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Nonlinear Innovations and Impulse Responses
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Abstract

This paper introduces a concept of innovation for the analysis of nonlinear
dynamics. We show that nonlinear processes can be represented as functions
of current and lagged values of such innovations. The residuals from nonlinear
dynamic models axe used to construct various specification tests. We define
and study nonlinear impulse response functions to transitory and permanent
shocks.
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Christian Gourieroux, Joanna Jasiak

Résumé

Nous introduisons un concept d’innovation adapté a 'analyse des dynamiques
non linéaires. Nous expliquons comment le processus initial peut étre exprimé
en fonction des valeurs présentes et passées de I'innovation, utilisons les résidus
associés pour construire des tests de spécification d’une dynamique non linéaire
et pour définir des fonctions réponses a des chocs transitoires ou permanents.
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de Volterra, fonction réponse, modele ACD, valeur & risque.
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1 Introduction

The innovations of a stochastic process (Y;) are usually defined either as a) errors repre-
senting differences between the expected and realized values of Y3, i.e. e% =Y, &F 1Y,
or b) conditionally standardized expectation errors, i.e. ¢ = (V; @Et,lYt)/(V},lYt)%,
where E; 1Y; and V;_1Y; are the conditional mean and variance of Y; given the infor-
mation available at time ¢ < 1. These definitions cause serious difficulties in the analysis
of nonlinear dynamics. For example, the standardized innovations (¢7) may not nec-
essarily be independent, due to unobserved cross effects of their conditional moments
of order strictly larger than two. Moreover, the definitions of innovations of a series
(Y;) and of its nonlinear transform, such as (expY;) are not identical. For example,
€ = (expY; ©E;_1expY;)/Vi_1(expY;) and €? do not even satisfy a one-to-one relation-
ship.

The aim of this paper is to introduce a new notion of innovation for the analysis of
nonlinear dynamics, and propose a representation of a time series as a function of current
and lagged nonlinear innovations. The paper also presents a battery of specification tests
based on corresponding nonlinear residuals for diagnostic checking of nonlinear models
such as the NLARMA (nonlinear ARMA) models. A significant part of this work concerns
the nonlinear impulse response analysis. The nonlinear innovations allow us to develop a
new approach to study transitory and permanent shocks to models such as the popular
GARCH or ACD. We also extend the application of impulse response analysis to the
domain of financial strategies, and concider shock effects not only on the future values
of the series of interest, but also on the outcome of a dynamic strategy, such as dynamic
portfolio hedging, for example.

In section 2 we define a nonlinear gaussian innovation of a strongly stationary process
and discuss the nonlinear regularity condition ensuring that the current and lagged values
of the process contain information on current and lagged values of the innovation. Next,
we derive a representation theorem for a nonlinearly regular stationary process where the
current value of the process is expressed as a nonlinear function of current and lagged non-
linear innovations. In section 3 we consider parametric dynamic models and show how to
find the nonlinear residuals by approximating nonlinear innovations. These residuals are
next used to develop specification tests of the initial dynamic model, which extend the port-
manteau tests introduced in the linear framework. Nonlinear ARMA models are defined
in section 4, where we propose nonparametric estimation methods of nonlinear transforms

of the autoregressive moving average. Section 5 is devoted to nonlinear impulse response



analysis. We study the effects of permanent and transitory shocks to nonlinear gaussian
innovations and compare our approach with impulse response techniques introduced by
Gallant, Rossi, Tauchen (1993), and Koop, Pesaran, Potter (1996). Section 6 extends
the impulse response techniques to a setup involving dynamic financial strategies. As an
illustration we discuss the structural impulse response analysis for determining the Value

at Risk and the minimum capital requirement under dynamic portfolio management.

2 Nonlinear gaussian innovation and representation theo-
rem

In this section we consider an unidimensional strongly stationary process (Y;,t € Z). We
denote by F; = o(Y;) the sigma algebra generated by the current and past values of the

process. Moreover we assuine:

Assumption A.1: The conditional distribution of Y; given F; i is continuous on

[R,B(R)] with a positive p.d.f. denoted by f; 1.

The associated c.d.f. F;_; is continuous, strictly increasing and hence invertible.

2.1 Nonlinear gaussian innovations

Definition 1: The process (e;,t € Z) is a nonlinear gaussian innovation of the process
(Y, t € Z) if it satisfies the following conditions:

i) (e,t € Z) is a gaussian white noise IIN(0,1);

ii) ¢ and Y; are in a continuous invertible relationship conditional on F;_1: ¢ =
gi1—1(Y};) a.s., where g;_1 is continuous, invertible and may depend on the past F;_1.

The second condition implies:

O’(Et,]:t_l) = O'(Yi,f.t_l), Vt, (21)

and by recursion:

O'(Et,etfl, "'7€t7p+17‘7:t7p) - O-(}/tayvtfla "'7Y't*p+17‘7:tfp)7 Vt? p Z 0. (22)

Property 2: Under assumption A.1, the strongly stationary process (Y, t € Z) admits

a nonlinear gaussian innovation. It is unique up to a change of signs, date by date.

Proof:
i) The process (¢;,t € Z) defined by:

¢ =3 F_1(V})], te€Z, (2.3)



where ® denotes the c.d.f. of the standard normal distribution, satisfies the two conditions

of definition 1.

ii) Let us assume that € is another nonlinear gaussian innovation. Then there exists a
continuous invertible relationship between ¢, and €] conditional on: F;_1 : ¢, = hy_1(€}),
(say), and
Ple} < €] = ®(e) = Plhy_1(€}) < € | Fi_1]-

The function h;—; is continuous, invertible and therefore monotone. If it is increasing,
conditional on F;_i, we get:

(I)(e) = (I)[ ;JI(E)L Ve,

which implies h;—1 = Id.

