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Jorge Duran 

ON DYNAMIC PROGRAMMING WITH UNBOUNDED RETURNS 

Abstract: 

Sorne economic models like those of endogenous growth motivate the 

analysis of a class of recursive models sharing the property that the return function 

is not bounded along feasible paths. We consider a strategy of proof which allows to 

deal with many unbounded recursive models exploiting bounds to the rates of 

growth rather than to the levels. 

Keywords : Dynamic Programming, Recursive Preferences, Unbounded Returns, 
Contraction Mappings, Weighted Norms. 

Résumé: 

PROGRAMMATION DYNAMIQUE AVEC UNE FONCTION 

DE RENDEMENT NON BORNEE 

Différents modèles économiques, notamment de croissance endogène, 

justifient l'analyse d'une classe de modèles récursifs qui ont en commun la propriété 

que la fonction de rendement n'est pas bornée le long de sentiers praticables. Nous 

considérons une stratégie de démonstration qui s'applique à de nombreux modèles 

récursifs non bornés en exploitant des restrictions sur les taux de croissance plutôt 

que sur le niveau des variables considérées. 

Mots-clés : Programmation dynamique, préférences récursives, rendements non 
bornés, applications contractantes, normes pondérées. 

JEL classification : C61, D92 



1. Introduction 

In the analysis of recursive problems, the strongest and most general results are 
obtained in the case in which the return fonction is bounded along feasible paths. 
The key step using boundedness is to prove that the maxirnizing operator asso­
ciated to Bellman equation has a fixed point which is aftenrnrds proven to be 
the value fonction. )..Iany economic models do not have bounded returns. Hence 
a: weaker notion of boundedness must be considered. \Vhile exploring conditions 
under which an aggregator could determine a unique utility fonction, Boyd (1990) 
faces a similar problem; he tries to obtain a fixed point for a recursion operator 
when the agregator is not bounded. This author proposes a weighted norm in­
ducing a topology in the space of fonctions that is coarser than that induced by 
the supremum norm. It is in this weighted norm that he obtains the contraction 
property for the recursion operator. 

In this paper we go a step further an see how these weighted topologies can be 
also applied to obtain a contraction for the maximizing operator when returns are 
unbounded. Most of the properties Boyd (1990) finds for the recursion operator 
are also inherited by the maximizing operator in some related weight fonction. 
It should be noted that all assumptions will be made on one-stage behavior of 
the elements of the mode! since it is dynamic programming tools what we want 
to develop. Alsc we consider the case of returns are unbounded from below and 
see how the argument does not apply anymore. The simple AK mode! is used to 
illustrate some key points of the argument. 

The rest of this section presents the paper informally. Section 2 describes 
the model and reproduces the standard bounded case for non linear aggregators 
while section 3 proposes a generalization of these results while section 4 deals 
briefly with the AI-contraction case. A last section discusses the limitations of 
this strategy of proof and relates this work to the literature. 

1. 1. The principle of optimality 

Consider a dynamic program in which the programmer is endowed at each stage 
t with some predetermined state variable Xt and has to choose next stage's state 
Xt+I within a set of feasible choices f(xt) and a current action at from a set of 
admissible ones D(xt, Xt+ 1). With this specification. at each stage titis clear that 
all the programmer cares aboutis the amount Xt with which is endowed. At some 
stage t and from a given initial condition x 1 let us denote by ~(x1) the collection 
of all feasible sequences of actions. Dynamic programming develops tools in order 
to deal with a class of problems like 

max U(at, at+I, ... ) s.t. (at, at+I, ... ) E ~(xi) 

in which U has a very particular structure. A total return function like U is said 
to be recursive if there is a fonction W aggregating returns yielded by current 
actions and total returns from future actions 

U(at, at+I, ... ) = W(at, U(at+I, at+2, ... )) 
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and this for ail stage t. Thus. recursivity arnounts to impose weak separability 
between current action and total discounted returns to future actions. Then, at 
each stage, the programmer is only concerned with current state xt+ 1 and action 
at as well as future choices for both variables as far as they induce a next stage's 
total return U(at+1, at+2, ... ). 

