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Nonlinear Innovations and Impulse Responses
Christian Gourieroux, Joanna Jasiak

Abstract

This paper introduces a concept of innovation for the analysis of nonlinear

dynamics. We show that nonlinear processes can be represented as functions

of current and lagged values of such innovations. The residuals from nonlinear

dynamic models axe used to construct various speci�cation tests. We de�ne

and study nonlinear impulse response functions to transitory and permanent

shocks.

Innovations non-lin�eaires et fonctions r�eponses
Christian Gourieroux, Joanna Jasiak

R�esum�e

Nous introduisons un concept d'innovation adapt�e �a l'analyse des dynamiques

non lin�eaires. Nous expliquons comment le processus initial peut être exprim�e

en fonction des valeurs pr�esentes et pass�ees de l'innovation, utilisons les r�esidus

associ�es pour construire des tests de sp�eci�cation d'une dynamique non lin�eaire

et pour d�e�nir des fonctions r�eponses �a des chocs transitoires ou permanents.
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1 Introduction

The innovations of a stochastic process (Yt) are usually de�ned either as a) errors repre-

senting di�erences between the expected and realized values of Yt, i.e. �
1
t = Yt � Et�1Yt,

or b) conditionally standardized expectation errors, i.e. �2t = (Yt � Et�1Yt)=(Vt�1Yt)
1

2 ,

where Et�1Yt and Vt�1Yt are the conditional mean and variance of Yt given the infor-

mation available at time t� 1. These de�nitions cause serious di�culties in the analysis

of nonlinear dynamics. For example, the standardized innovations (�2t ) may not nec-

essarily be independent, due to unobserved cross e�ects of their conditional moments

of order strictly larger than two. Moreover, the de�nitions of innovations of a series

(Yt) and of its nonlinear transform, such as (exp Yt) are not identical. For example,

�3t = (expYt �Et�1 expYt)=Vt�1(expYt) and �2t do not even satisfy a one-to-one relation-

ship.

The aim of this paper is to introduce a new notion of innovation for the analysis of

nonlinear dynamics, and propose a representation of a time series as a function of current

and lagged nonlinear innovations. The paper also presents a battery of speci�cation tests

based on corresponding nonlinear residuals for diagnostic checking of nonlinear models

such as the NLARMA (nonlinear ARMA) models. A signi�cant part of this work concerns

the nonlinear impulse response analysis. The nonlinear innovations allow us to develop a

new approach to study transitory and permanent shocks to models such as the popular

GARCH or ACD. We also extend the application of impulse response analysis to the

domain of �nancial strategies, and concider shock e�ects not only on the future values

of the series of interest, but also on the outcome of a dynamic strategy, such as dynamic

portfolio hedging, for example.

In section 2 we de�ne a nonlinear gaussian innovation of a strongly stationary process

and discuss the nonlinear regularity condition ensuring that the current and lagged values

of the process contain information on current and lagged values of the innovation. Next,

we derive a representation theorem for a nonlinearly regular stationary process where the

current value of the process is expressed as a nonlinear function of current and lagged non-

linear innovations. In section 3 we consider parametric dynamic models and show how to

�nd the nonlinear residuals by approximating nonlinear innovations. These residuals are

next used to develop speci�cation tests of the initial dynamic model, which extend the port-

manteau tests introduced in the linear framework. Nonlinear ARMA models are de�ned

in section 4, where we propose nonparametric estimation methods of nonlinear transforms

of the autoregressive moving average. Section 5 is devoted to nonlinear impulse response
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analysis. We study the e�ects of permanent and transitory shocks to nonlinear gaussian

innovations and compare our approach with impulse response techniques introduced by

Gallant, Rossi, Tauchen (1993), and Koop, Pesaran, Potter (1996). Section 6 extends

the impulse response techniques to a setup involving dynamic �nancial strategies. As an

illustration we discuss the structural impulse response analysis for determining the Value

at Risk and the minimum capital requirement under dynamic portfolio management.

2 Nonlinear gaussian innovation and representation theo-

rem

In this section we consider an unidimensional strongly stationary process (Yt; t 2 Z). We

denote by Ft = �(Yt) the sigma algebra generated by the current and past values of the

process. Moreover we assume:

Assumption A.1: The conditional distribution of Yt given Ft�1 is continuous on

[R;B(R)] with a positive p.d.f. denoted by ft�1.

The associated c.d.f. Ft�1 is continuous, strictly increasing and hence invertible.

2.1 Nonlinear gaussian innovations

De�nition 1: The process (�t; t 2 Z) is a nonlinear gaussian innovation of the process

(Yt; t 2 Z) if it satis�es the following conditions:

i) (�t; t 2 Z) is a gaussian white noise IIN(0,1);

ii) �t and Yt are in a continuous invertible relationship conditional on Ft�1: �t =

gt�1(Yt) a.s., where gt�1 is continuous, invertible and may depend on the past Ft�1.

The second condition implies:

�(�t;Ft�1) = �(Yt;Ft�1); 8t; (2.1)

and by recursion:

�(�t; �t�1; :::; �t�p+1;Ft�p) = �(Yt; Yt�1; :::; Yt�p+1;Ft�p); 8t; p � 0: (2.2)

Property 2: Under assumption A.1, the strongly stationary process (Yt; t 2 Z) admits

a nonlinear gaussian innovation. It is unique up to a change of signs, date by date.

Proof:

i) The process (�t; t 2 Z) de�ned by:

�t = ��1[Ft�1(Yt)]; t 2 Z; (2.3)
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where � denotes the c.d.f. of the standard normal distribution, satis�es the two conditions

of de�nition 1.

ii) Let us assume that �1t is another nonlinear gaussian innovation. Then there exists a

continuous invertible relationship between �t and �1t conditional on: Ft�1 : �t = ht�1(�
1
t ),

(say), and

P [�1t < �] = �(�) = P [ht�1(�
1
t ) < � j Ft�1].

The function ht�1 is continuous, invertible and therefore monotone. If it is increasing,

conditional on Ft�1, we get:

�(�) = �[h�1
t�1(�)]; 8�;

which implies ht�1 = Id.

