shall study here a market for a single homogeneous good, which may be served by several firms. We shall assume that the demand for this good is given by q = D(p), and we shall denote the inverse demand curve as p = F(q). In what follows we shall actually have to go beyond these basic data and make explicit where the demand curve comes from. We shall thus make a simple and usual assumption, i.e. that the consumer sector is made of a single "big" consumer with a utility function

$$U(q) = V(q) - pq$$

where output is implicitly paid in a numeraire commodity whose marginal utility is constant and normalized to one. Maximization of this with respect to q yields immediately:

$$D(p) = V'^{-1}(p)$$

$$F(q) = V'(q)$$

2.2. Cournot

Cournot (1838) first explored the case where the market is served by two firms with the same marginal cost c. These two firms are assumed to choose independently their quantities q_1 and q_2 . The resulting price is the one that "clears the market", i.e. $F(q_1+q_2)$. The optimization program of firm 1 is thus:

Maximize
$$F(q_1 + q_2) q_1 - c q_1$$

yielding a best response function $q_1 = \psi_1(q_2)$. Symmetrically $q_2 = \psi_2(q_1)$. A Cournot equilibrium is characterized by quantities and q_1 , q_2 and a price p such that:

$$q_1 = \psi_1(q_2)$$
 $q_2 = \psi_2(q_1)$ $p = F(q_1 + q_2)$

The Cournot price, though lower than the monopoly price, remains nevertheless strictly above the competitive price c .

2.3. Bertrand

Bertrand (1883) objected to Cournot's analysis on the basis that firms actually do set prices, and thus considered a model where prices are the strategic variables. In such a case a rule must be specified to allocate demand between the two competitors. Bertrand's rule is the following: If the prices are different, all demand will go to the lower price firm. If prices are equal, the demand is shared between the two firms, and we shall assume to simplify that it is split half and half (The specific proportions actually do not matter here). As a result, the demand going to firm 1 is:

$$D_{1}(p_{1},p_{2}) = \begin{cases} D(p_{1}) & p_{1} < p_{2} \\ 1/2 D(p_{1}) & p_{1} = p_{2} \\ 0 & p_{1} > p_{2} \end{cases}$$

Clearly, as long as one price is above c , the other firm will have an incentive to undercut. As a result the unique possible equilibrium of this game is given by $p_1 = p_2 = c$ which is indeed the Nash equilibrium of this game. With prices as the strategic variables, two is enough for competition.

2.4. Edgeworth

Edgeworth (1897) in turn objected to Bertrand on the basis that one seldom sees productive processes with infinite potential supply, as costs must become rising at some point. Edgeworth thus considered the constant marginal cost case of Bertrand, but assumed there were fixed productive capacities k_1 and k_2 .

The main change this brings to the previous analysis is that the demand to the higher price firm is not necessarily equal to zero anymore. Indeed assume for example that $p_1 > p_2$, but $D_2(p_1,p_2) = D(p_2) > k_2$. We see that firm 2 cannot serve all demand addressed to it, and thus part of this demand will "come back" to firm 1 . To see exactly to what extent, we must go back to the utility maximization program of our single consumer. With two prices p_1 and p_2 this program will be :

Maximize
$$V(q_1 + q_2) - p_1 q_1 - p_2 q_2$$

If $p_1 > p_2$ and $D(p_2) > k_2$, then the consumer is rationed at price p_2 and buys exactly k_2 from firm 2. The demand to firm 1 is the solution in q_1 of the above program with $q_2 = k_2$. The first order condition for an interior maximum is :

$$V'(q_1 + k_2) = p_1$$

yielding a demand equal to $D(p_1) - k_2$. Summarizing, the actual demand to firm 1, its "contingent demand", which we shall denote as $\tilde{D}_1(p_1,p_2)$, is now:

$$\tilde{\tilde{D}}_{1}(p_{1},p_{2}) =
\begin{cases}
D(p_{1}) & p_{1} < p_{2} \\
max[1/2]D(p_{1}),D(p_{1})-k_{2} & p_{1} = p_{2} \\
max[0,D(p_{1})-k_{2} & p_{1} > p_{2}
\end{cases}$$

Figure 1

A resulting profit function is pictured on figure 1 for p_2 > c and $k < D(p_2)$. We see that the undercutting argument which underlies Bertrand's result does not work anymore. In particular c cannot be an equilibrium in prices as the firms will always have an interest to jump to a higher price. One can easily check that there is no equilibrium in pure strategies with $p_1 = p_2 = c$ unless min(k_1 , k_2) > D(c).

The above non-existence result is actually much more general than the particular example given by Edgeworth. It is indeed easy to see that for increasing marginal cost functions there is no Nash equilibrium in pure strategies for the price game (Shubik 1959, Dixon 1987a).

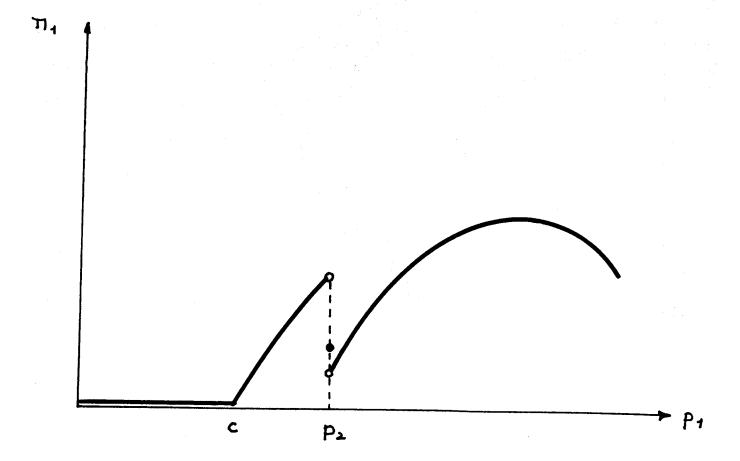


Figure 1

3. A BASIC MODEL AND EXISTENCE PROBLEMS

Chamberlin comes thus at a point where the theory of endogenous price making by firms is somehow in a dead end because of Edgeworth's nonexistence result. Chamberlin's way out will be to consider differentiated products, which will in particular eliminate the discontinuities in the demand curves associated with perfect substituability. We should note that this idea of product differentiation had already been used in the pioneering contribution by Hotelling (1929) on spatial competition (3).

3.1. A basic Chamberlinian model.

Chamberlin thus considers n firms indexed by j = 1,...,n producing each a different good, also indexed by j. In order to reflect the fact that these products are imperfect substitutes, we shall assume that the utility functions of the agents in the consumer sector are strictly quasi-concave. To make exposition as simple as possible, let us again assume that this sector consists of a single "big" consumer with a utility function

$$U(q_1, \dots, q_n, x) = U(q, x)$$

where x (a scalar) is a numéraire good representing somehow "the rest of the economy" and q is the vector of the n differentiated goods. The demands for goods $j=1,\ldots,n$ will be simply given by the solution in q of the following program:

Maximize
$$U(q,x)$$
 s.t.

$$pq + x = R$$

where R is the numéraire income of the consumer, assumed given in this partial equilibrium framework. We shall denote the solutions as

$$q_{j} = D_{j}(p_{1},...,p_{n}) = D_{j}(p_{j},p_{-j})$$

where p $\,$ is the vector of all prices but p $\,$. We can now define an equilibrium $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ with monopolistic competition (cf. for example Friedman, 1982) :

Definition 1

An equilibrium with monopolistic competition consists of prices p_j^* , $j=1,\ldots,$ n such that :

We can easily relate this equilibrium to Chamberlin's traditional "short-run" equilibrium picture (Figure 2). Assume identical cost curves C and symmetrical demand curves D . The average revenue curve has for equation : j

$$q = D_{j}(p, \overline{p}_{-j})$$

i.e. it is the demand forthcoming to a representative firm, assuming all other firms' prices are held constant and equal to \overline{p} (This curve depends thus on the value of \overline{p}). The short-run equilibrium is characterized by the equality of marginal cost and marginal revenue, with $\overline{p} = p^*$. Figure 2 displays a situation where firms can still earn a profit, represented by the shaded area. This corresponds to the equilibrium of definition 1.

Figure 2

3.2. A first existence problem.

As we shall see below, the problem of the existence of a monopolistic competition equilibrium will be a recurrent theme in this chapter. Taking the simple definition 1, an equilibrium will be a fixed point of the mapping

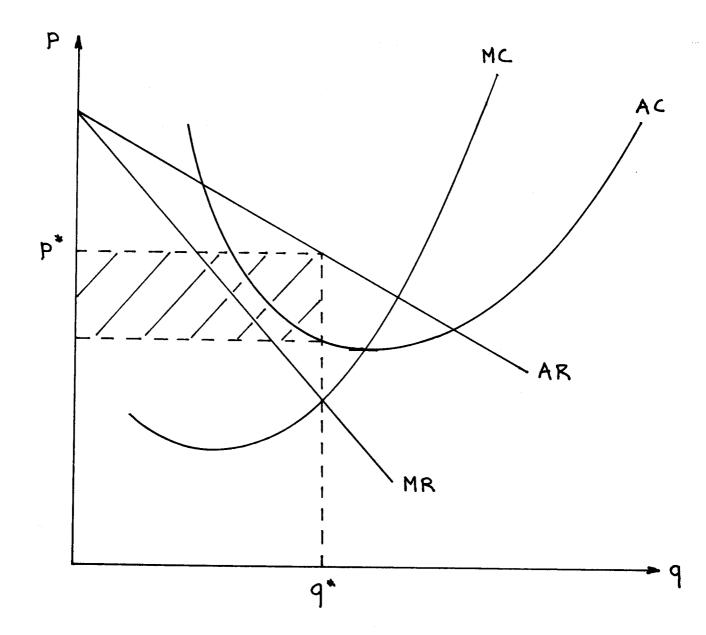


Figure 2

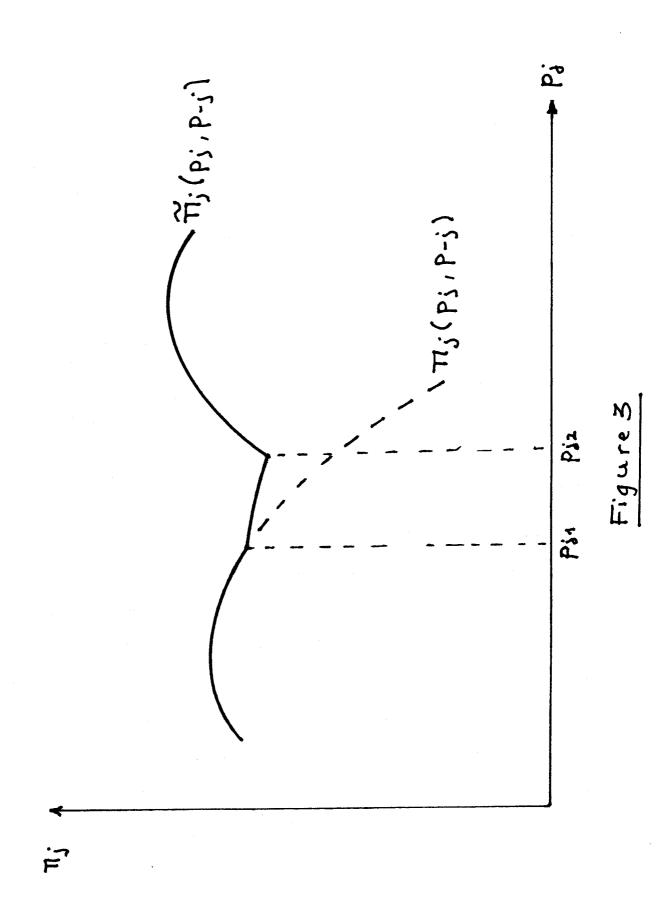
where π $(p_j, p_j) = p_j D (p_j, p_j) - C (D (p_j, p_j))$. Whether the demand function D_j comes from one or many consumers, nothing in the traditional assumptions on utilities ensures that this mapping will have the required properties to have a fixed point. So it has been customary in the field to directly assume boundedness, convexity and upperhemicontinuity of the above mapping (or to make assumptions trivially implying them; quasiconcavity in p_j of the profit functions π_j is a usual favorite) so that Kakutani's fixed point theorem can be applied.

It must be noted, however, that recently a few authors have sought not to use directly these assumptions. In particular Caplin-Nalebuff (1989), E. Dierker (1988), H. Dierker (1989) derive the quasiconcavity of the profit function from well specified hypotheses on the distribution of consumers' characteristics.

3.3. The Edgeworth problem.

A question we may now ask is whether product differentiation actually solves the Edgeworth non existence problem, which was one of the main motivations for which Chamberlin (and others like Hotelling) studied differentiated products. To make the issue particularly clear, we shall assume that the function $\pi_j(p_j,p_j)$ is strictly quasiconcave in p_j (Figure 3). We shall now show that, inspite of this, the Edgeworth nonexistence problem may still arise because the function $\pi_j(p_j,p_j)$ is not the "true" profit function.