If it is decreasing, conditional on F;_1, we get:

D) =1 9] ;11(6)], Ve,

which implies h;—1 = <1d.

Q.E.D.

Therefore it is always possible to select the gaussian innovation process in order to
obtain an increasing relationship between Y; and ¢; at any time ¢{. The corresponding
innovation is uniquely defined by (2.3). Moreover this formula implies that the innovations

of (Y;) and of an invertible increasing transform of (Y;) are identical.

2.2 Representation theorem

In this section we introduce a representation theorem which expresses the current value
of the process as a function of current and lagged values of the innovation. By analogy
to the Wold representation for linear processes, we first introduce the nonlinear regularity

condition.

Definition 3: The (Y;,t € Z) process is nonlinearly regular if F_ ., = N.F; is the

degenerate sigma algebra.

This regularity condition implies in particular that ':

lim E(a(Yy, Yit1, - Yirg) | Fron) = Ba(Ye, Yigr, - Yigg),

h—o0

Tt means that the process has short memory in the mean for any nonlinear transform using Granger’s
terminology [Granger (1995)].



for any integer ¢ and integrable function a, which means that the initial value of the process
is noninformative for a long horizon forecast. In the following property, the underlined

variables denote processes up to and including the given date.

Property 4: If the strongly stationary process (Y;, ¢ € Z) satisfies assumption A.1
and is nonlinearly regular, then o(¢;) = o(Y3) = F.

Proof:

i) We have: o(eq, ..., e4—p) C 0(Yy), Vp, and then o(e) = Vpo(et,...,e1—p) C o(Y2).

ii) Conversely:
o(Yy) =ole, oy €t—p) V Fi—p C o) V Fi—p, Yp.

Therefore o(Y;) C Ny [o(er) V Fip] = 0(€r) V (NpFi—p) = o(e;), due to the regularity
condition.

Q.E.D.

The representation theorem is a consequence of the existence of simple hilbertian basis

for gaussian processes. More precisely, let us introduce the Hermite polynomials:

j! j—2m
Hje) = o (&1)™e j=0,1,.. (2.4)
0<m<li/2] (j ©2m)Im!2

A hilbertian basis of L?(o(e;)) is given by:

1 1 1
THjl(Etfhl)WHJQ(etfhz)"‘TH]’n(etfhn)a (2.5)

Ny J1yeees Jny Ry ...y by varying with hy # ho.... # hy,.

The representation theorem follows directly.

Property 5: If the strongly stationary process satisfies assumption A.1, is nonlinearly

regular and square integrable, we get:

N
. N,J,H
Yi= lm > > > i on) Hjs (o) H (61,
T 500 N=1j1,0jn=1,0;,J h1,..., hn=0,..., H
H — oo hy # ... %# hy

where Y; is the mean square limit.

This representation theorem is of Volterra type [see, Volterra (1930), (1959), Nisio
(1960), Priestley (1988)] and presents Y; as a limit of polynomials in current and lagged
values of a gaussian white noise. However our approach is closer to the lines followed by

Wiener (1958), using Hilbert arguments.



. . . . N,JLH
The representation has an especially simple form, when the coefficients ag-l ~7~~,jn)h1 o

are independent of NV, J, H. Indeed we get:

o0 oo oo
}/t = Z Z Z a’jl:"':jnahlv"'vhnHjl (et_hl)HjZ(et_hZ)""Hjn (et_hn)' (26)
n=1741,...in=0 h1,....hn=0

It is known that linear gaussian ARMA models satisfy this condition whenever the
moving average part does not admit a root with unitary modulus [Whittle (1963)].

Finally note that the condition of square integrability of Y; is not very restrictive.
Indeed if Y; is not square integrable we may find an increasing transformation h(Y;),
which will satisfy this requirement. Next, the representation theorem can be applied to
the process h(Y;) and by inverting h, a representation for Y; will be obtained | where Y;

becomes now the limit in probability |.

2.3 Example

The traditional nonlinear dynamic models introduced for financial applications such as
ARCH models [ Engle (1982)] or ACD models [ Engle, Russell (1998)] usually contain non-
linear innovations in their specifications. As an illustration let us consider the ACD(1,1)
model. The process of interest is a sequence of durations {Y;, t € Z}. Let us introduce
the conditional expectation of Y; given the past: U, = E(Y;| Fy—1). It is assumed that the
standardized durations Y;/WU, are independent with identical distributions whose c.d.f is

F (say), and that U, satisfies the recursive equation:

U, =c+aY_1+ BV¥_q. (27)

The nonlinear gaussian innovation is:

e = O F(Y;/Ty). (2.8)

Therefore we can write:

Y: = ‘I/tg(Gt), (2-9)

where g = F~! - ®, and by substituting into the recursive equation (2.7) we get:

= |agle) +6 9(e) Yio1+cg(er), (2.10)

gler—1)



which is an autoregressive representation with time dependent random autoregressive co-
efficients.

We may also write the recursive equation (2.7) as

\I/t =c+ Oé\I/t_lg(Et_1) + ﬁ\pt_l, (211)

which shows that the process () is also the nonlinear innovation of the expectation process

(V1)

3 Residual based diagnostics

In this section we consider a parametric model and define its nonlinear residuals. These

residuals are next used to construct various specification tests.