If it is decreasing, conditional on Ft�1, we get:

�(�) = 1��[h�1
t�1(�)]; 8�;

which implies ht�1 = �Id.
Q.E.D.

Therefore it is always possible to select the gaussian innovation process in order to

obtain an increasing relationship between Yt and �t at any time t. The corresponding

innovation is uniquely de�ned by (2.3). Moreover this formula implies that the innovations

of (Yt) and of an invertible increasing transform of (Yt) are identical.

2.2 Representation theorem

In this section we introduce a representation theorem which expresses the current value

of the process as a function of current and lagged values of the innovation. By analogy

to the Wold representation for linear processes, we �rst introduce the nonlinear regularity

condition.

De�nition 3: The (Yt; t 2 Z) process is nonlinearly regular if F�1 = \tFt is the

degenerate sigma algebra.

This regularity condition implies in particular that 1:

lim
h!1

E(a(Yt; Yt+1; :::; Yt+q)j Ft�h) = Ea(Yt; Yt+1; :::; Yt+q);

1It means that the process has short memory in the mean for any nonlinear transform using Granger's
terminology [Granger (1995)].
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for any integer q and integrable function a, which means that the initial value of the process

is noninformative for a long horizon forecast. In the following property, the underlined

variables denote processes up to and including the given date.

Property 4: If the strongly stationary process (Yt; t 2 Z) satis�es assumption A.1

and is nonlinearly regular, then �(�t) = �(Yt) = Ft.

Proof:

i) We have: �(�t; :::; �t�p) � �(Yt); 8p, and then �(�t) = _p �(�t; :::; �t�p) � �(Yt):

ii) Conversely:

�(Yt) = �(�t; ::::; �t�p) _ Ft�p � �(�t) _ Ft�p; 8p:

Therefore �(Yt) � \p [�(�t) _ Ft�p] = �(�t) _ (\pFt�p) = �(�t); due to the regularity

condition.

Q.E.D.

The representation theorem is a consequence of the existence of simple hilbertian basis

for gaussian processes. More precisely, let us introduce the Hermite polynomials:

Hj(�) =
X

0�m�[j=2]

j!

(j � 2m)!m!2m
(�1)m�j�2m j = 0; 1; ::: (2.4)

A hilbertian basis of L2(�(�t)) is given by:

1p
j1!

Hj1(�t�h1)
1p
j2!

Hj2(�t�h2):::
1p
jn!

Hjn(�t�hn); (2.5)

n; j1; :::; jn; h1; :::; hn varying with h1 6= h2:::: 6= hn.

The representation theorem follows directly.

Property 5: If the strongly stationary process satis�es assumption A.1, is nonlinearly

regular and square integrable, we get:

Yt = lim
N !1

J !1
H !1

NX
n=1

X
j1;:::;jn=1;:::;J

X
h1; : : : ; hn = 0; : : : ;H

h1 6= : : : 6= hn

a
(N;J;H)
j1;:::;jn;h1;:::;hn

Hj1(�t�h1)Hj2(�t�h2):::Hjn(�t�hn);

where Yt is the mean square limit.

This representation theorem is of Volterra type [see, Volterra (1930), (1959), Nisio

(1960), Priestley (1988)] and presents Yt as a limit of polynomials in current and lagged

values of a gaussian white noise. However our approach is closer to the lines followed by

Wiener (1958), using Hilbert arguments.
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The representation has an especially simple form, when the coe�cients a
(N;J;H)
j1;:::;jn;h1;:::;hn

are independent of N; J;H. Indeed we get:

Yt =
1X
n=1

1X
j1;:::jn=0

1X
h1;:::;hn=0

aj1;:::;jn;h1;:::;hnHj1(�t�h1)Hj2(�t�h2):::Hjn(�t�hn): (2.6)

It is known that linear gaussian ARMA models satisfy this condition whenever the

moving average part does not admit a root with unitary modulus [Whittle (1963)].

Finally note that the condition of square integrability of Yt is not very restrictive.

Indeed if Yt is not square integrable we may �nd an increasing transformation h(Yt),

which will satisfy this requirement. Next, the representation theorem can be applied to

the process h(Yt) and by inverting h, a representation for Yt will be obtained [ where Yt

becomes now the limit in probability ].

2.3 Example

The traditional nonlinear dynamic models introduced for �nancial applications such as

ARCH models [ Engle (1982)] or ACD models [ Engle, Russell (1998)] usually contain non-

linear innovations in their speci�cations. As an illustration let us consider the ACD(1,1)

model. The process of interest is a sequence of durations fYt; t 2 Zg. Let us introduce

the conditional expectation of Yt given the past: 	t = E(Ytj Ft�1). It is assumed that the

standardized durations Yt=	t are independent with identical distributions whose c.d.f is

F (say), and that 	t satis�es the recursive equation:

	t = c+ �Yt�1 + �	t�1: (2.7)

The nonlinear gaussian innovation is:

�t = ��1F (Yt=	t): (2.8)

Therefore we can write:

Yt = 	tg(�t); (2.9)

where g = F�1 � �, and by substituting into the recursive equation (2.7) we get:

Yt = cg(�t) + �Yt�1g(�t) + �Yt�1
g(�t)

g(�t�1)

=

�
�g(�t) + �

g(�t)

g(�t�1)

�
Yt�1 + cg(�t); (2.10)
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which is an autoregressive representation with time dependent random autoregressive co-

e�cients.

We may also write the recursive equation (2.7) as:

	t = c+ �	t�1g(�t�1) + �	t�1; (2.11)

which shows that the process (�t) is also the nonlinear innovation of the expectation process

(	t+1).

3 Residual based diagnostics

In this section we consider a parametric model and de�ne its nonlinear residuals. These

residuals are next used to construct various speci�cation tests.