Figure 3



Indeed this profit function is based on the Walrasian demand $D_{j}(p_{j},p_{-j})$, itself derived from the assumption that each firm will serve any demand at any price. Edgeworth pointed out that this could not possibly be true with fixed capacities, and we shall now see that, even without fixed capacities, this may also be inconsistent with profit maximization. Indeed let us consider some starting point (p_{j},p_{-j}) and imagine that firm j considers raising its price p_{j} . If goods are gross substitutes (which we shall assume in all that follows), demand will be increasing for the competing products. But it is clear however that none of the competing firms i \neq j, if they are true profit maximizers, will serve more than their profitable capacity $k_{j}(p_{j}) = C_{j}^{(-1)}(p_{j})$, so that the demand actually forthcoming to j, its "contingent demand", is solution of the program in q_{j} :

Maximize U(q,x) s.t.

$$\begin{cases} pq + x = R \\ q_i \leq k_i & i \neq j \end{cases}$$

which, since each k_i is function of the corresponding p_i , yields a function $\tilde{\tilde{D}}_j(p_j,p_j)$ which notably differs from the Chamberlinian one because of the quantity constraints $k_i(p_i)$. In particular, each time a competitor hits his capacity limit (which occurs at prices p_{j1},p_{j2} in figure 3), the function $\tilde{\tilde{D}}_j$ has a kink, becoming less elastic as more substitutes are rationed to the consumer. Consequently the "true" profit function $\tilde{\pi}_i$, given by :

$$\hat{\pi}(p,p) = p\hat{D}(p,p) - C[\hat{D}(p,p)]$$

is also kinked as in figure 3. As a result $\tilde{\pi}_j$ need not be quasiconcave and existence may be jeopardized (Shapley-Shubik, 1969, Benassy, 1986b, 1989a).

Of course, investigating existence in a general "Bertrand-Edgeworth-Chamberlin" model such as we just described would be exceedingly difficult, and the problem has been investigated in symmetric models with identical cost curves and symmetric utility functions. The reader can find in Shapley-Shubik (1969) and Benassy (1989a) characterizations of how existence of a pure strategies equilibrium depends on the relations between the number of competitors, the degree of substituability among the goods and the level of excess profitable capacities. It is shown in particular in Benassy (1989a) that a sufficient condition for the traditional Chamberlin equilibrium still to be a Nash equilibrium in this model is that:

$$(n-1)(k - q^*) > q^*$$
 (1)

i.e. that excess productive capacities of the competitors be greater than each firm's production at the Chamberlin equilibrium q^* , a quite intuitive condition. Conversely if q^* is sufficiently greater than excess capacities, the equilibrium in pure strategies can be destroyed.

All this shows quite clearly that, contrarily to a traditional belief, consideration of differentiated commodities only partially solves the existence problem which Edgeworth posed in the case of perfect substitutes.

3.4. The Chamberlinian model with entry

As we indicated, the equilibrium studied in the two preceding subsections is a short-run one, which generates profits for all firms, as shown in Figure 2. Now Chamberlin assumes that such an equilibrium with positive profits cannot last, as the mere existence of these profits will lead to entry of new firms. As a result, the demand curve (and the associated marginal

revenue curve) will move to the southwest until one reaches the famous tangency condition (Figure 4) where all profits have been wiped out by entry.

Figure 4

Now we should note that, as compared to the equilibrium without entry (Definition 1 and Figure 2 above) there is a very serious conceptual problem associated with the potential definition of the equilibrium with entry implicit in Figure 4. Indeed we used in definition 1 the "traditional" formalization of an equilibrium where the set of goods is a priori given. Entry in this framework means that we are adding new goods to the list of goods, and thus changing the space of goods in which we are working. Even if adding new firms does not pose much problem if they are assumed to have identical technologies, it is far from clear how preferences in the "old" and "new" space will relate to each other, and in particular how to derive them from underlying characteristics of potential goods. We shall see in section 5 below that there are many different approaches to this problem. But before that we shall consider an economy with a given set of goods and tackle an important problem, that of the "competitiveness" of a monopolistic competition equilibrium.

3.5. Further readings

Existence of a pure strategies price equilibrium is further investigated in Vives (1989). In case a pure strategies Nash equilibrium does not exist, one may look for mixed strategies equilibria (See Glicksberg, 1952, for continuous payoff functions and Dasgupta-Maskin, 1986, for discontinuous ones).

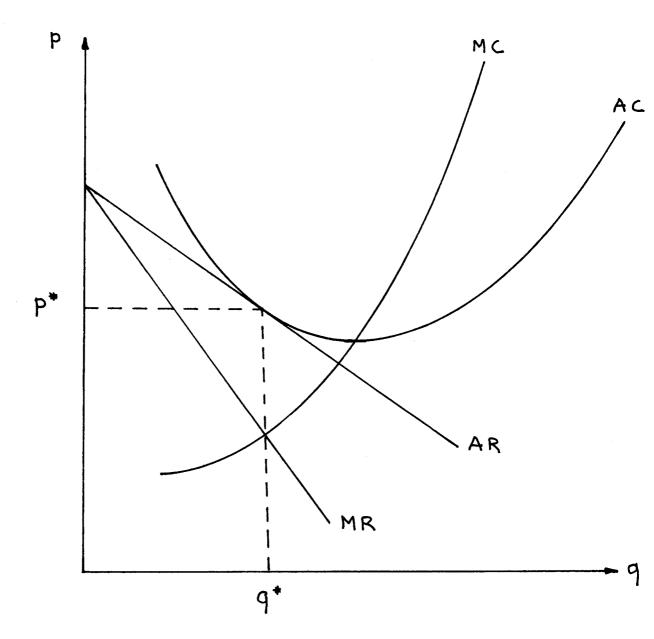


Figure 4

4. HOW COMPETITIVE IS MONOPOLISTIC COMPETITION?

We shall in this section study an important conceptual and practical question, that is how close to perfect competition is a monopolistic competition equilibrium. In order to be precise, we have to choose an index of competitiveness. We shall take Lerner's "degree of monopoly":

$$L_{j} = \frac{p_{j}^{*} - C'(q_{j}^{*})}{p_{j}^{*}}$$

The closer to zero this index will be, the more "competitive" the market. Now at least two factors are often cited in the literature as conducive to a close to competitive outcome. The first is often referred to as "market size":

Competition will obtain if each competitor is small as compared to the market he operates in . A second factor is substituability: A market will be competitive if competitors produce goods which are very close substitutes to the good you produce. We shall now study how various concepts of imperfect competition allow to relate competitiveness to these two factors.

4.1. The Cournot equilibrium and market size

We shall now see that the Cournotian model quite naturally leads to market size as a fundamental determinant of competitiveness. Assume thus there are n firms producing perfectly substitutable goods with cost functions $C_j(q_j)$, $j=1,\ldots,n$. Call Q total production and F(Q) the inverse demand curve.

Definition 2

A Cournot equilibrium is defined by a set of quantities q_j^* , $j=1,\ldots,n$ and a price p^* such that :

(a)
$$q$$
 maximizes $F(q + \Sigma q) q - C(q) \forall j$

(b)
$$p^* = F(Q^*) = F(\Sigma q^*)$$

Now the first order condition of the maximization program giving ${\bf q}$ yields immediately :

$$F(Q) + q_{i} F'(Q) - C'(q_{i}) = 0$$

And thus the Lerner index is easily computed as :

$$\frac{F(Q) - C'(q_j)}{F(Q)} = -\frac{q_j}{Q} \cdot \frac{QF'(Q)}{F(Q)} = \frac{q_j}{Q} \cdot \bullet$$

where ϕ is the absolute value of the elasticity of the inverse demand curve. (4) We thus see that, other things equal, the Lerner index is proportional to q_j/Q , i.e. the size of firm j's production as compared to the total production of the good, which will be equal to 1/n if the model is symmetric.

We should point out that the relation between "market size" and competitiveness has been quite refined beyond the above computations based on the number of competitors. In a series of contributions (Novshek-Sonnenschein 1978, Novshek, 1980, and many others), competitiveness is related to the ratio of optimum productive size to demand at minimal cost (there are thus increasing returns). Useful surveys of this important line of research can be found in Fraysse (1986), Mas-Colell (1982), Novshek-Sonnenschein (1986)(1987). We shall see other generalizations of the above idea in subsection 6.3 below.

4.2. The traditional Chamberlinian model and substitutability

Let us now consider the Chamberlinian model presented in Definition 1, where the products $j=1,\ldots,n$ are imperfect substitutes. Recall that the program leading to p_j is written :

Maximize
$$p_j D_j(p_j, p_j) - C_j[D_j(p_j, p_j)]$$

The first order conditions lead to :

$$L_{j} = \frac{p_{j} - C'(q_{j})}{p_{j}} = \frac{1}{n_{j}}$$

where $\eta_j = -(p_j/D_j) \delta D_j/\delta p$. We want now to relate this own-price elasticity of the demand curve D_j to more basic parameters. Recall that the demand D_j is obtained by maximization of the utility U(q,x) under the budget constraint

$$pq + x = R$$

Denote by o the Allen-Hicks elasticity of substitution between goods i and j (Allen-Hicks, 1934, Allen, 1938). This is related to the term s of the Slutsky matrix by :

$$\sigma_{ij} = \frac{R}{q_i q_i} s_{ij}$$

Using the Slutsky relation it is easy to compute:

$$\frac{\partial \text{Log D}}{\partial \text{Log p}} = \frac{p_{j} q_{j}}{R} (\sigma_{ij} - e_{iR})$$

where e is the income elasticity of D with respect to R . Now using this formula and differentiating the budget constraint with respect to p we obtain: j

$$\eta = 1 + \sum_{\substack{i \neq j \\ k \neq i}}^{p} \frac{q_i}{R} (\sigma_i - e_i) + \frac{x}{R} (\sigma_i - e_i)$$

We see that η is equal to one plus a weighted sum of the elasticities of substitution of good j with goods i \neq j and the numéraire x . What this expression shows us is that in this Chamberlinian model the number of competitors does not really matter in determining competitiveness. What matters

is the degree of substitutability among the goods, as described by the elasticities of substitution. In particular considering the limit case where two of the goods are perfect substitutes, we obtain the Bertrand result that "two is enough for competition". We have thus now obtained quite clearly substitutability as a factor of competitiveness. But, as compared to the Cournot model, this is at the price of the disappearance of market size as a factor of competitiveness, which is somewhat unfortunate. We shall now see in the next two subsections that Edgeworth's qualification of the Bertrand and Chamberlin models does yield a significant role to market size in a market with explicit price makers.

4.3. Bertrand-Edgeworth and market size

Let us now consider the Bertrand-Edgeworth model of subsection 2.4, but assume this time that there are n firms, each with marginal cost c and capacity k. Call K total capacity. We shall now see that in this Bertrand-Edgeworth model competitiveness does relate to size.

As a simple example, let us first consider the case where D(c) < K (Figure 5). The reader can easily check that the price p = c will be a Nash equilibrium for the Bertrand-Edgeworth game provided that

$$\max_{\mathbf{j}} k \leq K - D(c)$$

that is, there must be excess capacity in the market as a whole, and this excess capacity must be greater than the maximum capacity of every single competitor. The intuitive reason behind this condition is that in such a case all demand lost by a high price firm can actually be served by the other competitors. If all competitors have the same capacity, this can be rewritten:

$$\frac{K - D(c)}{K} \Rightarrow \frac{1}{n}$$

i.e. the relative excess capacity must be greater than 1/n , which naturally relates competitiveness to market size.

Figure 5

If we now move to the cases where a pure strategies equilibrium does not exist, a number of studies have shown that a different form of Nash equilibrium could exist, and would somehow "converge" towards c as n became large: Shubik (1959), Allen-Hellwig (1986 a,b), Vives (1986) have shown that mixed strategies equilibria would exist in the Bertrand-Edgeworth game, and converge in probability towards the competitive price. Similar results are obtained by Dixon (1987a) for a concept of approximate Nash equilibrium. Introducing quantity constraints in the Bertrand model thus allows to reintroduce market size as a main determinant of competitiveness, both in pure and mixed strategies senses.

4.4. The Chamberlinian model revisited

In light of the above Bertrand-Edgeworth formalization, we now see that there was not much chance for market size to play a role in the traditional Chamberlinian model, as it is implicitly assumed in the construction of the demand curve that each firm can (and will) serve any amount of demand forthcoming at any price. Under this assumption any small firm is assumed to be potentially able to serve the whole market demand, and under such circumstances it must come as no surprise that market size does not matter in the competitiveness of a traditional Chamberlinian equilibrium.