3.1 Residuals

Let us consider a parametric model of the process (Y3, ¢ € Z), with the conditional p.d.f.
parametrized by 6 and denoted f;_1(.;0). The parameter can be estimated by the maxi-

mum likelihood, where the M.L. estimator is defined by:

T
O = Argmaz Z log fi—1(Y:; 6). (3.1)
o =1

We assume that standard regularity conditions are satisfied to ensure that this esti-
mator is consistent, asymptotically normal and admits the asymptotic expansion:

VT (O ) = J1 Zalogft L(Y,:0) + o(—), (3.2)

3~

where J = E [W]‘

The residuals of the model are defined by:

& = O HF (Y 07)]. (3.3)

The specification tests are designed to verify whether these residuals satisfy moment con-

ditions given below.

3.2 The moment conditions

We know that the model is well specified and 6 is the true parameter value, if and only
if the variables ¢, = ® '[F;_(Y};0)] are TIN(0,1). This condition of gaussian white noise

can be written in terms of moments of Hermite polynomials.



Property 6: (e;,t € Z) is a gaussian white noise if and only if :

i) EHj(er) =0, j = 1;

i) BH2(e) =1, j > 1;

iii) B[Hj(e:)Hy(e))] =0, j,k>1, j#Fk;

iv) E[H;(e) [Tie1 Hi,(et-1,)] =0, Yn, ki, ..., ky, Yhi # ho # ... # hy,.

Proof:
Since the square integrable functions of €;_; may be expanded in terms of a product of

Hermite polynomials, even if the process (€;) is not gaussian, condition (iv) implies that:

vn, Vf,g,: E[f(et) glet—1, -, €t-n)] = 0,

which is equivalent to the independence of €, with o(€;—1).
Finally conditions i), ii), iii) imply that the marginal distribution of ¢; is standard
normal.

Q.E.D.

3.3 Specification tests

We now introduce tests statistics based on the moment conditions outlined in the previous

section. Let us denote

fj,k,h Z{H Hk €r— h) <) héj k} 7,k >0, h >0, (3.4)

where § is the Kronecker symbol. Under the null hypothesis of correct specification, we

obtain the following expansion of the test statistics [see, Appendix 1]:

1 T
o= =" Zy(j, K, h), 3.5
Ejkoh \/T; t(J ) (3.5)
where :
Olog fi_
Zu(j, ks h) = Hj(er) Hi(er—n) ©00p 85 + Ajpnd 17501% L(Yi00),  (3.6)
Ajn = EH;(er) 2L (e 1) 52— 2582 (Vs 00)] + BIZ H (61 1) 55 25 (Vi 60)],

where ¢ denotes the p.d.f. of the standard normal distribution.
We note that if the model is well specified, H;(e;) Hy(e;_p) <00 10 % and 9log fi_10%i00) 4.0
p 9 ] ) 7 00

martingale difference sequences. Therefore the components of Z;(j, k, h) are uncorrelated.



Property 7: If the parametric dynamic model is well specified the test statistics are

asymptotically normal with zero mean and covariances given by:

Covasy[&j kns = o =] = Cov[Zi(5, Ky h), Zy (57, K", 1))
In practice the various moment conditions can be considered sequentially. For instance

- for j = k =1, h varying, h > 1, the testing procedures will be based on the standard

residual autocovariances;

- for j = k = 2,h varying, h > 1, the testing procedures will be based on the sample

autocorrelations of the squared residuals [see McLeod, Li (1983)];

- for j = 2,k = 1,h varying, h > 1, the testing procedures allow to detect some re-
maining correlation between the squared residuals and the lagged residuals [which extends
the suggestion by Lawrance, Lewis (1985)]....

However it has to be emphasized that even if the ;) statistics are asymptotically
independent, it is in general not possible to standardize them and obtain the usual form of
the Liung-Box statistics. The reason is that we have to take into account the nonlinear dy-
namics which entails kurtosis and skewness effects and requires appropriate modifications

of the asymptotic variances.

4 Nonlinear ARMA Models

Nonlinear ARMA models are introduced by distinguishing nonlinear effects of the lagged

variables and nonlinear effects of the nonlinear innovations.

4.1 Definition

Definition 7: The strongly stationary process (Y;,t € Z) has a nonlinear ARMA (p,q) or
NLARMA (p,q) representation if and only if it satisfies a recursive relation [see Granger,

Terasvirta (1993)]:

th :g(Ythla"'7Y7t*1776t7"'76t*q)7 (41)

where (€;,t € Z) is a gaussian nonlinear innovation, g is a function which is invertible with
respect to €, and is not constant with respect to Y;_,, €;_, respectively. The coefficients
p and q are the (nonlinear) autoregressive and moving average orders, respectively.

For ¢ = 0, we get a nonlinear autoregression (NLAR) of order p [see Tong (1990), p
96]:



Y, = g(Ythla ey thfpa et) <~ C(thayvtfla -'-7YVt*P) = €, Ssay.

For p = 0 we get a nonlinear moving average (NLMA) of order q [see Tong (1990), p 115]:

Y =g(er, €016 ¢q)-

In general, NLARMA models may contain cross effects of lagged values of the process and
lagged innovations, as shown in the example of the ACD(1,1) model, which admits the
NLARMA(1,1) representation (2.10). The presence of these cross effects makes it difficult
to characterize the NLARMA representations simply in terms of their distributional prop-
erties as it is done in the linear framework where a process is said to have a linear MA(q)
[resp AR(p)] representation if and only if the autocorrelations [ resp. partial autocorrela-
tions] cut off at lag ¢ + 1 [ resp p + 1]. We have instead the following characterization of

nonlinear autoregressive processes.