3.1 Residuals

Let us consider a parametric model of the process (Yt; t 2 Z), with the conditional p.d.f.

parametrized by � and denoted ft�1(:; �). The parameter can be estimated by the maxi-

mum likelihood, where the M.L. estimator is de�ned by:

�̂T = Argmax
�

TX
t=1

log ft�1(Yt; �): (3.1)

We assume that standard regularity conditions are satis�ed to ensure that this esti-

mator is consistent, asymptotically normal and admits the asymptotic expansion:

p
T (�̂T � �) = J�1 1p

T

TX
t=1

@ log ft�1

@�
(Yt; �) + o(

1p
T
); (3.2)

where J = E
h
�@2 log ft�1(Yt;�)

@�@�0

i
.

The residuals of the model are de�ned by:

�̂t = ��1[Ft�1(Yt; �̂T )]: (3.3)

The speci�cation tests are designed to verify whether these residuals satisfy moment con-

ditions given below.

3.2 The moment conditions

We know that the model is well speci�ed and �0 is the true parameter value, if and only

if the variables �t = ��1[Ft�1(Yt; �0)] are IIN(0,1). This condition of gaussian white noise

can be written in terms of moments of Hermite polynomials.
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Property 6: (�t; t 2 Z) is a gaussian white noise if and only if :

i) EHj(�t) = 0; j � 1;

ii) EH2
j (�t) = 1; j � 1;

iii) E[Hj(�t)Hk(�t)] = 0; j; k � 1; j 6= k;

iv) E[Hj(�t)
Qn

i=1Hki(�t�hi)] = 0; 8n; k1; :::; kn; 8h1 6= h2 6= ::: 6= hn.

Proof:

Since the square integrable functions of �t�1 may be expanded in terms of a product of

Hermite polynomials, even if the process (�t) is not gaussian, condition (iv) implies that:

8n; 8f; g; : E[f(�t) g(�t�1; :::; �t�n)] = 0;

which is equivalent to the independence of �t with �(�t�1).

Finally conditions i), ii), iii) imply that the marginal distribution of �t is standard

normal.

Q.E.D.

3.3 Speci�cation tests

We now introduce tests statistics based on the moment conditions outlined in the previous

section. Let us denote

�j;k;h =
1p
T

TX
t=1

fHj(�̂t)Hk(�̂t�h)� �0;h�j;kg; j; k � 0; h � 0; (3.4)

where � is the Kronecker symbol. Under the null hypothesis of correct speci�cation, we

obtain the following expansion of the test statistics [see, Appendix 1]:

�j;k;h =
1p
T

TX
t=1

Zt(j; k; h); (3.5)

where :

Zt(j; k; h) = Hj(�t)Hk(�t�h)� �0;h�j;k +Aj;k;hJ
�1@ log ft�1

@�
(Yt; �0); (3.6)

Aj;k;h = E[Hj(�t)
@Hk

@� (�t�h)
1

�(�t�h)
@Ft�h�1

@�0 (Yt�h; �0)]+E[
@Hj (�t)

@� Hk(�t�h) 1
�(�t)

@Ft�1
@�0 (Yt; �0)];

where � denotes the p.d.f. of the standard normal distribution.

We note that if the model is well speci�ed, Hj(�t)Hk(�t�h)� �0;h�j;k and
@ log ft�1(Yt;�0)

@� are

martingale di�erence sequences. Therefore the components of Zt(j; k; h) are uncorrelated.



8

Property 7: If the parametric dynamic model is well speci�ed the test statistics are

asymptotically normal with zero mean and covariances given by:

Covasy[�j;k;h; �j�;k�;h�] = Cov[Zt(j; k; h); Zt(j
�; k�; h�)]:

In practice the various moment conditions can be considered sequentially. For instance

� for j = k = 1; h varying, h � 1, the testing procedures will be based on the standard

residual autocovariances;

� for j = k = 2; h varying, h � 1, the testing procedures will be based on the sample

autocorrelations of the squared residuals [see McLeod, Li (1983)];

� for j = 2; k = 1; h varying, h � 1, the testing procedures allow to detect some re-

maining correlation between the squared residuals and the lagged residuals [which extends

the suggestion by Lawrance, Lewis (1985)]....

However it has to be emphasized that even if the �j;k;h statistics are asymptotically

independent, it is in general not possible to standardize them and obtain the usual form of

the Liung-Box statistics. The reason is that we have to take into account the nonlinear dy-

namics which entails kurtosis and skewness e�ects and requires appropriate modi�cations

of the asymptotic variances.

4 Nonlinear ARMA Models

Nonlinear ARMA models are introduced by distinguishing nonlinear e�ects of the lagged

variables and nonlinear e�ects of the nonlinear innovations.

4.1 De�nition

De�nition 7: The strongly stationary process (Yt; t 2 Z) has a nonlinear ARMA(p,q) or

NLARMA(p,q) representation if and only if it satis�es a recursive relation [see Granger,

Terasvirta (1993)]:

Yt = g(Yt�1; :::; Yt�p; �t; :::; �t�q); (4.1)

where (�t; t 2 Z) is a gaussian nonlinear innovation, g is a function which is invertible with

respect to �t, and is not constant with respect to Yt�p; �t�q respectively. The coe�cients

p and q are the (nonlinear) autoregressive and moving average orders, respectively.

For q = 0, we get a nonlinear autoregression (NLAR) of order p [see Tong (1990), p

96]:
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Yt = g(Yt�1; :::; Yt�p; �t), c(Yt; Yt�1; :::; Yt�p) = �t; say:

For p = 0 we get a nonlinear moving average (NLMA) of order q [see Tong (1990), p 115]:

Yt = g(�t; �t�1:::; �t�q):

In general, NLARMA models may contain cross e�ects of lagged values of the process and

lagged innovations, as shown in the example of the ACD(1,1) model, which admits the

NLARMA(1,1) representation (2.10). The presence of these cross e�ects makes it di�cult

to characterize the NLARMA representations simply in terms of their distributional prop-

erties as it is done in the linear framework where a process is said to have a linear MA(q)

[resp AR(p)] representation if and only if the autocorrelations [ resp. partial autocorrela-

tions] cut o� at lag q + 1 [ resp p+ 1]. We have instead the following characterization of

nonlinear autoregressive processes.

Property 8 : A strongly stationary process admits a nonlinear autoregressive repre-

sentation of order p if and only if it is Markov of order p.