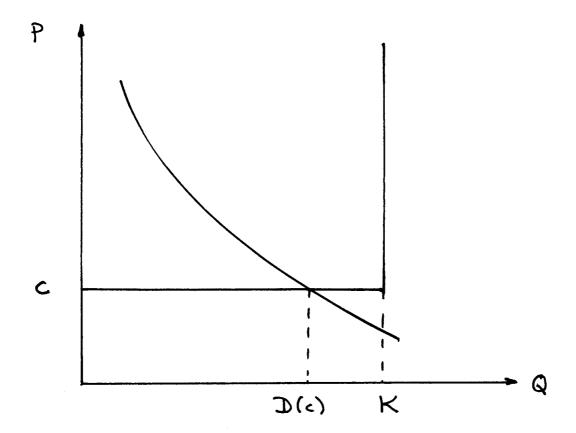


Figure 5

We saw however in subsection 3.3. that the assumption that any firm would serve any demand forthcoming at any price was not consistent with profit maximization, and should be replaced by the assumption that each firm would not serve more than its profitable capacity. Under such circumstances market size naturally reappears in the corresponding model. We saw indeed (equation 1 above) that a sufficient condition for the Chamberlin equilibrium still to be a Nash equilibrium in this model is that:

$$(n-1)(k - q) \geqslant q$$
 (1)

where, let us recall, profitable capacity k^* is defined by :

$$C'(k^*) = p^* \tag{2}$$

To get an intuitive grasp of how equation (1) relates competitiveness to size, let us consider an example and assume isoelastic demand curves (this is actually derived from a specific utility function in subsection 5.1 below)

$$q = \lambda_j p_j^{-\epsilon}$$
 $\epsilon > 1$ (3)

as well as cost functions of the form :

$$C_{j}(q_{j}) = cq_{j}^{\beta} + f \qquad \beta \geqslant 1$$
 (4)

i.e. constant (β =1) or increasing (β >1) marginal costs. Under (3), the traditional equality between marginal revenue and marginal cost is written :

$$C'(q^*) = p^* \left(1 - \frac{1}{\epsilon}\right) \tag{5}$$

which allows to compute the Lerner index :

$$L^* = \frac{p^* - C'(q^*)}{p^*} = \frac{1}{\epsilon}$$
 (6)

while using (2), (4) and (5) equation (1) is rewritten:

$$\left(\frac{\varepsilon}{\varepsilon-1}\right)^{\frac{1}{\beta-1}} - 1 \geqslant \frac{1}{n-1}$$

which, using simple minorations, yields the slightly stronger condition:

$$n-1 \geqslant (\beta-1) \epsilon$$
 (7)

Though (7) is only a sufficient condition for the existence of a pure strategies equilibrium, its discussion is quite enlightening.

We first see that for perfect substitutes (ϵ infinite) and increasing marginal costs (β)1), condition (7) is never satisfied, which corresponds to the Edgeworth nonexistence problem. Secondly for β =1 (constant marginal costs), condition (7) imposes no constraint, and competitiveness only requires high ϵ , corresponding to high substitutability. In this case "two is enough for competition".

If, however, marginal costs are increasing (β >1), we see immediately that condition (7) will be satisfied for large ϵ 's (i.e. by (6) for near competitive outcomes) only if n itself is suitably large. The lesson from these simple calculations is clear: Unless marginal costs are constant throughout (which is quite unrealistic) competitiveness in a price setting game results from two factors: (a) The existence of close substitutes, so that the Walrasian demand has a high elasticity (b) A large market size, which in the above framework yields sufficient unused capacities for competing products.

We should finally point out that we have only considered here pure strategies equilibria. Intuition suggests that a full characterization of equilibria, for example in terms of mixed strategies Nash equilibria, would make appear both the degree of substitutability and market size as determinants of competitiveness, but such characterization unfortunately does not exist yet at the time of writing.

4.5. Further Reading

As we saw here, in the traditional Chamberlinian model competitiveness is clearly related to substitutability between competing goods, but not to market size. In order to validate the important "Cournotian" insight that market size also plays an important role, we introduced (rationally perceived) quantity constraints, as in Edgeworth. But a full characterization of the resulting model still remains to be done in the imperfect substitutes case we are concerned with here. Another interesting link between the Cournotian and Bertrand-Edgeworth lines has been studied by Kreps-Scheinkman (1983) who showed that a first round capacity competition followed by a second round Bertrand-Edgeworth price competition could lead to a Cournotian-type equilibrium. Though the exact equivalence has been shown to be fragile (Davidson, Deneckere 1986), this may be a line worth pursuing.

In a different vein, direct comparison of the competitiveness of price versus quantity competition for a given demand system is carried out in Vives (1985).

Finally an alternative way of making market size appear as a determinant of competitiveness, while staying within the "traditional" Chamberlinian approach, is to assume that goods must become very close substitutes as their

number becomes large, based on the idea that there is limited diversity of potential goods, an insight found in Mas-Colell (1975), Hart (1979), Jones (1987). In order to better study this issue we must now move to models where the number of competitors and the nature of products is endogenous.

5. ENDOGENOUS PRODUCT DIFFERENTIATION

We have considered so far economies with a given number of products and operating firms. Consideration of the entry phenomenon in the Chamberlinian model now leads us to consider models where the set of products and of firms is itself endogenous, and therefore to examine in more detail the issue of product differentiation.

5.1. The modelling of product differentiation and entry: A first approach

The method usually employed to formalize product differentiation is to postulate a set of "potential" goods, which is a priori quite bigger than the set of goods actually produced, and to specify both the preferences of consumers and the productive possibilities of potential firms in terms of these potential goods.

A first and popular method is that of the "representative consumer" approach (see for example Dixit-Stiglitz (1977), Spence (1976)). A typical model assumes that there is a set of countably infinite potential goods. Each is produced by a different firm so that the (endogenous) number of firms will be equal to that of the differentiated goods. The consumption sector is assumed to be represented by a "big" consumer with income R and a utility function

$$U(q_1, \dots, q_n, x) \tag{8}$$

where this time the utility function U must be defined for any value of n. Quite often a particular parameterization is chosen, for example involving a subutility index for the differentiated goods such as a C.E.S. one:

$$U(q_1, \dots, q_n, x) = V\left(\left(\begin{array}{cc} n & \theta & 1/\theta \\ j = 1 & j \end{array} \right), x \right)$$
 (9)

where $0 < \theta < 1$ and V is homothetic. Note that such a function displays

"preference for diversity", as the consumer will always want to consume some amount of every of the n goods available. Maximization of a function such as (9) subject to the budget constraint

$$\prod_{j=1}^{n} p_j q + x = R$$

yields for large n approximately isoelastic demand curves for each product j of the form :

$$q = \lambda p^{-\epsilon}$$
(10)

with ϵ = 1/(1-8) . To solve fully such a model, let us assume that each potential firm operates with constant marginal cost c and a fixed cost f , and further specify the utility function (9) as :

$$U(q_1, \dots, q_n, x) = \left(\sum_{j=1}^{n} q_j^{\theta} \right)^{\alpha/\theta} x^{1-\alpha}$$
(11)

Take first the number n as given (short run equilibrium). Each firm maximizes profit (p - c) q - f subject to the demand constraint (10), which yields immediately:

$$\overline{p} = \frac{c}{1-1/\epsilon} = \frac{c}{\theta} \tag{12}$$

Secondly maximization of utility function (11), assuming all prices p j equal to p yields :

$$q_{j} = \frac{\alpha R}{np} \tag{13}$$

so we obtain with the help of (12):

$$\overline{q} = \frac{\theta \alpha R}{nc} \tag{14}$$

Now \overline{p} and \overline{q} represent short-run equilibrium values relative to a given

n . The number of products actually produced will be given by the zero profit condition :

$$(\overline{p} - c) \overline{q} - f = 0$$

yielding the equilibrium number of firms:

$$n^* = \frac{(1-\theta) \alpha R}{f} \tag{15}$$

and, with the help of (12) and (14) the equilibrium price and quantity:

$$p^* = \frac{c}{\theta} \qquad q^* = \frac{\theta f}{(1-\theta) c} \qquad (16)$$

We may note that this model displays the particularity that, even if the number of firms goes to infinity, which will occur for example if f/R goes to zero, the price will nevertheless remain bounded away from the competitive price c , due to the C.E.S. form of the subutility function in (9). A similar result can actually be obtained with a multitude of consumers consuming each a finite number of goods (Hart, 1985b).

As we just saw, the representative consumer approach to product differentiation allows to characterize quite easily a situation of Chamberlinian equilibrium with an endogenous number of goods and firms. It poses however serious problems of interpretation, as it is notably quite unclear from which underlying characteristics of the potential goods particular families of utility functions as in (8), (9) or (11) come from. For this reason a substantial body of literature has developed to examine this issue, and we shall now turn to it.

5.2. Product differentiation: A general view

In this more general view of product differentiation, found for example

in Mas-Colell (1975), it is assumed that a good is fully described by a set of characteristics, which may include the full physical description of the good, location and time of availability, etc... Each potential good is described by a point in a characteristics set K. In that framework a consumption plan or a production plan are represented by a measure on K. Consumption sets or production sets are the sets of all feasible such measures. Preference relations can be defined on these measures. An assumption of continuity of preferences allows to define a notion of "closeness" or "substitutability":

Two goods will be highly substitutable if they are topologically close (Mas-Colell, 1975).

Of course it is difficult to obtain general results on monopolistic competition equilibria using such a general characterization. Research has thus proceeded along several lines, each using a particular, and often more intuitive, specification of characteristics and preferences. There are a few wellknown examples:

The original "characteristics" approach notably pioneered by Lancaster (1966, 1975, 1979) assumes that what the consumers are interested in is a set of ℓ characteristics. A good "k" is described by the vector of quantities of each characteristic k_1 ,..., k_ℓ which it embodies. The set K is the set of vectors k corresponding to technologically feasible goods (7). If a consumer consumes a "distribution" $\mu(K)$ on K, his utility will be given by U(q,x), where x is a numéraire good and $q \in R^\ell$ is the sum of characteristics obtained via the distribution μ , i.e.:

$$q = \int_{K} k \, d\mu(k)$$

- In models of vertical differentiation, the characteristic is for example a

"quality" variable, s. The name "vertical differentiation" comes from the fact that at equal prices, all consumers will rank goods in the order of descending s. For example Gabszewicz-Thisse (1979,1980), Shaked-Sutton (1982, 1983), use utility functions of the following form (assuming one unit of only one quality s is consumed)

$$U = sx = s(R - p(s))$$

where R is numéraire income, p(s) the price of quality s good and x the numéraire left. An interesting feature of these models of pure vertical differentiation is the "finiteness property" according to which there is a maximum number of firms which can coexist with a positive market share at a free entry equilibrium. See Gabszewicz-Thisse (1980), Shaked-Sutton (1983, 1987).

- In models of horizontal differentiation conversely, no good is everybody's first choice, and which product will be chosen at equal prices depends on the consumer. The consumer sector is generally represented by a distribution of consumers, each with a different ranking of the goods. A typical model of horizontal differentiation is the spatial competition model, which started with Hotelling (1929) and of which we shall now give an example.

5.3. Spatial monopolistic competition

We shall consider in this section a model of horizontal differentiation which comes fairly close to the ideas of monopolistic competition and will allow to show on a precise example how to model both the price decisions of firms and the endogenous determination of the range of products offered to the consumers. This is the so-called spatial model of monopolistic competition which depicts spatial competition "around a circle" (see Salop, 1979). The

consumer sector is depicted by a circular market of length L , along which consumers are uniformly distributed with a density Δ . These consumers must travel along the circle to purchase output from a firm, and we shall assume that in so doing a consumer incurs transportation costs in the amount τd^2 , where d is the distance travelled between the firm and the consumer. Each consumer is assumed to demand inelastically one unit of output.

On the production side, we assume there is a very large number of "potential" firms. Each firm which enters the market bears a fixed cost f, and thereafter has constant marginal costs c. Products are differentiated from the point of view of the consumers, since they must bear the transportation costs. Firms must decide sequentially (i) whether or nor to enter, (ii) which "good" to produce (i.e. where to locate in the circle) and (iii) which price to set.

Let us first consider the post-entry stage and suppose that n firms have entered. It has been shown by Economides (1989) that with quadratic transportation costs, the firms will seek maximal differentiation from each other in the location game, and thus that they establish at equidistant locations so that each firm has two nearby competitors at distance L/n. We shall look for a symmetric equilibrium, so consider a firm j surrounded by other firms who have all set prices \vec{p} . Then a consumer situated at distance $\zeta \in [0,L/n]$ from firm j will be indifferent between j or one of his neighbors if:

$$\rho_{j} + \tau \zeta^{2} = \overline{p} + \tau \left(\frac{L}{n} - \zeta\right)^{2}$$

which easily solves in Z and yields demand to firm j :

$$D_{j} = 2\zeta\Delta = \left(\frac{L}{n} - \frac{n}{\tau L} (p_{j} - \overline{p})\right) \Delta$$

Firm j maximizes (p - c) D , which yields :

$$\frac{L}{n} = \frac{n}{\tau L} (p_j - \overline{p}) + \frac{n}{\tau L} (p_j - c)$$

Which allows to compute prices and profits at a symmetric equilibrium :

$$\rho_{j} = \overline{p} = c + \frac{\tau L^{2}}{2} \qquad \overline{\pi} = \frac{\Delta \tau L^{3}}{3} - f$$

Now, in the "first" stage of the game, entry will proceed until this profit has been drawn to zero, which immediately gives the equilibrium values :

$$n^* = L \left(\frac{\Delta \tau}{f}\right)^{1/3} \quad p^* = c + \tau \left(\frac{f}{\Delta \tau}\right)^{2/3}$$
 (17)

This model of spatial monopolistic competition will allow us to study in a simple manner a number of important issues such as competitiveness, efficiency and the zero profits assumption.

5.4. Competitiveness

Looking at equations (17), we first see that we may have a large variety of equilibrium situations, inasmuch competitiveness is concerned:

- (a) A very competitive situation with a small number of firms if τ is low, which corresponds somehow to very high substitutability (Note that the Edgeworth problem does not arise here since marginal costs are constant and there is no capacity limit).
- (b) A very competitive situation with a large number of firms, which will occur if f is low or Δ is high.
- (c) But we may also have a noncompetitive situation with a large number of firms if L is high.

We may first observe that, in accordance to our discussion of subsection

4.2, competitive situations occur here when the goods of two competing firms have become very substitutable. But this situation itself may come from two different causes. In case (a), all goods in the characteristics space (the circle) are highly substitutable because of low transport costs. In that case, two or a small number of firms is enough for competitiveness. In case (b), the market can support a large number of competitors which somehow "crowd in" the restricted characteristics space, so that each firm has two nearby competitors which produce goods which are very substitutable to his. We should note that this last insight has been studied in more generality by Jones (1987) who showed that in a two stage game where firms choose first the type of good they will produce, and then prices, a large number of operating firms (due to small fixed costs) will lead to a near competitive outcome if the set of possible products is compact.