Property 8 : A strongly stationary process admits a nonlinear autoregressive repre-

sentation of order p if and only if it is Markov of order p.

Proof: The necessary condition is obvious. The sufficient condition results from the
definition of the nonlinear gaussian innovation: ¢, = ® '[F;_;(Y;)], and the fact that F;_;
depends on the past through Y;_1,...,Y;_, only.

Q.E.D.

The property below details the link between the existence of a nonlinear MA represen-
tation and the zero correlations between nonlinear transformations of current and lagged

observations whenever the lag is large enough.

Property 9: If the strongly stationary process admits a nonlinear moving average
representation of order ¢, then the sigma algebras o(Y;) and Fy—g—1 = o(Yi—¢—1) are
independent.

However the condition of Property 9 is not sufficient due to cross effects as explained

in the example below.

Ezample 4.1: Let us consider the NLAR(1) process whose conditional p.d.f. is:

3Vv'15 1
1+ AT?/t <y§_1 @gﬂ ,

1
fyelyi—1) = 51[—1,1} (yt)

with [A| < \/Lﬁ The marginal distribution of Y; is the uniform distribution on the interval

[©1, 1]. It is easy to show that the inequality A < \/%—5 ensures that f(y|y;—1) is non-
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negative on the set of admissible values of y;,y; 1. Now let us consider the conditional

distribution at horizon 2. We get:

1
fyel ye—2) = /71f(yt|yt—l)f(yt—l|?/t—2)dyt—1
1
= %1[1,1}(%)/ 3\/ﬁyt< ; 1)

<:>_
. 2 Yi—1 3

3vV15

1
L+ A 5 Y1 (%22 @gﬂ dys 1

14+

- %1[_1,1} () = fo(ys)-

Therefore o(Y;) is independent of o(Y;_2). The AR function can be explicited by consid-

ering the conditional c.d.f.

1 3V15 1
F(yi|ys—1) = §(yt +1) + AT(yf 1) (y7y <:>§)7

and the equality

Fylyi—1) = (&) © yr = V(yi—1, ).

It is easy to verify that

yr = V[V (yr—2,€-1), €],

actually depends on y; o and therefore the process does not admit a NLMA(1) represen-

tation.

4.2 Nonparametric estimation of nonlinear ARMA models

In this section we assume that (Y;, t € Z) has a nonlinear ARMA (p,q) representation, and

discuss nonparametric estimation of the function g for given orders p and q.

i) Autoregressive processes.
Let us first consider a NLAR(p) process. By applying appropriate nonlinear transfor-

mations, the models are:

C(tha"'ayvtfp) = €, (42)

where (¢4, t € Z) is a gaussian nonlinear innovation. By construction, we know that:

(Y, Yip) = ® L, (V)] (4.3)
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Therefore a nonparametric estimator of the autoregressive function ¢ is immediately de-
duced from a nonparametric estimator of the conditional c.d.f. F; ;. For instance, we can

consider a kernel estimator of the conditional c.d.f.:

Foi(y) = FylYier = yemts oo Yip = Yip)
_ SE e T R [} (4.4)
AT == |
where K is a second order kernel, i.e. satisfies [uK (u)du =0, [u?K (u)du < +oo.
Then we find that:
Wi yep) = @7 [Fi1 (). (4.5)

Obviously, these nonparametric techniques can only be implemented if the number of
observations is large, compared to the autoregressive order p.

Under standard regularity conditions [see, e.g. Bosq (1998)] including the convergence
of the bandwidth to zero at an appropriate rate, this functional estimator is consistent

and asymptotically normal:

[J W’ K (u)du]P  F, 1 (y)[l ©F 1(y)]

’ {(I)[c(yta teey ytfp)]}Q f(ytfla reey ytfp) ’
(46)

v Thp[é(yta "'ayt—p) <:>c(yta "'ayt—p)] — N |0

where f(yi—1,...,yt—p) is the joint p.d.f. of y;1,..., 51

ii) Approximation of ARMA processes by long autoregressive representa-
tions

In the general case of ARMA processes of small orders p and ¢, we can follow the
approach outlined below: [see, Gourieroux, Monfort (1997), p.188 for the analogue in the

linear framework]

Step 1: We estimate an approximated autoregressive representation with a sufficiently

large autoregressive order P:

C(Yi—la"'ay;f—P) = €, (Sa'y)'

We denote by C the associated estimator.
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Step 2: We find the residuals of the model

~

ét:C(Y;f—la“'aY;ﬁ—P)a t=1,..,T,

which are proxies for the gaussian innovations.

Step 3: We finally consider the nonlinear ARMA representation:

th :g(yvtfla"'7Y7t*1776t7"'76t*q)7 (Sa‘Y)‘

The g function can be estimated by the regressogram of Y; on Y;_1,....Y;_p, &, ..., €—¢:

g(yt—la"'ayt—paeta---aet—q) (47)

Sl (VI FK [P Y fK [ )

T 1 Yii—yi—i qg 1 €t—j —€t—j ’
=1 hK[ R ] =1 7K R

(4.8)

since, in particular, the regressogram can be applied to estimate a deterministic relation-

ship [Bosq, Guegan (1995)].