Proof: The necessary condition is obvious. The su�cient condition results from the

de�nition of the nonlinear gaussian innovation: �t = ��1[Ft�1(Yt)], and the fact that Ft�1

depends on the past through Yt�1; :::; Yt�p only.

Q.E.D.

The property below details the link between the existence of a nonlinear MA represen-

tation and the zero correlations between nonlinear transformations of current and lagged

observations whenever the lag is large enough.

Property 9: If the strongly stationary process admits a nonlinear moving average

representation of order q, then the sigma algebras �(Yt) and Ft�q�1 = �(Yt�q�1) are

independent.

However the condition of Property 9 is not su�cient due to cross e�ects as explained

in the example below.

Example 4.1: Let us consider the NLAR(1) process whose conditional p.d.f. is:

f(ytj yt�1) =
1

2
1[�1;1](yt)

"
1 + �

3
p
15

2
yt

�
y2t�1 �

1

3

�#
;

with j�j < 1p
15
. The marginal distribution of Yt is the uniform distribution on the interval

[�1; 1]. It is easy to show that the inequality � < 1p
15

ensures that f(ytj yt�1) is non-
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negative on the set of admissible values of yt; yt�1. Now let us consider the conditional

distribution at horizon 2. We get:

f(ytj yt�2) =

Z 1

�1
f(ytj yt�1)f(yt�1j yt�2)dyt�1

=
1

2
1[�1;1](yt)

Z 1

�1

"
1 + �

3
p
15

2
yt

�
y2t�1 �

1

3

�# "
1 + �

3
p
15

2
yt�1

�
y2t�2 �

1

3

�#
dyt�1

=
1

2
1[�1;1](yt) = f0(yt):

Therefore �(Yt) is independent of �(Yt�2). The AR function can be explicited by consid-

ering the conditional c.d.f.

F (ytj yt�1) =
1

2
(yt + 1) + �

3
p
15

8
(y2t � 1)(y2t�1 �

1

3
);

and the equality

F (ytj yt�1) = �(�t), yt = 	(yt�1; �t):

It is easy to verify that

yt = 	[	(yt�2; �t�1); �t];

actually depends on yt�2 and therefore the process does not admit a NLMA(1) represen-

tation.

4.2 Nonparametric estimation of nonlinear ARMA models

In this section we assume that (Yt; t 2 Z) has a nonlinear ARMA(p,q) representation, and

discuss nonparametric estimation of the function g for given orders p and q.

i) Autoregressive processes.

Let us �rst consider a NLAR(p) process. By applying appropriate nonlinear transfor-

mations, the models are:

c(Yt; :::; Yt�p) = �t; (4.2)

where (�t; t 2 Z) is a gaussian nonlinear innovation. By construction, we know that:

c(Yt; :::; Yt�p) = ��1[Ft�1(Yt)]: (4.3)
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Therefore a nonparametric estimator of the autoregressive function c is immediately de-

duced from a nonparametric estimator of the conditional c.d.f. Ft�1. For instance, we can

consider a kernel estimator of the conditional c.d.f.:

F̂t�1(yt) = F̂ (ytjYt�1 = yt�1; ::::; Yt�p = yt�p)

=

PT
t=1

n
1Yt<yt

Qp
j=1

1
hK

h
Yt�j�yt�j

h

io
PT

t=1

Qp
j=1

1
hK

h
Yt�j�yt�j

h

i ; (4.4)

where K is a second order kernel, i.e. satis�es
R
uK(u)du = 0,

R
u2K(u)du < +1.

Then we �nd that:

ĉ(yt; : : : ; yt�p) = ��1[F̂t�1(yt)]: (4.5)

Obviously, these nonparametric techniques can only be implemented if the number of

observations is large, compared to the autoregressive order p.

Under standard regularity conditions [see, e.g. Bosq (1998)] including the convergence

of the bandwidth to zero at an appropriate rate, this functional estimator is consistent

and asymptotically normal:

p
Thp[ĉ(yt; :::; yt�p)� c(yt; :::; yt�p)]! N

"
0;

[
R
u2K(u)du]p

f�[c(yt; :::; yt�p)]g2
Ft�1(yt)[1� Ft�1(yt)]

f(yt�1; :::; yt�p)

#
;

(4.6)

where f(yt�1; :::; yt�p) is the joint p.d.f. of yt�1; :::; yt�p

ii) Approximation of ARMA processes by long autoregressive representa-

tions

In the general case of ARMA processes of small orders p and q, we can follow the

approach outlined below: [see, Gourieroux, Monfort (1997), p.188 for the analogue in the

linear framework]

Step 1: We estimate an approximated autoregressive representation with a su�ciently

large autoregressive order P:

C(Yt�1; :::; Yt�P ) = �t; (say):

We denote by Ĉ the associated estimator.
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Step 2: We �nd the residuals of the model

�̂t = Ĉ(Yt�1; :::; Yt�P ); t = 1; :::; T;

which are proxies for the gaussian innovations.

Step 3: We �nally consider the nonlinear ARMA representation:

Yt = g(Yt�1; :::; Yt�p; �t; :::; �t�q); (say):

The g function can be estimated by the regressogram of Yt on Yt�1; :::; Yt�p; �̂t; :::; �̂t�q :

ĝ(yt�1; :::; yt�p; �t; :::; �t�q) (4.7)

=

PT
t=1

n
Yt
Qp

i=1
1
hK

h
Yt�i�yt�i

h

iQq
j=1

1
hK

h
�̂t�j��t�j

h

io
PT

t=1
1
hK

h
Yt�i�yt�i

h

iQq
j=1

1
hK

h
�̂t�j��t�j

h

i ; (4.8)

since, in particular, the regressogram can be applied to estimate a deterministic relation-

ship [Bosq, Guegan (1995)].