A second remark, inspired by the comparison of cases (b) and (c) is that whether or not large numbers of competitors lead to a competitive outcome depends very much on which underlying parameter (or combination or parameters) leads in the first place to a large number of operating firms. Notably, a quick look at formulas (17) shows that one can easily construct examples where the number of firms tends to infinity while the price does not converge towards its competitive value. In particular case (c) shows that convergence to competition can fail to obtain if the increase in numbers is due to a larger characteristics set.

5.5. Efficiency

The model of spatial monopolistic competition also permits to simply investigate the problem of the optimum number of firms (and thus of products) :

From the social point of view, it would be optimal to minimize the sum of transportation costs and fixed costs, i.e.:

$$n \int_{-L/2n}^{L/2n} \Delta \tau \zeta^{2} d\zeta + nf = \frac{\Delta \tau L^{3}}{12n^{2}} + nf$$

opt Minimization of that function yields the optimal number of firms n :

$$n^{\text{opt}} = L \left(\frac{\Delta \tau}{6f} \right)^{1/3} < L \left(\frac{\Delta \tau}{f} \right)^{1/3} = n^*$$

We thus see that at the monopolistically competitive equilibrium there will always be too many firms and products, i.e. there is excessive product diversity.

We can also compare the optimal number of firms and production level in the simple model of section 5.1. With n firms, the remaining amount of numéraire, once production costs are covered, is :

$$x = R - nf - c \sum_{j=1}^{n} q_{j}$$

so that the optimum will be obtained by unconstrained maximization of :

which yields:

$$q^{opt} = \frac{\theta f}{(1-\theta) c}$$

$$n^{\text{opt}} = \frac{(1-\theta) \alpha R}{(\theta+\alpha - \alpha \theta) f}$$

Comparison with the equilibrium values q and n (eqs. 15 and 16) shows that :

that is, this time there is insufficient product diversity, eventhough the level of production is the correct one.

Of course both results are particular to the two specific models studied here. Dixit-Stiglitz (1977) and Spence (1976) have shown in the framework described in 5.1 that almost any configuration of n and n , q and q , could obtain by suitably choosing the utility function.

An interesting byproduct of the above computations is to show that the presence of "excess capacity" at the monopolistically competitive equilibrium is not per se a proof of inefficiency, as was sometime believed after Chamberlin, since the optimum also takes place here in the decreasing portion of the average cost curve.

5.6. Zero profits

The characteristics approach, and notably spatial competition theory, also allows to reexamine one of the basic assumptions of traditional monopolistic competition, that is that free entry leads to zero profits. In particular a number of authors have studied sequential entry in location models, and shown that free entry was consistent with positive long-run profits if each producer had to commit irrevocably to a particular location (i.e. a product with given characteristics) when entering (Eaton-Lipsey, 1978, Eaton-Wooders, 1985, Hay, 1976, Prescott-Visscher, 1977). Indeed the zero profit condition actually comes from two distinct sources: (a) Entry occurs if potential profits are nonnegative (b) after entry profits of all firms are the same. Clearly free entry corresponds to (a) only. Condition (b) is a consequence of particular formalizations. In particular in the spatial monopolistic competition model, (b) comes from the fact that all firms costlessly and

symmetrically relocate after they have all entered. If entry is sequential and relocation is costly or impossible, then pure profits will subsist in the long run even if entry and location decisions are fully rational.

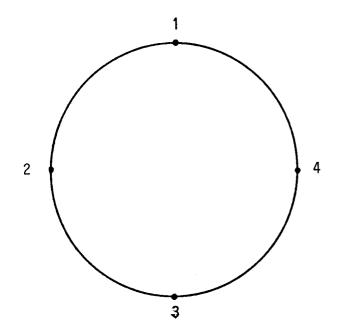
The following simple example, inspired from one in the insightful survey by Gabszewicz and Thisse (1986) will illustrate the point: Consider the model of competition on the circle (subsection 5.3), and assume $\Delta \tau = f$ and L = 4, so that in the equilibrium where all firms enter simultaneously, there would be exactly four firms at distance 1 from each other, charging the same price $c+\tau$ and making exactly zero profits (figure 6.a).

Imagine now that firms enter sequentially in the order 1, 2, 3, Firm 1 will locate anywhere on the circle. Clearly if firm 2 locates at distance 2- ϵ from firm 1, only firm 3 will be able to enter and will choose the location at distance 1+ ϵ /2 from firms 1 and 2 (Figure 6b). Firm 4 cannot enter in the other segment between firms 1 and 2, as it would not cover fixed costs. Thus at equilibrium there are only three firms. Taking an infinitesimal ϵ , we find after tedious calculations that:

$$p_1 = p_2 = c + \frac{7\tau}{4}$$
 $p_3 = c + \frac{11\tau}{8}$
 $m_1 = m_2 = \frac{83f}{64}$
 $m_3 = \frac{57f}{64}$

In that case the persistence of positive profits in the long run is consistent with free entry.

Figure 6



€/2⁻ 3

Figure 6a

Figure 6 b

5.7. Further readings

A problem which immediately strikes the reader of this domain is the large variety of different formalizations of product differentiation, a variety which the above compact presentation very much understates. For a more complete view, the reader may consult the surveys of Archibald-Eaton-Lipsey (1985), Encaoua (1990), Ireland (1987), as well as the survey on spatial competition in Gabszewicz-Thisse (1986).

Fortunately a number of authors have recently tried to draw bridges between various approaches: Anderson-De Palma-Thisse (1989) show that the representative consumer approach can be derived from the characteristics approach with an adequate distribution of characteristics. It turns out that with n products, the dimension of the characteristics space is n - 1. Deneckere and Rothschild (1989) construct a synthetic model which admits as particular cases the Chamberlinian symmetric model and the model of spatial competition on the circle.

6. GENERAL EQUILIBRIUM REPRESENTATIONS

All the previous developments have been cast in a fairly partial equilibrium framework in order to make the conceptual problems clearer. Already in 1940 Triffin forcefully advocated a full general equilibrium approach. We shall thus develop in this section a number of general equilibrium representations of monopolistic competition. For that we shall revert to an a priori given set of goods as really general concepts have been developed in that case only.

6.1. General framework

We shall consider here an economy with m households $i=1,\ldots,m$ and n firms $j=1,\ldots,n$. Goods exchanged in this economy are a numéraire good and nonmonetary goods $h\in H=\{1,\ldots,L\}$, with prices p_h .

Firm j has a production vector $y \in \mathbb{R}^{\ell}$ which must belong to a production set $Y \subset \mathbb{R}^{\ell}$ with $0 \in Y_j$. We shall assume that the objective of the firm is to maximize profits $\pi_j = py_j$.

Household i has a vector of endowments of goods and numéraire $\mathbf{w}_i \in \mathbb{R}_+^\ell$ and $\mathbf{x}_i > 0$, and a utility function $\mathbf{U}_i (\mathbf{w}_i + \mathbf{z}_i, \mathbf{x}_i)$ where \mathbf{z}_i is the ℓ -dimensional vector of net trades in goods and \mathbf{x}_i is the final holding of numéraire good. The household maximizes utility subject to his budget constraint, which reads :

$$pz + x = \overline{x} + \Sigma \theta \pi$$

where 8 is household i's share of firm j's equity.

6.2. Subjective demand curves

We shall now describe a concept of general equilibrium with subjective demand curves, as developed in the pathbreaking work of Negishi (1961,1972). It will be assumed that the price-makers are the firms (The concept actually extends easily to price-making households). Call H the set of goods whose prices are controlled by firm j. We have:

$$H \cap H = \langle \emptyset \rangle$$
 $j \neq j'$

That is each good has its price set by at most one firm. The fundamental element in the decisions of the firm is the subjective demand curve which shows how much the firm expects to sell as a function of the price it sets. This expectation is subjective, hence the name of subjective demand curves.

Negishi actually uses a perceived inverse demand curve which shows at which price the firm expects to be able to sell an output as a function of the quantity put on the corresponding market. This inverse curve is denoted as

$$p = P(y, \overline{p}, \overline{y}) \quad h \in H$$

where \bar{p} and \bar{y} are the observed price vector and production of good h (we shall see below in the definition of equilibrium that these will be actually those observed at equilibrium). This perceived demand curve satisfies a natural consistency condition :

$$\overline{p} = P(\overline{y}, \overline{p}, \overline{y}) \quad \forall h \in H$$

h h jh jh j

That is, the curve "goes through" the observed point. (Bushaw-Clower, 1957).

Definition 3

An equilibrium with subjective demand curves is defined as a set of p^* , z^* , $i=1,\ldots,m$, y^* , $j=1,\ldots,n$ such that :

(a)
$$z_i^*$$
 maximises $U_i(w_i + z_i, x_i)$ s.t.

$$p^*z_i + x_i = \overline{x}_i + \sum_{j=1}^{n} \theta_{j} p^* y_j^*$$

(b)
$$y^*$$
 maximizes $\sum_{h \notin H} p^* y + \sum_{h \in H} P(y, p^*, y^*) y$
s.t. $y \in Y$

(c)
$$\Gamma z^* \leftarrow \Gamma y^*$$
 $i \in I z i \neq i \in J$

(a) is the traditional condition saying that households maximize utility as price takers (c) is the traditional condition of consistency between aggregate plans. (b) says that each firm maximizes profit taking all other prices for goods h \pounds H as given, and fully taking into account the effect of its quantity decisions y , h \in H , on the prices of the corresponding markets. We may note that the Negishi concept contains the traditional competitive model as a particular case. It suffices to take :

$$P_h(y_h, \overline{p}, \overline{y}_h) \equiv \overline{p}_h$$

Existence conditions are of course a bit more stringent than for a Walrasian equilibrium. In particular the solution in y of the profit maximizing program :

Max
$$\sum_{h \notin H} p^* y + \sum_{h \in H} P(y, p^*, y^*) y$$

should be convex and u.h.c. in its arguments. This is usually obtained by

assuming that the profit function is quasi-concave in the y_{jh} 's. This assumption is not as demanding as it might seem. Indeed, since the family of perceived demand curves is imagined, they can be chosen so that the various profit functions are actually quasi-concave in the vectors y_{jh} (A natural example is that of isoelastic perceived demand curves).

We may note that we have assumed for notational convenience that the perceived clearing price P_h depends only on y_j . The concept generalizes naturally to the case where P_h depends upon the whole set of $\{y_j \mid h \in H\}$ (Negishi, 1972).

6.3. Objective demand curve : Cournot

In the preceding section, the prices that would result from a vector y_j were only conjectured by firm j. The idea of an objective demand curve is to replace these conjectures by the prices which would actually obtain, should all firms j take actions y_j , $j=1,\ldots,n$. This was notably developed in the seminal paper by Gabszewicz-Vial (1972).

In order to make these things more precise, let us simplify the economy in the following way. We assume there are in the economy only non produced goods (factors of production) sold by households to firms and produced goods, sold by firms to households. In that way no firm sells to another firm. In fact it seems that the concept we shall present below does not generalize readily to a situation where price makers sell to other price makers.

The implicit picture is a two-stage one. In the first stage the firms decide noncooperatively the production vectors \mathbf{y} , $\mathbf{j} \in J$, in a way we shall describe below. In the second stage a Walrasian equilibrium (possibly) obtains.

This Walrasian equilibrium is defined as a price \hat{p} such that :

$$\prod_{i=1}^{m} \xi(\widehat{p}, \prod_{j=1}^{n} \theta_{i,j} \widehat{p} y) = \prod_{j=1}^{n} y$$

where the vector functions ξ_i are the Walrasian demand functions of households $i=1,\ldots m$. Of course this Walrasian equilibrium, when it exists, will depend on the vectors y_1,\ldots,y_n . We shall call FY (for feasible y's) the set of vectors y_j such that a Walrasian equilibrium exists. We shall further assume that in such a case the equilibrium price is unique, and denote it as $\hat{p}(y_1,\ldots,y_n)$. It is also convenient to rewrite this function from the point of view of firm j as $\hat{p}(y_j,y_j)$ where $y_j=(y_j\mid k\neq j)$.

Definition 4

A Cournot-Walras equilibrium is defined by a price vector p^* , vectors of production y_j^* and of net trades z_i^* such that :

(a)
$$z_{i}^{*}$$
 maximizes $U_{i}(w_{i}+z_{i},x_{i})$ s.t. $p_{i}^{*}z_{i}+x_{i}=\overline{x}_{i}+\sum_{j=1}^{n}\theta_{j}p_{j}^{*}y_{j}^{*}$

(b)
$$y_j^*$$
 maximizes $\hat{p}(y_j, y_{-j}^*)$ y_j for all y_j such that $(y_j, y_{-j}^*) \in FY$

(c)
$$p^* = \hat{p}(y_1^*, ..., y_n^*)$$

Conditions (a) and (c) simply restate that p^* and x_1^* ,..., x_m^* form a Walrasian equilibrium relative to the y_j 's. Condition (b) says that we have a Nash equilibrium in quantity strategies where each firm maximizes its profit taking all other firms' quantity strategies as given, and forecasting the prices consequences of its choice through the objective price function \hat{p} .