5 Impulse Response Analysis
5.1 Background

In recent literature, Gallant, Rossi, Tauchen (1993), and Koop, Pesaran, Potter (1996),
[henceforth GRT and KPP] have proposed extensions of the traditional impulse response
analysis to nonlinear dynamic models. Both papers emphasize the specificity of nonlinear
framework for impulse response functions, considered as the time profile of the shock effect

on the behaviour of the series [see, e.g. KPP (1996)].

i) For ARIMA models, impulse responses have a symmetry property (i.e. a transitory
shock of < has exactly the opposite effect of a transitory shock of +4§) , whereas in the

nonlinear case the effects of opposite shocks may be very different.

ii) In the linear framework we have the property of ”shock linearity” [i.e. a transitory
shock of kd has k times the effect of a shock of ¢], whereas the effect of the magnitude of

the shock is nonlinear in the general case.

iii) For ARIMA models the effect of the shocks does not depend on the past history,

whereas this path dependency is crucial in nonlinear framework.
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iv) Finally, it is necessary to consider some distributional properties of the impulse
response function, and not only the effect of the shocks on the conditional expectation of
the future variable of interest.

However while both extensions consider only transitory shocks, their proposed impulse

response analysis differ.

i) The GRT analysis is performed conditional on the observed history, whereas KPP

propose to integrate out the possible histories.

ii) Fundamental differences arise from definitions of the transitory shocks. In the spirit
of the Keynesian multiplier analysis, GRT propose to shock directly the variable, and
not an innovation. The drawback of this approach is twofold. It can not be extended
to an analysis of permanent shocks, and the idea of symmetric shocks is unclear. Indeed
symmetric shocks to innovations do not necessarily correspond to symmetric shocks to
the current variable. On the contrary, KPP following Sims (1978) [see also Blanchard,
Quah (1989)], consider shocks to innovations. However they consider innovations defined

by conditionally centering and rescaling the variable Y;; these innovations:

1
v = VielYy) 2(Yy ©Ei1 Yy,

are not sufficiently corrected for the presence of nonlinear temporal dependence. Firstly
these innovations may feature temporal dependence in moments of order larger then three,
which may affect the interpretation of impulse responses. Secondly, the conditional dis-
tribution of v; is not symmetric in general, and this could affect the interpretation of
symmetric shocks.

The difficulties encountered by these authors are due to ambiguous definitions of inno-
vations in nonlinear framework. Using the gaussian innovations which have been uniquely
defined in section 2 , we can now propose a complete innovation based impulse response

analysis for both transitory and permanent shocks.

5.2 Definitions of the impulse response functions

The impulse response analysis can be based on the Volterra type decomposition (see,

property 5), where:

Y't :at(etaetfla"'aelae_o)a (51)

and () is a gaussian white noise, with unitary variance. Since the distribution of ¢

is symmetric, the shocks of § and <§ have the same infinitesimal occurrence. As well,
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since the distribution of €, is independent of time, the shocks of the same magnitude §
at different dates have also the same infinitesimal occurrence, which allows to consider
"permanent” shocks.

As suggested by GRT (1993) the analysis needs to be conditioned on the history before
the shocks. Therefore if the shocks hit the process at date 1, the previous values of the
process and the innovations are known, i.e. ¢y is fixed. Then, at date 0, we have to
evaluate the effect of a sequence of deterministic shocks d1, do, ..., 0, ... occurring at future
dates on the future profile of the process. These effects have to be measured with respect
to a benchmark which is the path followed under the absence of shocks. Since future
innovations are unknown, this benchmark is random. We denote by: €7,€5,...,€/,... a
future path for the innovations, where €7, €3, ..., €}, ... are IIN (0,1) conditional on €. The

random benchmark is:

Y (e0) = ar(€ef, €f_1, ... €1, €0), (5.2)

whereas the profile after shocks arrival is:

Y'ts(é, 60) = at(ef + 5t7 6?,1 + 5t717 ceny 6{ + (51,6_0), (53)

where § = (61, ..., 0, ...).
The entire effect of the sequence of shocks is summarized by the joint path distribution

of:

(Y (€0),, Yy’ (4, €0), t > 1].

In practice we have to select sequences of shocks and summary statistics of the joint
path distribution. The standard response analysis concerns:

either transitory shocks at date 1: 6; = 6,0, = 0,¢ > 2,

or transitory shocks at date ty: oy, =9, o =0, t # to,

or permanent shock starting at date 1: §, =9, t > 2.

They differ in terms of the sign and magnitude of 4.

The standard distributional summary statistics considered in the literature [GRT
(1993), KPP(1996)] are:

either differences of expectations of the series:

EY/ (4, eo)leo] & BYY (o) |eal;

or differences of expectations of transformed series:
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Elg(Y7 (4, €0))|eo] & Elg(Yy (€0))leol,

where ¢ is a given nonlinear function,
or differences of variances:
VY (4, €o)leo] < VI[Y, (€0)|€0]-

5.3 Nonlinear AR(1) process

i) The dynamics.
As an illustration we consider a dynamic NLAR(1) model defined by:
Yi=g(Yiotie) = 9"V (Yio15 @), say, (5.4)
where (¢;) is a standard gaussian white noise and gn an invertible function with respect to e.
By recursion we find the expression of Y; as a function of Y and innovations € = (e, ..., &):
Y, = 9*(t) [Yﬂaetl]a (55)

where ¢*(® is recursively defined by:

gy, el = g{g VYo, e e} (5.6)
= g {g[¥p, 1], éb}. (5.7)
The equality (5.6) implies:
og*» . Oy n0g Y
— 1Y ==Y —[Y
ay [ 0761] 8y[ t 176] ay [ 0, €1 ]7
and by the chain rule:
09"V . 1y 9y
—[Y(),El] = —[YT_l,ET]. (58)
ay =1 8y

ii) Local impact of a transitory shock at date 1.