5 Impulse Response Analysis

5.1 Background

In recent literature, Gallant, Rossi, Tauchen (1993), and Koop, Pesaran, Potter (1996),

[henceforth GRT and KPP] have proposed extensions of the traditional impulse response

analysis to nonlinear dynamic models. Both papers emphasize the speci�city of nonlinear

framework for impulse response functions, considered as the time pro�le of the shock e�ect

on the behaviour of the series [see, e.g. KPP (1996)].

i) For ARIMA models, impulse responses have a symmetry property (i.e. a transitory

shock of �� has exactly the opposite e�ect of a transitory shock of +�) , whereas in the

nonlinear case the e�ects of opposite shocks may be very di�erent.

ii) In the linear framework we have the property of "shock linearity" [i.e. a transitory

shock of k� has k times the e�ect of a shock of �], whereas the e�ect of the magnitude of

the shock is nonlinear in the general case.

iii) For ARIMA models the e�ect of the shocks does not depend on the past history,

whereas this path dependency is crucial in nonlinear framework.
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iv) Finally, it is necessary to consider some distributional properties of the impulse

response function, and not only the e�ect of the shocks on the conditional expectation of

the future variable of interest.

However while both extensions consider only transitory shocks, their proposed impulse

response analysis di�er.

i) The GRT analysis is performed conditional on the observed history, whereas KPP

propose to integrate out the possible histories.

ii) Fundamental di�erences arise from de�nitions of the transitory shocks. In the spirit

of the Keynesian multiplier analysis, GRT propose to shock directly the variable, and

not an innovation. The drawback of this approach is twofold. It can not be extended

to an analysis of permanent shocks, and the idea of symmetric shocks is unclear. Indeed

symmetric shocks to innovations do not necessarily correspond to symmetric shocks to

the current variable. On the contrary, KPP following Sims (1978) [see also Blanchard,

Quah (1989)], consider shocks to innovations. However they consider innovations de�ned

by conditionally centering and rescaling the variable Yt; these innovations:

vt = (Vt�1Yt)
� 1

2 (Yt �Et�1Yt);

are not su�ciently corrected for the presence of nonlinear temporal dependence. Firstly

these innovations may feature temporal dependence in moments of order larger then three,

which may a�ect the interpretation of impulse responses. Secondly, the conditional dis-

tribution of vt is not symmetric in general, and this could a�ect the interpretation of

symmetric shocks.

The di�culties encountered by these authors are due to ambiguous de�nitions of inno-

vations in nonlinear framework. Using the gaussian innovations which have been uniquely

de�ned in section 2 , we can now propose a complete innovation based impulse response

analysis for both transitory and permanent shocks.

5.2 De�nitions of the impulse response functions

The impulse response analysis can be based on the Volterra type decomposition (see,

property 5), where:

Yt = at(�t; �t�1; :::; �1; �0); (5.1)

and (�t) is a gaussian white noise, with unitary variance. Since the distribution of �t

is symmetric, the shocks of � and �� have the same in�nitesimal occurrence. As well,
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since the distribution of �t is independent of time, the shocks of the same magnitude �

at di�erent dates have also the same in�nitesimal occurrence, which allows to consider

"permanent" shocks.

As suggested by GRT (1993) the analysis needs to be conditioned on the history before

the shocks. Therefore if the shocks hit the process at date 1, the previous values of the

process and the innovations are known, i.e. �0 is �xed. Then, at date 0, we have to

evaluate the e�ect of a sequence of deterministic shocks �1; �2; :::; �t; ::: occurring at future

dates on the future pro�le of the process. These e�ects have to be measured with respect

to a benchmark which is the path followed under the absence of shocks. Since future

innovations are unknown, this benchmark is random. We denote by: �s1; �
s
2; :::; �

s
t ; ::: a

future path for the innovations, where �s1; �
s
2; :::; �

s
t ; ::: are IIN (0,1) conditional on �0. The

random benchmark is:

Y s
t (�0) = at(�

s
t ; �

s
t�1; :::; �

s
1; �0); (5.2)

whereas the pro�le after shocks arrival is:

Y s
t (�; �0) = at(�

s
t + �t; �

s
t�1 + �t�1; :::; �

s
1 + �1; �0); (5.3)

where � = (�1; :::; �t; :::).

The entire e�ect of the sequence of shocks is summarized by the joint path distribution

of:

[Y s
t (�0); ; Y

s
t (�; �0); t � 1]:

In practice we have to select sequences of shocks and summary statistics of the joint

path distribution. The standard response analysis concerns:

either transitory shocks at date 1: �1 = �; �t = 0; t � 2,

or transitory shocks at date t0: �t0 = �; �t = 0; t 6= t0,

or permanent shock starting at date 1: �t = �; t � 2.

They di�er in terms of the sign and magnitude of �.

The standard distributional summary statistics considered in the literature [GRT

(1993), KPP(1996)] are:

either di�erences of expectations of the series:

E[Y s
t (�; �0)j�0]�E[Y s

t (�0)j�0];

or di�erences of expectations of transformed series:
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E[g(Y s
t (�; �0))j�0]�E[g(Y s

t (�0))j�0];

where g is a given nonlinear function,

or di�erences of variances:

V [Y s
t (�; �0)j�0]� V [Y s

t (�0)j�0]:

5.3 Nonlinear AR(1) process

i) The dynamics.

As an illustration we consider a dynamic NLAR(1) model de�ned by:

Yt = g(Yt�1; �t) = g�(1)(Yt�1; �t); say; (5.4)

where (�t) is a standard gaussian white noise and gn an invertible function with respect to �.

By recursion we �nd the expression of Yt as a function of Y0 and innovations �
t
1 = (�1; :::; �t):

Yt = g�(t)[Y0; �t1]; (5.5)

where g�(t) is recursively de�ned by:

g�(t)[Y0; �t1] = gfg�(t�1)[Y0; �
t�1
1 ]; �tg (5.6)

= g�(t�1)fg[Y0; �1]; �t2g: (5.7)

The equality (5.6) implies:

@g�(t)

@y
[Y0; �

t
1] =

@g

@y
[Yt�1; �

t]
@g�(t�1)

@y
[Y0; �

t�1
1 ];

and by the chain rule:

@g�(t)

@y
[Y0; �

t
1] =

tY
�=1

@g

@y
[Y��1; �� ]: (5.8)

ii) Local impact of a transitory shock at date 1.