We may note that existence in this model poses much more serious problems than in the preceding Negishi concept. Indeed the profit function

 $\hat{p}(y_j, y_{-j})$ y is no more arbitrary as it is in the subjective demand curve approach, but is fully given by the data of the model. As it turns out, robust examples have been constructed where an equilibrium does not exist and in particular the profit function is not quasi concave. Roberts-Sonnenschein (1977) have exhibited examples where a pure strategies equilibrium does not exist. Dierker-Grodal (1986) have an example where even a mixed strategies equilibrium does not exist.

Another important point, noted and discussed in Gabszewicz-Vial (1972) and Dierker-Grodal (1986) is that, contrarily to the Walrasian case, the equilibrium depends on the normalization rule chosen for prices (we implicitly chose such a normalization by setting the price of the numéraire equal to one).

We had already noted in section 4 above that in a simple partial equilibrium framework the Cournot equilibrium is close to a competitive one when each firm is small as compared to its market. This issue has been studied in a general equilibrium framework as well, starting with Gabszewicz-Vial (1972), who showed that under suitable conditions the Cournot Walras equilibrium of a replicated economy would converge towards the competitive equilibrium of the original economy. The point was further studied by Roberts (1980). Hart (1979) analyzed the issue in the case where products could be endogenously selected in a compact set of characteristics, as described in subsection 5.2.

6.4. Objective demand curve with price makers

We shall now revert to the framework of subsection 6.2, where agents are setting prices. A number of concepts of an objective demand curve with

price makers have been developed, starting with the pioneering contributions of Marschak-Selten (1974) and Nikaido (1975) $^{(9)}$. We shall describe here a concept developed in Benassy (1988) which takes full advantage of the symmetry between the price-setting and the quantity-setting games $^{(10)}$. We assume that households as well as firms can set prices. We shall denote by A = I U J the set of agents and by H the set of prices controlled by agent a. We shall further assume that:

Agents set noncooperatively prices p_a , a \in A and the equilibrium will be a Nash equilibrium in prices. In order to construct this Nash equilibrium concept, we must be able to forecast the "consequences" of every price vector. The situation is quite symmetric to that encountered in Cournot Nash equilibrium. There we had to compute the Walrasian equilibrium prices conditional on every quantity strategy. Here we must be able to predict quantities demanded, supplied and exchanged conditional on any given price system. Of course the natural theory to use is the theory of fixprice (or non Walrasian) equilibria which precisely gives an answer to that question. Before constructing the "objective demand curves", let us thus summarize briefly a few concepts (See for example Benassy 1982, 1990 for more on these). At non Walrasian prices, one should first distinguish between demands and transactions:

Call $\frac{x}{a}$ the vector of net demands of agent a, $\frac{x}{a}$ the vector $\frac{x}{a}$ the vector of his net transactions. On each market h they are related by:

where $\frac{1}{d} > 0$ and $\frac{1}{s} < 0$ are quantity signals which tell agent a the maximum quantity he can respectively purchase or sell on market h . For a price maker

$$\frac{d}{d} = - \sum_{\substack{b \neq a \\ b \neq a}}^{\infty} if is a purchaser$$
(19)
$$\overline{s} = - \sum_{\substack{b \neq a \\ b \neq a}}^{\infty} if is a seller$$

For the other agents the rationing scheme is usually more complex as there may be many rationed agents on the long side of the market. Transactions and quantity signals will be functions of effective demands:

$$z_{a}^{\star} = F_{a}(z_{1}^{\star}, \dots, z_{A}^{\star}) \tag{20}$$

$$\frac{1}{d} = G_{a}^{d}(z_{1}, \dots, z_{A}^{z})$$
 (21)

$$\frac{1}{s} = G_{a}^{s}(z_{1}, \dots, z_{\Delta})$$
 (22)

Of course in view of the relation (18) above, the functions F , G , G a are not independent. Conversely effective demands are functions of price and quantity signals :

$$\tilde{z}_{i} = \tilde{\xi}_{i}(p, \overline{d}, \overline{s}, \pi)$$
 (23)

$$\overset{*}{z} = \overset{*}{\xi} (p, \overline{d}, \overline{s})$$
(24)

where π is the vector of all firm's profits : $\pi = -pz \overset{\star}{j}$, $j \in J$.

An equilibrium consists in a set of \tilde{z}_a , z^* , d, \bar{s} satisfying equations (20) to (24) above. As it turns out, for a given rationing scheme it can be proved that an equilibrium exists for all positive prices under fairly standard conditions (Benassy 1982). We shall further assume that this

equilibrium is unique (11), and thus write the values of \tilde{z}_a , z_a^* , \tilde{d}_a , \tilde{s}_a for price p functionally as $\tilde{Z}_a^*(p)$, $Z_a^*(p)$, $D_a^*(p)$, $S_a^*(p)$. Now clearly the objective demand and supply curves for agent a are simply represented by the functions $S_a^*(p)$ and $D_a^*(p)$ which represent respectively the maximum quantity of goods h he can respectively sell or purchase as a function of the price vector p. Accordingly the programs determining p for a \in A are easily derived : For firm j, p is solution of :

Maximise py = -pz s.t.

$$\begin{cases} y_{j} \in Y_{j} \\ \overline{S}_{j}(p) \leftarrow y_{j} \leftarrow \overline{D}_{j}(p) \end{cases}$$

yielding $p = \psi(p_j)$.

For household i, call $\mathbf{w}(p) = -\sum_{\mathbf{j} \in J} \mathbf{g}(p)$ his profit income. The vector \mathbf{p} is solution of :

Maximize
$$U_{i}(w_{i}+z_{i},x_{i})$$
 s.t.

$$\begin{cases} pz_{1} + x_{1} = \overline{x}_{1} + \pi_{1}(p) \\ \overline{S}_{1}(p) \leqslant z_{1} \leqslant \overline{D}_{1}(p) \end{cases}$$

yielding $p_i^* = \psi_i(p_i)$.

Definition 5

An equilibrium with price makers and objective demand curves is defined as a set of p, p such that

(a)
$$p_i^* \in \psi_i(p_i^*) \quad \forall i$$

(b) z, z^* , d, s, $a \in A$, are a fixprice equilibrium relative to p^* and the given rationing schemes, i.e. they are respectively equal to $\tilde{Z}_a(p^*), Z_a^*(p^*), D_a(p^*), S_a(p^*)$.

Sufficient existence conditions are given in Benassy (1988). As for all models with objective demand curves, these conditions are stronger than the standard assumptions on utility and production functions.

6.5. Further readings

The concepts we presented in this section can be differentiated along several lines. A first one is that of objective versus subjective demand curves. Subjective demand curves are simpler to use, and do not require more information than that actually observed on markets (i.e. price-quantity pairs). They imbed however a large degree of arbitrariness, notably as far as their slopes are concerned, which leads to a large number of potential equilibria. Objective demand curves on the other hand do not have such arbitrariness, but are very complex objects requiring that each price setter has as much information on the economy as the model maker himself, quite a strong assumption. Some authors have investigated intermediate concepts.

Notably Silvestre (1977) investigates an ingenious equilibrium concept where each firm knows locally the true slope of its demand curve. Gary-Bobo (1987) shows that under suitable assumptions these equilibria are the same as objective demand curves equilibria.

Another line of differentiation is that of quantity-setting models à la Cournot versus price-setting models à la Chamberlin, which we already saw in

section 4. An interesting attempt at reconciliation is the idea of rational conjectures put forward by Hahn (1977, 1978), according to which each agent would (rationally) conjecture the price-quantity responses of other agents. A fully satisfactory concept does not seem to exist yet, however.

Throughout this section we have assumed that firms maximize profits.

Though this is a most traditional assumption, it is clear that the adequate criterion should rather be some kind of weighted average of shareholders' utilities. On this issue see for example Dierker-Grodal (1986), Gabszewicz-Vial (1972), Mas-Colell (1984).

Another most interesting development in the field is the relation with increasing returns, which was forcefully put forward by Sraffa (1926). We already mentioned above general equilibrium Cournotian models with increasing returns. A number of contributions (Arrow-Hahn, 1971, Silvestre, 1977b, 1978) have included increasing returns in general equilibrium models with price making agents. See also the 1988 special issue of the Journal of Mathematical Economics on the subject.

Finally, following the monopolistic competition tradition, we have restricted ourselves to models with one sided price (or quantity) setting. Strategic market games with two sided price and (or) quantity setting have been constructed, following notably Shubik (1973), Shapley-Shubik (1977). In Cournotian-type market games the equilibrium price system generally converges towards the Walrasian one as the number of agents on each side of the markets becomes large (See for example Dubey-Shubik, 1978, Postlewaite-Schmeidler, 1978, Dubey-Mas-Colell-Shubik, 1980, Mas-Colell, 1982). In Bertrand-Edgeworth type games a Walrasian outcome can be obtained with only a few agents on each side of every market (See for example Dubey, 1982, Benassy, 1986a).

7. MONOPOLISTIC COMPETITION AND MACROECONOMIC ISSUES

The use of general equilibrium models such as the ones presented in the preceding section allows to construct rigorous "micro-macro" models of monopolistic competition. Within such a framework one can study macroeconomic issues, such as the existence of unemployment or the effectiveness of government policies, as well as more traditional microeconomic issues, such as the efficiency of equilibrium. We shall present in this section a complete model of this type, which will show that with respect to the above issues monopolistic competition leads to results somehow "intermediate" between Walrasian models and traditional Keynesian fixprice models.

7.1. The model

We shall consider a monetary economy with three types of goods: Fiat money, which is the numéraire, medium of exchange and a store of value, different types of labor indexed by $i=1,\ldots,m$, and consumption goods indexed by $j=1,\ldots,n$. There are three types of agents: Households indexed by $i=1,\ldots,m$, firms indexed by $j=1,\ldots,n$, and government. Consumer i is the only one to be endowed with labor of type i, firm j is the only one to produce good j. We shall call w_i the money wage for type i labor, p_j the price of good j, w and p the corresponding vectors:

$$p = \langle p_i | j = 1,...,n \rangle$$
 $w = \langle w_i | i = 1,...,m \rangle$

Firm j produces a quantity of output y according to a production j function :

$$y_{j} = F_{j}(\ell_{j})$$
 $\ell_{j} = \langle \ell_{j,j} \mid j = 1,...,m \rangle$

where ℓ is the quantity of labor i used by firm j (and thus purchased from

household i). We shall assume F strictly concave in its arguments. Firm j maximizes its profits $\boldsymbol{\pi}$:

$$\pi_{j} = p_{j} y_{j} - w \ell_{j} = p_{j} y_{j} - \sum_{i=1}^{n} w_{i} \ell_{ij}$$

Household i has initial endowments ℓ_{i0} of type i labor, and \overline{m}_{i} of money. He consumes a vector $c_i = \{c_i \mid j=1,\ldots,n\}$ and works a quantity of labor ℓ_i :

$$\ell_{i} = \sum_{j=1}^{m} \ell_{i,j} \leqslant \ell_{i,0}$$
 (25)

Household i's budget constraint is :

$$pc_{i} + m_{i} = w_{i} \ell_{i} + \mu \overline{m}_{i} + \sum_{j=1}^{m} \theta_{i,j} \pi_{j}$$

where m is the final quantity of money and 8 the share of firm j owned by household i. The factor μ is a government policy instrument whereby government can increase proportionately all money holdings by the same factor μ . This particular (but popular) policy has been chosen because it is known to be "neutral" in Walrasian equilibrium (12), which will allow an easy comparison.

Household i maximizes a utility function of the form :

$$U_{i}(c_{i}, \ell_{i}, m/\mu)$$

which is assumed to be strictly quasi-concave in c_i,- ℓ _i and m_i/ μ and separable in its arguments. We shall assume that the disutility of labor becomes so high near ℓ _i that constraint (25) is never binding. The argument m_i/ μ represents the indirect utility of money, which should be homogeneous of degree zero in money and expected prices. The implicit idea behind our assumption is thus that, other things equal, future prices are expected to move proportionately to μ . As we shall see in subsection 7.5 below, this

proportionality of prices to μ is consistent with the working of the model (13).

This model has a particular market structure where each good (labor or consumer good) is sold by a single agent to many other agents: Labor of type i is sold by household i to all firms $j=1,\ldots,n$. Output j is sold by firm j to all households $i=1,\ldots,m$. We shall assume that the price is decided upon by the single seller. Firm j sets price p_j , household i sets wage w_j , taking all other prices and wages as given. We shall assume that they do so using objective demand curves, as described in section 6.4 above. The equilibrium is thus a Nash equilibrium in prices and wages, conditionally on these objective demand curves.

7.2. Objective demand curves

Each seller sells only one good, and, as we shall see below, sets his price high enough so as to be willing to satisfy all demand for that good. In equilibrium each agent will thus be constrained only on his sales, and we shall have somehow a situation of "general excess supply". We shall now compute the objective demand curves in this zone of general excess supply. These objective demand curves will be functions of the vectors p and w , and of the policy parameter μ . So for given p , w and μ we must find out which demands for goods and labor types will arise once all feedback effects have been taken into account. As indicated in subsection 6.4 this boils down to finding total demand for goods i and j at a fixprice equilibrium corresponding to p , w and μ .

For given (p,w,µ) firm j is constrained on its sales of output j . It thus solves the following program in ℓ_i :

Maximize
$$p_{j}y - w l_{j}$$
 s.t.
 $y \in F(l)$

where y is a binding constraint exogenous to the firm. The solution is a set of labor demands L (y, w), and a cost function $\chi(y, w)$.