Let us consider a small transitory shock d; = §. We get:

,(0) = g0y, e + 6t
— g*(t—l)[g(yo,q + 5),63], from (5.7),
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89*(t71) ag
ay [Y17 65] YTfla ET]5

~ gDy, e + a—y[

= Yt+H6 +—1,€:]0, from (5.8).
T7=1

If we consider a nonlinear transformation of the process, H say, we get:

HIY,(9)] ~ H(m+d—Hm> 15

i Yro1 e (5.9)

Therefore the infinitesimal effect of the transitory shock on the expectation of H(Y})

conditional on Yj is:

SEHIY.(3)] < H(Y.)) = By | Yt H Yr 16 (5.10)

It is interesting to consider the long run impact of a transitory shock, i.e. the behaviour
of either %[Y{t(é) &Yy, or %Eg[Yi(é) <Y], when ¢ tends to infinity. Indeed Nelson (1990)
[see also Bougerol, Picard (1992)] has shown in the framework of GARCH models, that
the responses to shocks can be significantly different. More precisely, if the process is
nonlinearly regular, the asymptotic impact of a shock on Y} is equal to zero. For large ¢

this impact is:

H a_Z[YTfla 67’]
t
- {3 [0

~ exp[Elogg ( T— 1367'):|a

and tends to zero if Elog %(YT,M €r) < 0, which is a necessary condition for a strongly
stationary regular process. FE log gfyl(YT,l, €-) is the Liapunov exponent of the dynamic

system [Oseledec (1968)].

However, by taking the expectation and using the convexity inequality, we get:

t
[H Y, _ 13671
T

Q’Iu

> exp [E Z logg Yoo 1757)]

T=1



17

0
X exp {tElog 8—3(1/}_1,67)} ,

and the stationarity condition F [log g—z(YT,l, eT)] < 0 does not necessarily imply that the

impulse response vanishes in average for large ¢.

iii) Linear AR(1) model with a random autoregressive coefficient.

Let us consider the dynamic bilinear model [Tong (1993), p.8]:

Y; = (@ +be)Yy 1 + €, ¢ varying,

where (€;) is a standard gaussian white noise. We can explicitely compute the effect of a

transitory shock hitting at date 1. Indeed the disturbed path is such that:

thD = (a + bet)Y£1 + €t, Vit Z 2.

We see that:

AY; =Y &Y, = (a+be)AY,
t
= H (a + bGT)Ayl
T=2
t
= [l (a+be) (1 +bYp)(der).

T=2
This model satisfies the property of shock linearity because the effect of the shock is a
linear function of de;. Moreover we know from Bougerol, Picard (1992) that, for large ¢,

the coeflicient:

¢
I] (@ + ber)(1 + bYy)
T=2
[
= exp {(t @1)ﬁ T;log(a + beT)} (14 bYp)
~ exp[(t ©1)Elog(a + be;)](1 + bYy)
tends to zero if and only if Elog(a + be;) < 0. However the effect of the shock on the

expectation of Y; is :

E[AYHYU] = atil(]. + bY0)561.
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This average effect tends to zero if |a| < 1, which is a more stringent condition than the

negativity of Elog(a + be;), due to the convexity inequality.

Ezample 5.1: We note that the ACD(1,1) model introduced in subsection (2.3) belongs

to this class. Indeed, the sequence of expected durations satisfies:

Uy =c+ (ag(er—1) + B) V1,

and the impact of a transitory shock is such that :

AV, = (ag(e—1) + B)AT,_q, for t > 3.

This effect asymptotically vanishes in average if

[E(ag(e) +B)| = la+p] <1,

and vanishes path by path if the Liapunov exponent is negative F log(ag(e)+8) < 0. These
conditions imply restrictions on «, 3 and on the pattern of the distribution of standardized

durations. For instance, if g(¢) has an exponential distribution, the Liapunov exponent is

/Ooo log(az + ) exp €xdr = log § + exp(B/a) E1 (6] ),

where Ey(z) = [2° P-4t is the exponential integral [see Abramowitz, Stegun (1964),

formula 5.1.1, page 228]. We plot in Figure 5.1 the set of all points («, 3) for which the

Liapunov exponent is zero.
Insert Figure 5.1

Below this frontier, all pairs of («, 3) coordinates are associated to negative Liapunov
exponents, while the coordinates («, 3) above it are associated to its positive values. We
find that the frontier is decreasing from (o <0.0, 8 = 1.0) down to (« = 1.4, 5 ~ 0.1). For

B’s greater than 1.4 the frontier approches asymptotically the axis of a.

5.4 Simulation results

In this section we illustrate the computation and analysis of impulse response functions
using the examples of an ACD(1,1) model and a factor model with a distinct form of

nonlinear temporal dependence.

i) The autoregressive conditional duration (ACD) model.
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We consider the ACD(1,1) model of subsection (2.3) with an exponential distribution
of the standardized duration. The initial values have been fixed to ¢y = 0.0, y9 = 2.0. We

perform two experiments involving two sets of parameter values:
- experiment 1: ¢ =1, a =0.3, 8 =0.2,

- experiment 1: ¢ =1, a =0.4, 8 = 0.64.

In the first experiment the shock effect asymptotically vanishes in the mean and path
by path, whereas in the second experiment we observe a different outcome. We consider
transitory shocks 0 occuring at date 1, and taking values 0 = <1,<0.9,...0.9, 1, with the
benchmark corresponding to 6 = 0.0. The maximal horizon is H = 10.