Let us consider a small transitory shock �1 = �. We get:

Yt(�) = g�(t)[Y0; �t1 + �t1]

= g�(t�1)[g(Y0; �1 + �); �t2]; from (5.7);
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� g�(t�1)[Y1; �
t
2] +

@g�(t�1)

@y
[Y1; �

t
2]
@g

@y
[Y��1; �� ]�

= Yt +
tY

�=1

@g

@y
[Y��1; �� ]�; from (5.8):

If we consider a nonlinear transformation of the process, H say, we get:

H[Yt(�)] � H(Yt) +
dH

dy
(Yt)

tY
�=1

@g

@y
[Y��1; �� ]�: (5.9)

Therefore the in�nitesimal e�ect of the transitory shock on the expectation of H(Yt)

conditional on Y0 is:

1

�
E0fH[Yt(�)] �H(Yt)g = E0

"
dH

dy
(Yt)

tY
�=1

@g

@y
[Y��1; �� ]

#
: (5.10)

It is interesting to consider the long run impact of a transitory shock, i.e. the behaviour

of either 1
� [Yt(�) � Yt], or

1
�E0[Yt(�) � Yt], when t tends to in�nity. Indeed Nelson (1990)

[see also Bougerol, Picard (1992)] has shown in the framework of GARCH models, that

the responses to shocks can be signi�cantly di�erent. More precisely, if the process is

nonlinearly regular, the asymptotic impact of a shock on Y0 is equal to zero. For large t

this impact is:

tY
�=1

@g

@y
[Y��1; �� ]

= exp

(
tX

�=1

�
log @g

@y
(Yt�1; �� )

�)

� exp

�
tE log

@g

@y
(Y��1; �� )

�
;

and tends to zero if E log @g
@y (Y��1; �� ) < 0, which is a necessary condition for a strongly

stationary regular process. E log @g
@y (Y��1; �� ) is the Liapunov exponent of the dynamic

system [Oseledec (1968)].

However, by taking the expectation and using the convexity inequality, we get:

E

"
tY

�=1

@g

@y
(Y��1; �� )

#

= E

"
exp

tX
�=1

log
@g

@y
(Y��1; �� )

#

� exp

"
E

tX
�=1

log
@g

@y
(Y��1; �� )

#
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� exp

�
tE log

@g

@y
(Y��1; �� )

�
;

and the stationarity condition E
h
log @g

@y (Y��1; �� )
i
< 0 does not necessarily imply that the

impulse response vanishes in average for large t.

iii) Linear AR(1) model with a random autoregressive coe�cient.

Let us consider the dynamic bilinear model [Tong (1993), p.8]:

Yt = (a+ b�t)Yt�1 + �t; t varying;

where (�t) is a standard gaussian white noise. We can explicitely compute the e�ect of a

transitory shock hitting at date 1. Indeed the disturbed path is such that:

Y D
t = (a+ b�t)Y

D
t�1 + �t; 8t � 2:

We see that:

�Yt = Y D
t � Yt = (a+ b�t)�Yt�1

=
tY

�=2

(a+ b�� )�Y1

=
tY

�=2

(a+ b�� )(1 + bY0)(��1):

This model satis�es the property of shock linearity because the e�ect of the shock is a

linear function of ��1. Moreover we know from Bougerol, Picard (1992) that, for large t,

the coe�cient:

tY
�=2

(a+ b�� )(1 + bY0)

= exp

(
(t� 1)

1

t� 1

tX
�=2

log(a+ b�� )

)
(1 + bY0)

� exp[(t� 1)E log(a+ b�� )](1 + bY0)

tends to zero if and only if E log(a + b�� ) < 0. However the e�ect of the shock on the

expectation of Yt is :

E[�YtjY0] = at�1(1 + bY0)��1:
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This average e�ect tends to zero if jaj < 1, which is a more stringent condition than the

negativity of E log(a+ b�� ), due to the convexity inequality.

Example 5.1: We note that the ACD(1,1) model introduced in subsection (2.3) belongs

to this class. Indeed, the sequence of expected durations satis�es:

	t = c+ (�g(�t�1) + �)	t�1;

and the impact of a transitory shock is such that :

�	t = (�g(�t�1) + �)�	t�1; for t � 3:

This e�ect asymptotically vanishes in average if

jE(�g(�) + �)j = j�+ �j < 1;

and vanishes path by path if the Liapunov exponent is negative E log(�g(�)+�) < 0. These

conditions imply restrictions on �; � and on the pattern of the distribution of standardized

durations. For instance, if g(�) has an exponential distribution, the Liapunov exponent is

Z 1

0
log(�x+ �) exp�xdx = log � + exp(�=�)E1(�=�);

where E1(x) =
R1
x

exp�t
t dt is the exponential integral [see Abramowitz, Stegun (1964),

formula 5.1.1, page 228]. We plot in Figure 5.1 the set of all points (�; �) for which the

Liapunov exponent is zero.

Insert Figure 5.1

Below this frontier, all pairs of (�; �) coordinates are associated to negative Liapunov

exponents, while the coordinates (�; �) above it are associated to its positive values. We

�nd that the frontier is decreasing from (�� 0:0; � = 1:0) down to (� � 1:4; � � 0:1). For

�'s greater than 1.4 the frontier approches asymptotically the axis of �.

5.4 Simulation results

In this section we illustrate the computation and analysis of impulse response functions

using the examples of an ACD(1,1) model and a factor model with a distinct form of

nonlinear temporal dependence.

i) The autoregressive conditional duration (ACD) model.
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We consider the ACD(1,1) model of subsection (2.3) with an exponential distribution

of the standardized duration. The initial values have been �xed to �0 = 0:0; y0 = 2:0. We

perform two experiments involving two sets of parameter values:

� experiment 1: c = 1; � = 0:3; � = 0:2,

� experiment 1: c = 1; � = 0:4; � = 0:64.

In the �rst experiment the shock e�ect asymptotically vanishes in the mean and path

by path, whereas in the second experiment we observe a di�erent outcome. We consider

transitory shocks � occuring at date 1, and taking values � = �1;�0:9; :::0:9; 1, with the

benchmark corresponding to � = 0:0. The maximal horizon is H = 10.