Similarly consider a household i which solves the following program :

Maximize
$$U_i(c_i, \ell_i, m/\mu)$$
 s.t.

pc + m =
$$\mu \overline{m}$$
 + $\psi \ell$ + Σ 8 π

where p , w , μ , ℓ_i and the profits π_j are given. The solution is a set of consumption demands :

$$C_{i,j}^{(\mu \overline{m}} + w \stackrel{\ell}{U} + \stackrel{m}{\Sigma} = 0 \quad \pi \quad , p \quad , \mu)$$

Consider now the following mapping:

$$y + \prod_{i=1}^{n} C_{ij}(\mu m + w \ell + \prod_{i=1}^{m} \theta_{ij}, p, \mu)$$

$$\ell_{i} + \prod_{j=1}^{m} L_{ij}(y_{j}, w)$$

$$\pi_{i} + p_{i} y_{j} - \chi_{i}(y_{j}, w)$$

Assuming a unique fixed point, this yields functions Y (p,w,μ) , j L (p,w,μ) and Π (p,w,μ) which represent respectively the objective demand for good j , for labor i , and the associated profits of firm j .

Secondly let us note that the functions L are homogeneous of degree zero in w , the functions C are homogeneous of degree zero in μ , w , p , and π , and profits are homogeneous of degree one in p and w . From that we deduce Y and L are homogeneous of degree zero, and π homogeneous of degree one, in the arguments p , w and μ .

7.3. Equilibrium: Definition and characterization

Following section 6.4 we shall describe the equilibrium as a Nash-equilibrium in prices and wages, conditional on the objective demand curves. The quantities are those corresponding to a fixprice equilibrium associated with the prices and wages. We shall now derive the optimal price and wage responses of the agents.

Consider first firm j ; it will solve the following profit maximization program A, in p, , y, and ℓ :

Maximize
$$p_{j} y_{j} - w \ell_{j}$$
 s.t.
$$\begin{cases} y_{j} \leq F(\ell_{j}) \\ y_{j} \leq Y_{j}(p,w,\mu) \end{cases} \tag{A}_{j}$$

We assume this program has a unique solution, which thus yields optimal price $\mathbf{p}_{\mathbf{i}}$ as a function of the other prices and wages :

$$p_{j} = \psi_{j}(p_{-j}, w, \mu)$$

where $p_{-j} = (p_{k} \mid k \neq j)$. In order to characterize the equilibrium quantities simply, we shall also need to describe the optimal production plan of the firm (y_{j}, ℓ) as a function of the same variables, so that we shall write this optimal plan functionally as :

$$(y_j, \ell) = \varphi_j(p_{-j}, w, \mu)$$

Consider now household i . It chooses the wage w , labor sales ℓ_i and consumption vector c , so as to maximize utility according to the following program A, in w , ℓ_i and c :

Maximize
$$U_{i}(c_{i}, \ell_{i}, m_{i}/\mu)$$
 s.t.

$$\begin{cases} pc + m = \mu \overline{m} + w \ell + \sum_{j=1}^{m} \theta & \pi_{j}(p, w, \mu) \\ \ell_{j} \leq L_{j}(p, w, \mu) \end{cases}$$
 (A)

which yields the functions :

$$w_{i} = \psi_{i}(w_{-i}, p, \mu)$$

 $(\ell_{i}, c_{i}) = \phi_{i}(w_{-i}, p, \mu)$

where $w = \{w \mid k \neq i \}$. We can now define our equilibrium with monopolistic competition as a Nash equilibrium as follows :

(a)
$$w' = \psi'(w', p', \mu)$$
 $\forall i$

(b)
$$p_{i}^{*} = \psi_{i}(p_{-i}^{*}, w_{,\mu}^{*})$$
 $\forall j$

(c)
$$(k_i^*, c_i^*) = \varphi_i(w_i^*, p_i^*, \mu)$$
 $\forall i$

(d)
$$(y_j^*, \ell_j^*) = \varphi_j(p_{-j}^*, w_{\mu}^*) \quad \forall j$$

The first two sets of equalities express the Nash property in prices and wages, and determine p* and w*. The last two sets of equations give the optimal production, work and consumption plans of the agents, which correspond to their transactions on all markets. Note that because of the definition of the objective demand curves, which is based on a fixprice equilibrium notion, the consistency of transactions is automatically ensured, so that we do not need to add the traditional equations stating the equality between purchases and sales on every market.

Of course the equilibrium will change as μ changes. In what follows we shall assume that to a given government policy is associated a unique equilibrium. In order to study its various properties, we shall now characterize it by deriving a number of relevant partial derivatives.

Consider first firm j , and recall the program yielding its optimal actions :

Maximize
$$p_{j} y_{j} - w \ell_{j}$$
 s.t.
$$\begin{cases} y_{j} = F_{j}(\ell) \\ j_{j} j \end{cases} \tag{A}_{j}$$

$$y_{j} \in Y_{j}(p, w, \mu)$$

Let us assume an interior solution, so that in particular all components of ℓ_j are strictly positive. Then the Kuhn-Tucker conditions associated to this program yield immediately :

$$\frac{\partial F_{j}}{\partial \ell_{jj}} = \frac{w_{j}}{p_{j}} \frac{1}{(1-1/\epsilon_{j})}$$
(26)

where $\epsilon_j = -(p/y_j)$ $\partial Y/\partial p_j$ is the absolute value of the own price elasticity of objective demand. At an equilibrium ϵ_j is greater than 1. These conditions can also be rewritten, using the cost function $\chi_i(y_j, w)$ of firm j:

$$\frac{\partial x_{j}}{\partial y_{j}} = p_{j} \left(1 - \frac{1}{\varepsilon_{j}} \right)$$
 (27)

which is the traditional "marginal cost equals marginal revenue" equation. Let us turn now to the optimal program of household i:

Maximize
$$U_{i}(c, \ell_{i}, m/\mu)$$
 s.t.
$$\begin{cases} pc_{i} + m = \mu \overline{m} + w \ell + \sum_{j=1}^{m} \theta_{j} \pi_{j}(p, w, \mu) \\ i & j=1 \text{ if } j \end{cases}$$
 (A)
$$\begin{cases} \ell_{i} \leq L_{i}(p, w, \mu) \end{cases}$$

We shall assume an interior solution so that in particular all consumptions are positive. Call λ the "marginal utility of wealth", i.e. the Kuhn-Tucker multiplier of the budget constraint. We obtain the following conditions :

$$\frac{\partial U}{\partial m} = \lambda_{i} \qquad \frac{\partial U}{\partial c} = \lambda_{i} p_{j} \qquad (28)$$

$$\frac{\partial U}{\partial \ell_i} = -\lambda_i w_i \left(1 - \frac{1}{\epsilon_i}\right) \tag{29}$$

where $\epsilon_i = -(w/\ell_i) \, \partial L/\partial w$. Again, at equilibrium $\epsilon_i > 1$. With the help of these differential characterizations, we can now describe some salient properties of our equilibrium.

7.4. Underemployment, underproduction and inefficiency

We shall now show that, eventhough prices are fully flexible and rationally decided upon by agents, the equilibrium allocation has properties which strongly differentiate it from those of a Walrasian equilibrium.

First we see that at equilibrium there is both underemployment and underproduction. Indeed equation (27) shows that at the going price and wage firm j would be happy to produce and sell more if the demand was forthcoming, thus displaying underproduction. Symmetrically equation (29) shows that household i would like to sell more of its labor if the demand was present, thus displaying underemployment.

We shall further show that employment and production throughout the economy are inefficiently low in the following strong sense: it is possible to find increases in production and employment which would increase all firms' profits and all households' utilities at the equilibrium prices and wages.

Consider indeed at the given price and wage system p * and w * some small arbitrary increases d $\ell_{ij}>0$. These yield extra amounts of employment and production :

$$d\ell_{\mathbf{i}} = \sum_{\mathbf{j}=1}^{\mathbf{m}} d\ell_{\mathbf{i}\mathbf{j}} > 0$$

$$dy_{j} = \int_{i=1}^{n} \frac{\partial F_{j}}{\partial \ell_{i,i}} d\ell_{i,j} > 0$$

Consider first the profit variation for firm j :

$$dw_{j} = p_{j} dy - \sum_{i=1}^{n} w_{i} d\ell_{i,j}$$

In view of equations (18), this is easily found equal to:

$$d\pi_{j} = \frac{p_{j} dy_{j}}{\varepsilon_{j}} > 0$$
 (30)

Now we shall assume that the extra productions in the economy are redistributed to households in such a way that the value of the extra consumptions for each household sum up to the value of his extra labor and profit incomes, which is written for household i:

$$\sum_{j=1}^{m} p dc = w dl + \sum_{j=1}^{m} \theta d\pi$$
(31)

The increment in utility is, since m_i and μ do not change :

$$dU_{i} = \int_{j=1}^{m} \frac{\partial U_{i}}{\partial c_{i,j}} dc_{i,j} + \frac{\partial U_{i}}{\partial \ell_{i}} d\ell_{i}$$

which, using equations (23), (24), (25) and (26) becomes:

$$dU_{i} = \lambda_{i} \left[\frac{w_{i} d \ell_{i}}{\varepsilon_{i}} + \sum_{j=1}^{m} \frac{\theta_{i} j j dy}{\varepsilon_{i}} \right] > 0$$
 (32)

Equations (30) and (32) clearly show that the incremental employment and production will increase all agents' utilities or profits. We may note that this inefficiency result is quite stronger than Pareto inefficiency since we have constrained the incremental trades to be consistent with the equilibrium price wage system, whereas such a constraint is not required to obtain Pareto inefficiency. We should also note that these inefficiencies are quite similar to those observed in "Keynesian type" general excess supply states (see for example Benassy 1977, 1982). We may also finally note that the "efficiency losses", as described by equations (30) and (32) are higher, the higher the

7.5. Neutrality of monetary policy

We have seen in the preceding subsections that our imperfect competition equilibrium displayed some inefficiency properties very akin to traditional Keynesian excess supply states. We shall now investigate a traditional "Keynesian" policy to cure such inefficiencies, a monetary policy, and we shall now see that, in spite of its "Keynesian" characteristics, the system described above reacts to monetary policy in a more "Walrasian" than "Keynesian" manner. Namely, monetary policies taking the form of proportional increases in initial money holdings (i.e. μ > 1) are ineffective, or "neutral", just as in Walrasian

models. As a response to such a policy, production, employment and utilities do not change. Prices, wages and profits are multiplied by $\boldsymbol{\mu}$.

The proof of that result is actually quite trivial in view of the homogeneity properties of our system. Let us look indeed at the programs A_j and A_j yielding the optimal actions of agents; from program A_j it is clear that :

$$\psi_{j}(\mu p_{-j}, \mu w, \mu) = \mu \psi_{j}(p_{-j}, w, 1)$$

$$\phi_{j}(\mu p_{-j}, \mu w, \mu) = \phi_{j}(p_{-j}, w, 1)$$

And similarly program A, yields:

$$\psi_{i}(\mu_{W_{-i}},\mu_{D},\mu) = \mu \psi_{i}(W_{-i},p,1)$$

$$\phi_{i}(\mu_{W_{-i}},\mu_{D},\mu) = \phi_{i}(W_{-i},p,1)$$

In view of these homogeneity properties, y_j^* , ℓ_j^* , ℓ_j^* , ℓ_i^* , c_i^* are homogeneous of degree 0 in μ , whereas p^* and w^* are homogeneous of degree one in μ .

7.6. Further reading

The model presented here, developed in Benassy (1987a, 1990), is a model with explicit price makers and objective demand curves. Similar models with unemployment were presented in Benassy (1977) and Negishi (1977) for subjective demand curves with price makers, and in Hart (1982) for an objective "Cournotian" demand curve with quantity setting agents.

Other macroeconomic models with imperfect competition are found in Benassy (1982, 1989b,c),D'Aspremont, Dos Santos and Gérard-Varet (1986, 1989), Dehez (1985), Dixon (1987c), Jacobsen and Schultz (1990), Negishi (1979), Silvestre (1988), Sneessens (1987), Snower (1983), Svensson (1986), Weitzman (1982, 1985).

8. CONCLUSIONS

Traditional microeconomic theory, whether Marshallian or Walrasian, was clearly in need of an explicit theory of price making by agents internal to the system. Monopolistic competition is obviously an interesting and fruitful attempt in this direction. As we saw it allows to deal with problems which competitive theory could not cope with, such as increasing returns. It yields new insights in fields such as macroeconomics or international trade (on the latter, which we did not survey at all, see for example the recent expositions by Helpman, 1989, Helpman-Krugman, 1985, Krugman, 1989).

In view of the size of the field, the overview of this chapter could only be a partial one, and the reader will find complementary insights in other surveys, such as for example Archibald (1987), Archibald-Eaton-Lipsey (1985), Eaton-Lipsey (1989), Gabszewicz-Thisse (1986), Hart (1985a), Ireland (1987), Lancaster (1979), Mas-colell (1982), Negishi (1987), Novshek-Sonnenschein (1986, 1987), Shubik (1959, 1985), Shubik-Levitan (1980), Stiglitz (1986).

As indicated in the introduction, in order to have a fairly homogeneous presentation, we restricted our exposition to the traditional vision of a monopolistic competition equilibrium as a one period Nash equilibrium with perfect information. Already in this apparently simple framework we encountered a number of important conceptual problems. In particular it appears that a synthesis between the lines of research initiated by Cournot, Bertrand, Edgeworth, Hotelling and Chamberlin remains to be done.