We display in Figure 5.2 the joint simulated paths for the benchmark and two perturbed
series with 0 = +/ <1, for both experiments. The effects of shocks quickly dissipate in
experiment 1 whereas they are more persistent in experiment 2 even though they also

vanish asymptotically.
Insert Figure 5.2: Simulated Paths.

We plot in Figure 5.3 the (marginal) distribution of Y;(d) for horizon ¢ = 3, and

0 = <1,0,+1, computed conditionally on the information available at date 0.
Insert Figure 5.3: Marginal Distribution at Horizon 3.

We note that the shocks have an effect on the means and tails of the distribution.

These effects can be evaluated by considering two summary statistics:
- the mean deviation EY;(d) ©FEY,

- the variance of the deviation from benchmark: V(Y;(d) <Y}),
for different horizons ¢t = 1,...,10 and different values of transitory shocks. They are

shown in Figures 5.4 and 5.5 for experiment 1, and in Figures 5.6 and 5.7 for experiment

2.
Insert Figure 5.4: Mean Deviation from the Benchmark.
Insert Figure 5.5: Variance of the Deviation from Benchmark.
Insert Figure 5.6: Mean Deviation from the Benchmark.
Insert Figure 5.7: Variance of the Deviation from Benchmark.

We observe explosive patterns of the averaged effects of shocks in the second exper-

iment, although we found earlier no explosive paths. The similar patterns of responses
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associated to different shocks are due to the simple formula of the deviation from the

benchmark for the ACD(1,1) model. Indeed it is easy to see that :

7i(9) % = [T [ogten) + -2 gie fo 4 (ot

o), ) 0] loter +8) gt
T=3 T

B
g(€o)

which implies :

E[Yy(6) Y] = AiElg(e1 + 6) ©g(er)],

where A; is a positive number depending on the horizon. For the same reason we get:

VIY;(6) &Y = E}(0) «Y]” «(EYi(0) Vi)’

= BiElg(er +0) g(e)]* & A7 (Elg(er +6) Sg(en)])”.

The response function depends on both the magnitude of the shock and the horizon.
To clearify the dependence with respect to the shock size we reproduce in Figures 5.8-5.9
the Figures 5.4-5.5, with § measured on the x-axis. We find that the response function is
convex for the mean deviation with a stronger convexity asssociated to negative shocks.
In particular the properties of symmetry and linearity of linear impulse responses are not
satisfied. The variance function displays an asymmetric effect of positive and negative

shocks.
Insert Figure 5.8: Mean Deviation from the Benchmark.
Insert Figure 5.9: Variance of the Deviation from Benchmark.

An impulse response analysis based only on the differences Y;(0) <Y; can be misleading
since it does not represent the shock effect with respect to the mean of transformed series.
It is more informative to consider the joint bivariate distribution of Y;(¢),Y; and examine
how it depends on the magnitude of the shock and on the horizon. The corresponding

scatterplots are given in Figure 5.10 for § = +1, <1, and horizon 3.
Insert Figure 5.10: Scatterplot at Horizon 3.

ii)A model with linear autoregressive factors.

We introduce a gaussian AR(1) model:

Zy=pZy_1+ €, t varying, (5.11)
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and the process of interest defined by:

Y: =a(e, Z;), t varying, (5.12)

where a is a given function. This process is generated by two underlying factors e, Z;
based on the same gaussian white noise. For a transitory shock § hitting the process at

date 1, we get:

Yy(6) = aler, Ze +p'16), t>2,

and the joint distribution of [Y;,Y;(d)] can easily be deduced from the joint gaussian
distribution of €, Z;. The effect of the shock depends on the nonlinear transformation a.

Let us first consider the function:

a(e, Zy) = sign(e) exp Zy. (5.13)

We can see that: Y;(0) = Y;exp(p’~16), and the joint distribution of [V3, Y;(0)] is degenerate
so that its support is a line passing through the origin. The shock has no effect on the
sign of Y, whereas it has a multiplicative effect on its absolute value.

Less extreme examples corresponding to the functions: a(e, Z;) = €;7Z; and a(e, Z;) =
Zy /e, respectively are illustrated in Figures 5.11-5.11. The values of the parameters are:

p=0.9, § =+41,<l1, and the horizon is t = 4.
Insert Figure 5.11 Scatterplot a = epsilon*Z

Insert Figure 5.12 Scatterplot a = Z / epsilon

6 Value at Risk for a dynamic financial strategy

The specification and estimation of dynamic models for economic or financial series of
interest is often a preliminary step before decision making involving dynamic strategies
and market interventions. In such a framework we are more interested in consequences
of shocks for the outcomes of the dynamic strategy than in their effect on the underlying
series. In this section, we discuss this structural interpretation of impulse response func-
tions using the example of the Value at Risk [VaR] employed in finance to measure and
control the risks associated to a portfolio. In the first subsection we recall the standard
definition of the VaR, and extend this definition to a dynamic strategy of risk assessment

in the second subsection.
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6.1 Definition of the VaR

We consider at date T' a portfolio including the quantities ag 7 and ar of a riskfree asset
and various risky assets, respectively. We denote by yo 7n, y7r4n, b =0,1,..., H the future
values of the assets. The VaR is in practice defined for portfolios, whose allocations are
constrained to be fixed in the future [the so-called crystallization of the portfolio]. These

future portfolio values are:

Wrin = aoryo,r+h + apyrin, h=0,1,... H. (6.1)

These values are random conditional on the information available at time T
The Value at Risk of this portfolio evaluated at time 7', for the horizon H and the
critical value a € [0, 1] is the quantity VaR [T, H, a] defined by:

Pr[Wrig > <VaR [T, H,a]] =1 a, (6.2)

where Pr is the conditional distribution of future prices. The VaR may be used to de-
termine the minimal capital requirement to ensure that the total wealth, including the
portfolio value and capital requirement, remains positive with a sufficiently large proba-
bility. More precisely, let us assume that the capital requirement can be invested at a rate
providing a zero coupon price B[T, H| for horizon H. Consequently, the VaR determined

capital requirement woul be:

VaR [T, H,q]
BIT, H]

Although the risk should be optimally measured ex ante, in practice it is usually measured

R[T,H,a] = (6.3)

ex post. The reason for it is the belief that the conditional distribution Pr can be well
approximated by the historical distribution estimated from recent past data] see Morgan
(1994)]. However when a dynamic model of the asset prices is available, ex-ante computa-
tion of the VaR can be performed by simulation. For instance let us suppose that prices

follow a (nonlinear) AR(1) model:

Yt = g(ytfla Et), t varying, (64)

where g is a given function, and yo 74, = 1, VA = 1,..., H. We can simulate the future

risky asset prices given the current value yr by:

y%+h = g(y%+h,1,6§’+h), h = ]-7 "'7H7 s = ]-7 (XY Sa (65)
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where y7 = yr, and we deduce the simulated future values of the portfolio by:

Wi, =Wr+ap(yio, yr), h=1,...,H, s=1,..,85. (6.6)

Then the VaR can be computed from the empirical distribution of these simulated values
Wi i s=1,...,8.

Let us now introduce a shock ¢ to the innovation at date 7'+ 1. We can perform
similar computations after replacing €7, , by €7, + 9, deduce the distribution of the
future portfolio values W7, (0), say, and the associated Value at Risk: VaR [T, H, a; d].
This will allow us to study the sensitivity of the VaR and of the capital requirement to a

transitory shock 0.

6.2 Extension to dynamic strategies

The approach presented above, is the one proposed by the regulators, which is not opti-
mal in practice. Indeed, it is based on the assumption of fixed future portfolio allocations,
whereas the investors regularly update these allocations to take advantage of price move-
ments. A typical example is a hedging portfolio for an european call. The portfolio is
often updated at regular dates T'+ h, h = 1,..., H (say), with allocations determined by
the deltas of the Black-Scholes formula. Even though the price evolution in the Black-
Scholes model obeys a linear dynamics, the deltas are complicated nonlinear functions of
the prices, and the major part of the risk is due to these nonlinear adjustments.

Let us still assume the price of the riskfree asset yo 4y, =1, h =1,.., H. The future

values of a self-financed portfolio are:

H

Wiy nla()] = Wr + Y an(yren—1)yren Syrin—i, (6.7)
h=1

where ap, (yr4p—1) are the allocations in the risky assets considered at the pth updating,
which are path dependent in general.
For a given dynamic strategy a(.) = [ax(.), h = 1,..., H], we can compute, like in the

previous subsection, the simulated future portfolio values

H

W:Is‘+H[a(-)] =Wr+ Z ah(?/quJrh—l)[y%Jrh <:>?/59F+h71]a (6.8)
h=1

and deduce the VaR under and without a transitory shock. These Values at Risk will
depend on the selected dynamic strategy. Let us denote them by
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VaR [T,H,«; a(.)] and VaR [T, H,«; a(.);0].

They can be compared to the Values at Risk evaluated for a portfolio with fixed allocations

ah(.) = ar, Vh:

VaR [T,H,a] and VaR [T, H,«;d],

using the notation of subsection 6.1.



Appendix 1

Asymptotic properties of the test statistics

1. Expansion:

We first consider an expansion of the residual:

& = O7F (Y 07)]

OF, 1
= @7 Fi-a (Vi) + —55 (Yii00) Or 00) +o( )]
_ 1 8Ft_1 ~ 1
= O F_ (Y0 Y;; 60) (07 <6 —
il °”+¢[<1>*1(Ft_1(n;90>>1 gor (Y 0Or Sh) T o)
1 oF,_ 1
— o+ —ZL Y 00) (0 o0 —).
We deduce the expansion of the test statistic:
1 X
$ikh = ﬁ;[ﬂj(gt)ﬂk(ét—h)<:)5o,h5',k]
1 & 1 OF,_, R 1
= —S{H |a+ Y;09@9+—]
\/T;{ ][Et 5e) 00 (Y5 00) (07 <0)) O(ﬁ)
1 OFi_p—1 A 1 ]
H B Y, . - .
k [Et h+¢(6t_h) 50 (Yi—n;60) (61 @90)+0(\/T) E00,105k}
1 T
= — > [Hj(e)Hi(er—n) ©00,0; ]
Tt:l
1 OH, 1 OF_y_ .
T G gt s
t=1 -
1 & OH; 1 OF, .
+—TZ—€(et)Hk(et Qo g (Y1:00) (01 60) + (1)
t=1
1 & .
= 77 > [Hj(e) H(er—n) €00005k]) + AjenVT (O <0) + o(1),
t=1
where:
OH,, 1 0F_p1 0H;(€) 1 0F_;
A = ElH () 5 o) g S e @)+ EL % Hulern) 3 %
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Figure 5.2: Simulated Paths
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Figure 5.4: Mean Deviation from the Benchmark
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Figure 5.5: Variance of the Deviation from Benchmark
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Figure 5.6: Mean Deviation from the Benchmark
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33

delta

0.9




2.0

15

1.0

0.5

0.0
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