We display in Figure 5.2 the joint simulated paths for the benchmark and two perturbed

series with � = += � 1, for both experiments. The e�ects of shocks quickly dissipate in

experiment 1 whereas they are more persistent in experiment 2 even though they also

vanish asymptotically.

Insert Figure 5.2: Simulated Paths.

We plot in Figure 5.3 the (marginal) distribution of Yt(�) for horizon t = 3, and

� = �1; 0;+1, computed conditionally on the information available at date 0.

Insert Figure 5.3: Marginal Distribution at Horizon 3.

We note that the shocks have an e�ect on the means and tails of the distribution.

These e�ects can be evaluated by considering two summary statistics:

- the mean deviation EYt(�) �EYt,

- the variance of the deviation from benchmark: V (Yt(�) � Yt),

for di�erent horizons t = 1; :::; 10 and di�erent values of transitory shocks. They are

shown in Figures 5.4 and 5.5 for experiment 1, and in Figures 5.6 and 5.7 for experiment

2.

Insert Figure 5.4: Mean Deviation from the Benchmark.

Insert Figure 5.5: Variance of the Deviation from Benchmark.

Insert Figure 5.6: Mean Deviation from the Benchmark.

Insert Figure 5.7: Variance of the Deviation from Benchmark.

We observe explosive patterns of the averaged e�ects of shocks in the second exper-

iment, although we found earlier no explosive paths. The similar patterns of responses
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associated to di�erent shocks are due to the simple formula of the deviation from the

benchmark for the ACD(1,1) model. Indeed it is easy to see that :

Yt(�)� Yt = �
tY

�=3

�
�g(�� ) + �

g(�� )

g(���1)

�
g(�2)

�
c+

�
�+

�

g(�0)

�
y0

�
[g(�1 + �)� g(�1)];

which implies :

E[Yt(�)� Yt] = AtE[g(�1 + �) � g(�1)];

where At is a positive number depending on the horizon. For the same reason we get:

V [Yt(�)� Yt] = E[Yt(�)� Yt]
2 � (E[Yt(�) � Yt])

2

= BtE[g(�1 + �) � g(�1)]
2 �A2

t (E[g(�1 + �) � g(�1)])
2 :

The response function depends on both the magnitude of the shock and the horizon.

To clearify the dependence with respect to the shock size we reproduce in Figures 5.8-5.9

the Figures 5.4-5.5, with � measured on the x-axis. We �nd that the response function is

convex for the mean deviation with a stronger convexity asssociated to negative shocks.

In particular the properties of symmetry and linearity of linear impulse responses are not

satis�ed. The variance function displays an asymmetric e�ect of positive and negative

shocks.

Insert Figure 5.8: Mean Deviation from the Benchmark.

Insert Figure 5.9: Variance of the Deviation from Benchmark.

An impulse response analysis based only on the di�erences Yt(�)�Yt can be misleading
since it does not represent the shock e�ect with respect to the mean of transformed series.

It is more informative to consider the joint bivariate distribution of Yt(�); Yt and examine

how it depends on the magnitude of the shock and on the horizon. The corresponding

scatterplots are given in Figure 5.10 for � = +1;�1, and horizon 3.

Insert Figure 5.10: Scatterplot at Horizon 3.

ii)A model with linear autoregressive factors.

We introduce a gaussian AR(1) model:

Zt = �Zt�1 + �t; t varying; (5.11)
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and the process of interest de�ned by:

Yt = a(�t; Zt); t varying; (5.12)

where a is a given function. This process is generated by two underlying factors �t; Zt

based on the same gaussian white noise. For a transitory shock � hitting the process at

date 1, we get:

Yt(�) = a(�t; Zt + �t�1�); t � 2;

and the joint distribution of [Yt; Yt(�)] can easily be deduced from the joint gaussian

distribution of �t; Zt. The e�ect of the shock depends on the nonlinear transformation a.

Let us �rst consider the function:

a(�t; Zt) = sign(�t) expZt: (5.13)

We can see that: Yt(�) = Yt exp(�
t�1�), and the joint distribution of [Yt; Yt(�)] is degenerate

so that its support is a line passing through the origin. The shock has no e�ect on the

sign of Yt, whereas it has a multiplicative e�ect on its absolute value.

Less extreme examples corresponding to the functions: a(�t; Zt) = �tZt and a(�t; Zt) =

Zt=�t, respectively are illustrated in Figures 5.11-5.11. The values of the parameters are:

� = 0:9; � = +1;�1, and the horizon is t = 4.

Insert Figure 5.11 Scatterplot a = epsilon*Z

Insert Figure 5.12 Scatterplot a = Z / epsilon

6 Value at Risk for a dynamic �nancial strategy

The speci�cation and estimation of dynamic models for economic or �nancial series of

interest is often a preliminary step before decision making involving dynamic strategies

and market interventions. In such a framework we are more interested in consequences

of shocks for the outcomes of the dynamic strategy than in their e�ect on the underlying

series. In this section, we discuss this structural interpretation of impulse response func-

tions using the example of the Value at Risk [VaR] employed in �nance to measure and

control the risks associated to a portfolio. In the �rst subsection we recall the standard

de�nition of the VaR, and extend this de�nition to a dynamic strategy of risk assessment

in the second subsection.
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6.1 De�nition of the VaR

We consider at date T a portfolio including the quantities a0;T and aT of a riskfree asset

and various risky assets, respectively. We denote by y0;T+h; yT+h; h = 0; 1; :::;H the future

values of the assets. The VaR is in practice de�ned for portfolios, whose allocations are

constrained to be �xed in the future [the so-called crystallization of the portfolio]. These

future portfolio values are:

WT+h = a0;T y0;T+h + a0T yT+h; h = 0; 1; :::;H: (6.1)

These values are random conditional on the information available at time T .