Inspite of the potential difficulties, it is nonetheless clear that research on the monopolistic competition paradigm should be pursued in a number of directions. Notably more complex strategic interactions should be

considered, such as those found in the theory of oligopoly or industrial organization (See for example Friedman, 1982, Shapiro 1989, Tirole 1988), imbedding of course the time dimension of the games actually played. Also, in view of the extremely high amount of information implicit in the games we described, as compared with the competitive price taking paradigm, the study of imperfect information seems a natural extension of the theory of monopolistic competition (See for example Stiglitz, 1989). All this should be the subject of fruitful further research.

FOOTNOTES

- (*) I am indebted to Don Brown, Jean J. Gabszewicz, Oliver Hart, Bruno Jullien, Michael Magill, Andreu Mas-Colell, Martine Quinzii, Jacques-François Thisse and Xavier Vives for useful comments on preliminary versions of this chapter. Of course I am solely responsible for any remaining deficiencies. Support from Deutsche Forschungsgemeinschaft, Gottfried-Wilhelm-Leibniz-Förderpreis, during BOWO 89 is gratefully acknowledged.
- (1) See also Robinson (1933) for an important contemporaneous contribution to imperfect competition.
- (2) Note that the extreme simplicity of this demand comes from the fact that there is a single consumer and numéraire has constant marginal utility. For a thorough treatment of the general case, see Dixon (1987b).
- (3) For a modern restatement of Hotelling's model and the corresponding existence problems, see notably D'Aspremont, Gabszewicz and Thisse (1979).
- (4) Note that, though the goods j = 1,...,n considered are perfect substitutes, ♦ represents somehow an index of substitutability with the other goods in the economy, as we shall see in the next subsection.
- (5) With more than one consumer we would obtain a weighted sum (this time across consumers) of similar expressions for each consumer.
- (6) Other symmetric Chamberlinian type models with a multitude of consumers are built in Perloff-Salop (1985), Sattinger (1984).
- (7) K will be defined in an ℓ -1 dimensional subspace to avoid colinearities.

- (8) We may note that the numéraire does not enter the production sets. This assumption is solely made to simplify notation and to facilitate transition to the next section where the numéraire good is explicitly assumed to be fiat money.
- (9) See also Laffont-Laroque (1976), Hart (1985a).
- (10) Note that the method described below is also fully applicable to the subjective demand curve approach. See Benassy (1976, 1982, 1990).
- (11) See Schulz (1983) for intuitive sufficient conditions.
- (12) See for example Grandmont (1983) for a thorough discussion of this issue in Walrasian models.
- (13) For explicitly dynamic models with perfect foresight which exhibit this proportionality property, see for example Benassy (1989b,c).
- (14) We actually assume to simplify that the influence of w on household i's profit income is negligible, which will be the case if there are many households, and each owns negligible shares of each firm.

BIBLIOGRAPHY

- ALLEN, R.G.D. (1938), Mathematical Analysis for Economists, Macmillan, London.
- ALLEN, R.G.D. and HICKS, J.R. (1934), "A Reconsideration of the Theory of Value II", <u>Economica</u>, <u>1</u>, 196-219.
- ALLEN, B. and HELLWIG, M. (1986a), "Bertrand-Edgeworth Oligopoly in Large Markets", Review of Economic Studies, 53, 175-204.
- ALLEN, B. and HELLWIG, M. (1986b), "Price-Setting Firms and the Oligopolistic Foundations of Perfect Competition", <u>American Economic Review</u>, <u>76</u>, 387-392.
- ANDERSON, S.P., A. DE PALMA and J.F. THISSE (1987), "Demand for Differentiated Products, Discrete Choice Models and the Characteristics Approach", Review of Economic Studies, <u>56</u>, 21-35.
- ARCHIBALD, G.C. (1987), "Monopolistic Competition" in J. Eatwell, M. Milgate and P. Newman Eds, <u>The New Palgrave</u>: A <u>Dictionary of Economics</u>, Macmillan, London.
- ARCHIBALD, G.C., B.C. EATON, and R.G. LIPSEY (1985), "Address Models of Value Theory", in <u>New Developments in the Analysis of Market Structure</u>, ed. by J. Stiglitz and F. Matthewson, Cambridge (Mass.), The MIT Press.
- ARROW, K.J., and G. DEBREU (1954), "Existence of an Equilibrium for a Competitive Economy", <u>Econometrica</u>, <u>22</u>, 265-290.
- ARROW, K.J., and F.H. HAHN (1971), <u>General Competitive Analysis</u>, Holden-Day, San Francisco.
- BENASSY, J.P. (1976), "The Disequilibrium Approach to Monopolistic Price Setting and General Monopolistic Equilibrium", Review of Economic Studies, 43, 69-81.
- BENASSY, J.P. (1977), "A Neokeynesian Model of Price and Quantity Determination in Disequilibrium" in G. Schwödiauer (Ed). <u>Equilibrium and</u>

 <u>Disequilibrium in Economic Theory</u>, Reidel Publishing Company, Boston.

- BENASSY, J.P. (1982), <u>The Economics of Market Disequilibrium</u>, Academic Press, New York.
- BENASSY, J.P. (1986a), "On Competitive Market Mechanisms", <u>Econometrica</u>, <u>54</u>, 95-108.
- BENASSY, J.P. (1986b), "On the Existence of Bertrand-Edgeworth Equilibria with Differentiated Commodities" in W. Hildenbrand and A. Mas-Colell (Eds)

 <u>Contributions to Mathematical Economics : in Honor of Gerard Debreu</u>

 North-Holland, Amsterdam.
- BENASSY, J.P. (1987), "Imperfect Competition, Unemployment and Policy", <u>European Economic Review</u>, <u>31</u>, 417-426.
- BENASSY, J.P. (1988), "The Objective Demand Curve in General Equilibrium with Price Makers", Economic Journal, 98, Supplement, 37-49.
- BENASSY, J.P. (1989a), "Market Size and Substituability in Imperfect Competition: A Bertrand-Edgeworth-Chamberlin Model", <u>Review of Economic Studies</u>, <u>56</u>, 217-234.
- BENASSY, J.P. (1989b), "Optimal Government Policy in a Macroeconomic Model with Imperfect Competition and Rational Expectations", CEPREMAP Discussion Paper, forthcoming in <u>Equilibrium Theory and Applications</u>: A <u>Conference in Honor of Jacques Drèze</u> (W. Barnett, B. Cornet, C. D'Aspremont, J.J. Gabszewicz and A. Mas-Colell Eds), Cambridge University Press, Cambridge.
- BENASSY, J.P. (1989c), "Microeconomic Foundations and Properties of a Macroeconomic Model with Imperfect Competition" CEPREMAP Discussion Paper, forthcoming in <u>Issues in Contemporary Economics</u>. <u>Proceedings of the ninth International Economic Association World Congress</u>. Vol.1:

 Markets and Welfare (K.J. Arrow Ed.) Macmillan, London.
- BENASSY, J.P. (1990), "Non Walrasian Equilibria, Money and Macroeconomics", in B. Friedman and F.H. Hahn Eds. <u>Handbook of Monetary Economics</u>, North-Holland, Amsterdam.
- BERTRAND, J. (1883), Book review of "Théorie Mathématique de la Richesse

- Sociale" and of "Recherches sur les Principes Mathématiques de la Théorie des Richeses", <u>Journal des Savants</u>, 499-508.
- BUSHAW, D.W., and R. CLOWER (1957), <u>Introduction to Mathematical Economics</u>, Richard D. Irwin, Homewood, Illinois.
- CAPLIN, A. and B. NALEBUFF (1989), "Aggregation and Imperfect Competition:
 On the Existence of Equilibrium", Discussion Paper, London School of
 Economics and Princeton University.
- CHAMBERLIN, E.H. (1933), <u>The Theory of Monopolistic Competition</u>, 7th Ed. 1956, Harvard University Press, Cambridge.
- COURNOT, A. (1838), <u>Recherches sur les principes mathématiques de la théorie des richesses</u>, Hachette, Paris.
- DASGUPTA, P. and E. MASKIN (1986); "The Existence of Equilibrium in Discontinuous Economic Games", <u>Review of Economic Studies</u>, <u>53</u>, 1-41.
- D'ASPREMONT, C., R. DOS SANTOS FERREIRA and L.A. GERARD-VARET (1986), "On Monopolistic Competition and Involuntary Unemployment", CORE Discussion Paper 8635, forthcoming in the <u>Quarterly Journal of Economics</u>.
- D'ASPREMONT, C., R. DOS SANTOS FERREIRA and L.A. GERARD-VARET (1989),
 "Unemployment in an Extended Cournot Oligopoly Model", Oxford Economic
 Papers, 41, 490-505.
- D'ASPREMONT, C., GABSZEWICZ, J.J. and THISSE, J.F. (1979), "On Hotelling's Stability in Competition", <u>Econometrica</u>, <u>47</u>, pp. 1145-50.
- DAVIDSON, C. and DENECKERE, R. (1986), "Long-Run Competition Competition in Capacity, Short-Run Competition in Price and the Cournot Model",

 The Rand Journal of Economics, 17, 404-415.
- DEBREU, G. (1959), Theory of Value, Wiley, New York.
- DEHEZ, P. (1985), "Monopolistic Equilibrium and Involuntary Unemployment", <u>Journal of Economic Theory</u>, <u>36</u>, 160-166.

- DENECKERE, R., and ROTHSCHILD, M. (1989), "Monopolistic Competition and Product Diversity", Working Paper, Northwestern University.
- DIERKER, E. (1988), "Competition for Clients", Working Paper 8807, University of Vienna.
- DIERKER, H. (1989), "Existence of Nash Equilibrium in Pure Strategies in an Oligopoly with Price Setting Firms", Working paper 8902, University of Vienna.
- DIERKER, H., and GRODAL, B. (1986), "Non-existence of Cournot-Walras

 Equilibrium in a General Equilibrium Model with Two Oligopolists",
 in "Contributions to Mathematical Economics. in honor of Gérard

 Debreu", W. Hildenbrand and A. Mas-Colell (eds), North Holland Co,
 Amsterdam.
- DIXIT, A.K., and STIGLITZ, J.E. (1977), "Monopolistic Competition and Optimum Product Diversity", <u>American Economic Review</u>, <u>67</u>, 297-308.
- DIXON, H. (1987a), "Approximate Bertrand Equilibria in a Replicated Industry", Review of Economic Studies, 54, 47-62.
- DIXON, H. (1987b), "The General Theory of Household and Market Contingent Demand", <u>The Manchester School</u>, <u>55</u>, 287-304.
- DIXON, H. (1987c), "A Simple Model of Imperfect Competition with Walrasian Features", Oxford Economic Papers, 39, 134-160.
- DUBEY, P. (1982), "Price-Quantity Strategic Market Games", <u>Econometrica</u>, <u>50</u>, 111-126.
- DUBEY, P. and M. SHUBIK (1978), "The Noncooperative Equilibria of a Closed Trading Economy with Market Supply and Bidding Strategies", <u>Journal of Economic Theory</u>, <u>17</u>, 1-20.
- DUBEY, P., A. MAS-COLELL and M. SHUBIK (1980), "Efficiency Properties of Strategic Market Games: An Axiomatic Approach", <u>Journal of Economic Theory</u>, <u>22</u>, 339-362.

- EATON, B.C., and LIPSEY, R.G. (1978), "Freedom of Entry and the Existence of Pure Profits", <u>Economic Journal</u>, <u>88</u>, 455-469.
- EATON, B.C., and LIPSEY, R.G. (1989), "Product Differentiation" forthcoming in the <u>Handbook of Industrial Organization</u>, (R. Schmalensee and R.D. Willig Eds), North-Holland, Amsterdam.
- EATON, B.C., and M.H. WOODERS, "Sophisticated Entry in a Model of Spatial Competition", <u>Rand Journal of Economics</u>, <u>16</u>, pp 282-297.
- ECONOMIDES, N. (1989), "Symmetric Equilibrium, Existence and Optimality in Differentiated Product Markets", <u>Journal of Economic Theory</u>, <u>47</u>, 178-194.
- EDGEWORTH, F. (1897), "La Teoria Pura del Monopolio", <u>Giornale Degli</u>

 <u>Economisti</u>, <u>40</u>, 13-31, English translation: "The Pure Theory of Monopoly", in <u>Papers Relating to Political Economy</u>, vol. 1, Macmillan, London, 1925.
- ENCAOUA, D. (1990), "Différenciation des produits et structures de marché : Un tour d'horizon", <u>Annales d'Economie et de Statistique</u>,...
- FRAYSSE, J. (1986), <u>Equilibre de Cournot dans les grands marchés</u>, <u>Monographies</u> d'Econométrie. CNRS, Paris.
- FRIEDMAN, J.W., (1977), Oligopoly and the Theory of Games, Amsterdam: North-Holland.
- FRIEDMAN, J.W., (1982), "Oligopoly Theory", in K.J. Arrow and M.D. Intriligator (Eds), <u>Handbook of Mathematical Economics</u>, vol. 2, North-Holland, Amsterdam.
- FRIEDMAN, J.W., (1983), <u>Oligopoly Theory</u>, Cambridge University Press, Cambridge.
- GABSZEWICZ, J.J. and J.F. THISSE (1979), "Price Competition, Quality and Income Disparities", <u>Journal of Economic Theory</u>, <u>20</u>, 340-359.
- GABSZEWICZ, J.J. and J.F. THISSE (1980), "Entry (and Exit) in a Differentiated Industry", <u>Journal of Economic Theory</u>, <u>22</u>, 327-338.

- GABSZEWICZ, J.J., and THISSE, J.F. (1986), "Spatial Competition and the Location of Firms" in <u>Location Theory</u>, Fundamentals of Pure and Applied Economics, vol. 5, Harwood Academic Publishers, New York, London.
- GABSZEWICZ, J.J., and VIAL, J.P. (1972), "Oligopoly "à la Cournot" in a General Equilibrium Analysis", <u>Journal of Economic Theory</u>, <u>4</u>, 381-400.
- GARY-BOBO, R. (1987), "Locally Consistent Oligopolistic Equilibria are Cournot-Walras Equilibria", <u>Economic Letters</u>, <u>23</u>, 217-221.
- GLICKSBERG, I.L. (1952), "A Further Generalization of the Kakutani Fixed Point Theorem with Application to Nash Equilibrium Points", <u>Proceedings of the American Mathematical Society</u>, 38, 170-174.
- HAHN, F.H. (1977), "Exercises in Conjectural Equilibria", <u>Scandinavian Journal</u> of <u>Economics</u>, <u>79</u>, 210-226.
- HAHN, F.H. (1978), "On Non-Walrasian Equilibria", <u>Review of Economic Studies</u>, 45, 1-17.
- HART, O.D. (1979), "Monopolistic Competition in a Large Economy with Differentiated Commodities", <u>Review of Economic Studies</u>, <u>46</u>, 1-30.
- HART, O.D. (1982), "A Model of Imperfect Competition with Keynesian Features", <u>Ouarterly Journal of Economics</u>, <u>97</u>, 109-138.
- HART, O.D. (1985a), "Imperfect Competition in General Equilibrium: An Overview of Recent Work" in K.J. Arrow and S. Honkapohja Eds, <u>Frontiers of Economics</u>, Basil Blackwell, Oxford.
- HART, O.D. (1985b), "Monopolistic Competition in the Spirit of Chamberlin: A General Model", Review of Economic Studies, 52, 529-546.
- HAY, D.A. (1976), "Sequential Entry and Entry Deterring Strategies in Spatial Competition", Oxford Economic Papers, 28, 240-257.
- HELPMAN, E. (1989), "Monopolistic Competition in Trade Theory", Frank Graham Memorial Lecture, forthcoming as Special Papers in International Economics, N° 16, International Finance Section, Princeton University.

- HELPMAN, E., and P. KRUGMAN (1985), <u>Market Structure and Foreigh Trade</u>, MIT Press, Cambridge.
- HOTELLING, H. (1929), "Stability in Competition", Economic Journal, 39, 41-57.
- IRELAND, N.J. (1987), <u>Product Differentiation and Non-Price Competition</u>, Basil Blackwell, Oxford.
- JACOBSEN, H.J., and SCHULTZ C. (1990), "A General Equilibrium Macro Model with Wage Bargaining", Scandinavian Journal of Economics.
- JONES, L.E. (1987), "The Efficiency of Monopolistically Competitive Equilibria in Large Economies: Commodity Differentiation with Gross Substitutes", <u>Journal of Economic Theory</u>, <u>41</u>, 356-391.
- KALDOR, N. (1935), "Market Imperfection and Excess Capacity", <u>Economica</u>, New Series, <u>2</u>, 33-50.
- KREPS, D., and SCHEINKMAN, J. (1983), "Quantity Pre-Commitment and Bertrand Competition Yield Cournot Outcomes", <u>Bell Journal of Economics</u>, <u>14</u>, 326-337.
- KRUGMAN, P. (1989), "Industrial Organization and International Trade", in the Handbook of Industrial Organization, (R. Schmalensee and R.D. Willig Eds), North-Holland, Amsterdam.
- LAFFONT, J.J., and LAROQUE, G. (1976), "Existence d'un équilibre général de concurrence imparfaite : une introduction", <u>Econometrica</u>, <u>44</u>, 283-294.
- LANCASTER, K.J. (1966), "A New Approach to Consumer Theory", <u>Journal of Political Economy</u>, <u>74</u>, 132-57.
- LANCASTER, K.J. (1975), "Socially Optimal Product Differentiation", American Economic Review, 65, 567-85.
- LANCASTER, K.J. (1979), <u>Variety</u>, <u>Equity and Efficiency</u>, Columbia University Press, New-York.
- MARSCHAK, T., and SELTEN, R. (1974), <u>General Equilibrium with Price Making Firms</u>, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin.

- MAS-COLELL, A. (1975), "A Model of Equilibrium with Differentiated Commodities", <u>Journal of Mathematical Economics</u>, <u>2</u>, 263-295.
- MAS-COLELL, A. (1982), "The Cournotian Foundations of Walrasian Equilibrium Theory: An Exposition of Recent Theory" in W. Hildenbrand (Ed.),

 <u>Advances in Economic Theory</u>, Cambridge University Press, Cambridge.
- MAS-COLELL, A. (1984), "The Profit Motive in the Theory of Monopolistic Competition", <u>Zeitschrift für National Okonomie</u>, Suppl. <u>4</u>, 119-126.
- NEGISHI, T. (1961), "Monopolistic Competition and General Equilibrium", <u>Review of Economic Studies</u>, <u>28</u>, 196-201.
- NEGISHI, T. (1972), <u>General Equilibrium Theory and International Trade</u>, North-Holland, Amsterdam.
- NEGISHI, T. (1977), "Existence of an Under Employment Equilibrium", in G. Schwödiauer (Ed), <u>Equilibrium and Disequilibrium in Economic Theory</u>, D. Reidel Publishing Company, Boston.
- NEGISHI, T. (1979), <u>Microeconomic Foundations of Keynesian Macroeconomics</u>, North-Holland, Amsterdam.
- NEGISHI, T. (1987), "Monopolistic Competition and General Equilibrium", in J. Eatwell, M. Milgate and P. Newman Eds, <u>The New Palgrave</u>: A <u>Dictionary of Economics</u>, Macmillan, London.
- NIKAIDO, H. (1975), <u>Monopolistic Competition and Effective Demand</u>, Princeton University Press, Princeton.
- NOVSHEK, W. (1980), "Cournot Equilibrium with Free Entry", <u>Review of Economic Studies</u>, <u>47</u>, 473-486.
- NOVSHEK, W. and SONNENSCHEIN, H. (1978), "Cournot and Walras Equilibrium", Journal of Economic Theory, 19, 223-266.
- NOVSHEK, W. and SONNENSCHEIN, H. (1986), "Non-Cooperative Marshallian-like Foundations for General Equilibrium Theory", Chap. 18, in <u>Contributions</u>
 <u>to Mathematical Economics, in honor of Gérard Debreu</u>, W. Hildenbrand and A. Mas-Colell (Eds), North-Holland Pub. Co., Amsterdam.

- NOVSHEK, W., and SONNENSCHEIN, H. (1987), "General Equilibrium with Free Entry: A Synthetic Approach to the Theory of Perfect Competition", <u>Journal of Economic Literature</u>, <u>25</u>, 1281-1306.
- PERLOFF, J.M., and SALOP, S.C. (1985), "Equilibrium with Product Differentiation", Review of Economic Studies, 52, 107-120.
- POSTLEWAITE, A. and D. SCHMEIDLER (1978), "Approximate Efficiency of the Non Walrasian Nash Equilibria", <u>Econometrica</u>, <u>46</u>, 127-137.
- PRESCOTT, E.C., and VISSCHER, M. (1977), "Sequential Location Among Firms with Foresight", <u>The Bell Journal of Economics</u>, <u>8</u>, 378-393.
- ROBERTS, J., and SONNENSCHEIN, H. (1977), "On the Foundations of the Theory of Monopolistic Competition", <u>Econometrica</u>, <u>45</u>, 101-113.
- ROBERTS, K. (1980), "The Limit Points of Monopolistic Competition", <u>Journal of Economic Theory</u>, <u>22</u>, 256-278.
- ROBINSON, J. (1933), <u>The Economics of Imperfect Competition</u>, second ed. (1969), MacMillan and Co, London.
- SAMUELSON, P.A., (1967), "The Monopolistic Competition Revolution", in Monopolistic Competition Theory, ed. by R. Kuenne. New York: J. Wiley and Sons.
- SATTINGER, M. (1984), "Value of an Additional Firm in Monopolistic Competition", <u>Review of Economic Studies</u>, <u>51</u>, 321-332.
- SCHULZ, N. (1983), "On the Global Uniqueness of Fixprice Equilibria", Econometrica, 51, 47-68.
- SHAKED, A., and J. SUTTON (1982), "Relaxing Price Competition Through Product Differentiation", <u>Review of Economic Studies</u>, <u>49</u>, 3-14.
- SHAKED, A., and J. SUTTON (1983), "Natural Oligopolies", <u>Econometrica</u>, <u>51</u>, 1469-1483.
- SHAKED, A., and SUTTON, J. (1987), "Product Differentiation and Industrial Structure", <u>The Journal of Industrial Economics</u>, <u>36</u>, 131-146.

- SHAPIRO, C. (1989), "Theories of Oligopoly Behavior", in R. Schmalensee and R. Willig, Eds, <u>Handbook of Industrial Organization</u>, North Holland, Amsterdam.
- SHAPLEY, L., and SHUBIK, M. (1969), "Price Strategy Oligopoly with Product Variation", <u>Kyklos</u>, 1, 30-43.
- SHAPLEY, L. and M. SHUBIK (1977), "Trade Using One Commodity as a Means of Payment", <u>Journal of Political Economy</u>, <u>85</u>, 937-968.
- SHUBIK, M. (1959), <u>Strategy and Market Structure</u>, John Wiley and Sons, New York.
- SHUBIK, M. (1973), "Commodity Money, Oligopoly, Credit and Bankruptcy in a General Equilibrium Model", <u>Western Economic Journal</u>, <u>11</u>, 24-38.
- SHUBIK, M. (1985), "The Many Approaches to the Study of Monopolistic Competition", <u>European Economic Review</u>, <u>27</u>, 97-114.
- SHUBIK, M. and R.E. LEVITAN (1980), <u>Market Structure and Behavior</u>, Harvard University Press, Cambridge, MA.
- SILVESTRE, J. (1977a), "A Model of General Equilibrium with Monopolistic Behavior", <u>Journal of Economic Theory</u>, <u>16</u>, 425-442.
- SILVESTRE, J. (1977b), "General Monopolistic Equilibrium under Non-convexities", <u>International Economic Review</u>, <u>18</u>, 425-434.
- SILVESTRE, J. (1978), "Increasing Returns in General Non-competitive Analysis", <u>Econometrica</u>, <u>46</u>, 397-402.
- SILVESTRE, J. (1988), "Undominated Prices in the Three Good Model", <u>European</u>
 <u>Economic Review</u>, <u>32</u>, 161-178.
- SNEESSENS, H. (1987), "Investment and the Inflation-Unemployent Trade-Off in a Macroeconomic Rationing Model with Monopolistic Competition", <u>European Economic Review</u>, 31, 781-815.
- SNOWER, D. (1983), "Imperfect Competition, Unemployment and Crowding out", Oxford Economic Papers, 35, 569-584.

- SPENCE, A.M. (1976), "Product Selection, Fixed Costs and Monopolistic Competition", <u>Review of Economic Studies</u>, <u>43</u>, 217-235.
- SRAFFA, P. (1926), "The Laws of Returns Under Competitive Conditions", <u>Economic</u>
 <u>Journal</u>, <u>36</u>, 535-550.
- STIGLITZ, J. (1986), "Towards a More General Theory of Monopolistic Competition", in H. Peston and R. Quandt Eds. <u>Prices. Competition and Equilibrium</u>, Philip Allan Publishers.
- STIGLITZ, J. (1989), "Imperfect Information in the Product Market", in R. Schmalensee and R.D. Willig Eds. <u>Handbook of Industrial Organization</u>, North-Holland, Amsterdam.
- SVENSSON, L.E.O. (1986), "Sticky Goods Prices, Flexible Asset Prices, Monopolistic Competition and Monetary Policy", <u>Review of Economic Studies</u>, <u>53</u>, 385-405.
- TIROLE, J. (1988), <u>The Theory of Industrial Organization</u>, M.I.T. Press, Cambridge.
- TRIFFIN, R. (1940), <u>Monopolistic Competition and General Equilibrium Theory</u>, Harvard University Press, Cambridge, Massachusetts.
- VIVES, X. (1985), "On the Efficiency of Bertrand and Cournot Equilibria with Product Differentiation", <u>Journal of Economic Theory</u>, <u>36</u>, 166-175.
- VIVES, X. (1986), "Rationing Rules and Bertrand-Edgeworth Equilibria in Large Markets", Economic Letters, 21, 113-116.
- VIVES, X. (1989), "Nash Equilibrium with Strategic Complementarities", <u>Journal</u> of <u>Mathematical Economics</u>, forthcoming.
- WEITZMAN, M.L. (1982), "Increasing Returns and the Foundations of Unemployment Theory", <u>Economic Journal</u>, <u>92</u>, 787-804.
- WEITZMAN, M.L. (1985), "The Simple Macroeconomics of Profit Sharing", <u>American</u>
 <u>Economic Review</u>, <u>75</u>, 937-952.