The Value at Risk of this portfolio evaluated at time T , for the horizon H and the

critical value � 2 [0; 1] is the quantity VaR [T, H, �] de�ned by:

PT [WT+H > �V aR [T;H; �]] = 1� �; (6.2)

where PT is the conditional distribution of future prices. The VaR may be used to de-

termine the minimal capital requirement to ensure that the total wealth, including the

portfolio value and capital requirement, remains positive with a su�ciently large proba-

bility. More precisely, let us assume that the capital requirement can be invested at a rate

providing a zero coupon price B[T;H] for horizon H. Consequently, the VaR determined

capital requirement woul be:

R[T;H; �] =
V aR [T;H; �]

B[T;H]
: (6.3)

Although the risk should be optimally measured ex ante, in practice it is usually measured

ex post. The reason for it is the belief that the conditional distribution PT can be well

approximated by the historical distribution estimated from recent past data[ see Morgan

(1994)]. However when a dynamic model of the asset prices is available, ex-ante computa-

tion of the VaR can be performed by simulation. For instance let us suppose that prices

follow a (nonlinear) AR(1) model:

yt = g(yt�1; �t); t varying; (6.4)

where g is a given function, and y0;T+h = 1; 8h = 1; :::;H: We can simulate the future

risky asset prices given the current value yT by:

ysT+h = g(ysT+h�1; �
s
T+h); h = 1; :::;H; s = 1; :::; S; (6.5)
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where ysT = yT , and we deduce the simulated future values of the portfolio by:

W s
T+h =WT + a0T (y

s
T+h � yT ); h = 1; :::;H; s = 1; :::; S: (6.6)

Then the VaR can be computed from the empirical distribution of these simulated values

W s
T+h; s = 1; :::; S.

Let us now introduce a shock � to the innovation at date T + 1. We can perform

similar computations after replacing �sT+1 by �sT+1 + �, deduce the distribution of the

future portfolio values W s
T+h(�), say, and the associated Value at Risk: VaR [T, H, �; �].

This will allow us to study the sensitivity of the VaR and of the capital requirement to a

transitory shock �.

6.2 Extension to dynamic strategies

The approach presented above, is the one proposed by the regulators, which is not opti-

mal in practice. Indeed, it is based on the assumption of �xed future portfolio allocations,

whereas the investors regularly update these allocations to take advantage of price move-

ments. A typical example is a hedging portfolio for an european call. The portfolio is

often updated at regular dates T + h; h = 1; :::;H (say), with allocations determined by

the deltas of the Black-Scholes formula. Even though the price evolution in the Black-

Scholes model obeys a linear dynamics, the deltas are complicated nonlinear functions of

the prices, and the major part of the risk is due to these nonlinear adjustments.

Let us still assume the price of the riskfree asset y0;T+h = 1; h = 1; ::;H. The future

values of a self-�nanced portfolio are:

WT+H [a(:)] =WT +
HX
h=1

ah(yT+h�1)[yT+h � yT+h�1]; (6.7)

where ah(yT+h�1) are the allocations in the risky assets considered at the hth updating,

which are path dependent in general.

For a given dynamic strategy a(:) = [ah(:); h = 1; :::;H], we can compute, like in the

previous subsection, the simulated future portfolio values

W s
T+H [a(:)] =WT +

HX
h=1

ah(y
s
T+h�1)[y

s
T+h � ysT+h�1]; (6.8)

and deduce the VaR under and without a transitory shock. These Values at Risk will

depend on the selected dynamic strategy. Let us denote them by
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V aR [T;H; �; a(:)] and V aR [T;H; �; a(:); �]:

They can be compared to the Values at Risk evaluated for a portfolio with �xed allocations

ah(:) = aT ; 8h:

V aR [T;H; �] and V aR [T;H; �; �];

using the notation of subsection 6.1.
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Appendix 1

Asymptotic properties of the test statistics

1. Expansion:

We �rst consider an expansion of the residual:

�̂t = ��1[Ft�1(Yt; �̂T )]

= ��1[Ft�1(Yt; �0) +
@Ft�1

@�0
(Yt; �0)(�̂T � �0) + o(

1p
T
)]

= ��1[Ft�1(Yt; �0)] +
1

�[��1(Ft�1(Yt; �0))]

@Ft�1

@�0
(Yt; �0)(�̂T � �0) + o(

1p
T
)

= �t +
1

�(�t)

@Ft�1

@�0
(Yt; �0)(�̂T � �0) + o(

1p
T
):

We deduce the expansion of the test statistic:

�j;k;h =
1p
T

TX
t=1

[Hj(�̂t)Hk(�̂t�h)� �0;h�j;k]

=
1p
T

TX
t=1

fHj

�
�t +

1

�(�t)

@Ft�1

@�0
(Yt; �0)(�̂T � �0) + o(

1p
T
)

�

Hk

�
�t�h +

1

�(�t�h)
@Ft�h�1

@�0
(Yt�h; �0)(�̂T � �0) + o(

1p
T
)

�
� �0;h�j;kg

=
1p
T

TX
t=1

[Hj(�t)Hk(�t�h)� �0;h�j;k]

+
1p
T

TX
t=1

Hj(�t)
@Hk

@�
(�t�h)

1

�(�t�h)
@Ft�h�1

@�0
(Yt�h; �0)(�̂T � �0)

+
1p
T

TX
t=1

@Hj

@�
(�t)Hk(�t�h)

1

�(�t)

@Ft�1

@�0
(Yt; �0)(�̂T � �0) + o(1)

=
1p
T

TX
t=1

[Hj(�t)Hk(�t�h)� �0;h�j;k] +Aj;k;h

p
T (�̂T � �0) + o(1);

where:

Aj;k;h = E[Hj(�t)
@Hk

@�
(�t�h)

1

�(�t�h)
@Ft�h�1

@�0
(Yt�h; �0)]+E[

@Hj(�t)

@�
Hk(�t�h)

1

�(�t)

@Ft�1

@�0
(Yt; �0)]:
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Figure 5.1: Liapunov Exponent = 0 Frontier
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Figure 5.3: Marginal distributions at horizon 3
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Figure 5.5: Variance of the Deviation from Benchmark
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Figure 5.6: Mean Deviation from the Benchmark
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Figure 5.10: Scatterplot at Horizon 3
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Figure 5.11: Scatterplot a = epsilon*z
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Figure 5.12: Scatterplot a = z / epsilon
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