The principle of optimality first stated by Richard Bellman is based on the 
intuition that an optimal action can be characterized if we get concentrated only 
on the current action to be chosen and then let the programmer do the best she 
can with the state chosen for next stage. Define the value fonction v(xt) to be 
the value of U at the optimum in the problem above. Note that in essence. that 
problem starting in t is identical to one starting at t + 1. Hence, if at t + l we 
are given some Xt+I we should expect its optimal value to be given by v(xt+1). 

The idea of "leaving the programme do the best she can" may be formalized by 
substituing U(at+I, at+2, ... ) by v(xt+i) in the problem above while this is possible 
as soon as the axiom of weak separability between current action and future 
returns is imposed. The principle of optimality expects an optimal plan to be 
generated in some way as 

v(xt) = sup sup îl'(at, r(xt+1)) 
Xt+1Er(xi) a1Erl(xt,Xt+1) 

for ail t. This is the Bellman equation associated with our program. l'he analysis 
of this problem is much easier than the original one because an infinitely stages 
program has been reduced to a one ~tep program. 

Of course, this is done at the cost of dealing now with a functional equation 
whose unknown v will in general be impossible to obtain explicitly. A second 
important problem is that while the original program is expressed in terms of the 
total return fonction U the Bellman equation has only the aggregator W inrnlved. 
Thus, the identification between these two fonctions is also an important part ·of 
the analysis. 

1.2. Discounting the future 

Lucas and Stokey (1984) proposed to use the aggregator as a primitive on which 
all assumptions where made and from which a return fonction was derived. This 
was clone with the assumption that one-stage returns were in some sense bounded 
along admissible paths. Boyd (1990) examines under what assumptions on the 
aggregator a return fonction existed without assurning boundedness but bounding 
the rate of growth of returns. The idea of this paper is that those assumptions 
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identifying U and vV also ensure that Bellman equation has a solution v with the 
necessary properties so as to ensure that the principle of optimality holds. 

The basic idea is that lV possesses the property that future returns are dis­
counted in the sense that any increase in future return yields a proportionally 
smaller increase in current return. We require a number O < 8 < 1 to ex­
ist such that given some action a and some level of future returns À we have 
W(a, À) :=:; W(a, 0) + ôÀ where W(a, 0) can be interpreted as the return yielded 
by a single action and b as an upper bound to the implicit discount factor. If 
this is true then U(a0 , a1, ... ) ::; I;:,0 btW(at, 0) so what we need is that W(at, 0) 
cannot be growing along any admissible path at a rate higher than that at which 
ôt is converging to zero. In the bounded case one-stage return is assumed to be 
bounded and therefore discounting of ôt must dominate from some period on. 
The idea of Boyd (1990) is to bound the rate of gror th of returns. Since this 
may not be easy to do dealing directly with lV this author seeks for a weight 
fonction: a fonction r.p bounding in absolute value one-stage returns but with 
the additional property that r.p(at) cannot grow asymptotically at a factor greater 
than 15-1

. Hence, discounting eventually dominates the growth of returns along 
any admissible path. \,\bat we will show here is that this kind of transversality 
condition will also ensure that a solution to Bellman equation exists. 

~- Non linear bounded aggregators · 

In this section we present the standard bounded case. We describe more formally 
the model we will work with and provide a condensed version of section 4.2 in 
Stokey and Lucas (1989) for non linear aggregators. The whole argument relies 
on boundedness of one-stage returns together with strict discounting. 

2.1. Description of the model 

The state space is X C J1r. A continuous feasibility correspondence is r : X ---+ X 
will describe feasible state paths: an accumulation path is a sequence x = (xt+l )~0 
and is said to be feasible from some initial condition x0 E X when Xt+I E r(xt) 
for all t ~ O. Let us denote by Il(x0 ) the collection of all feasible from x 0 state 
paths. Also use H c X x X to denote the graph of r. 

Let A C IRm be the space of actions and n : H ---+ A be the continuous 
admissibility correspondence. An action plan is a sequence a = (at)~0 and is 
said to be feasible from some initial condition x0 E X when there is at least one 
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x E IT(x0 ) such that at E O(xt, Xt+i) for all t ~ O. Denote by E(xo) the collection 

of all feasible from x0 action plans and by E = UxoEX E(xo) the collection of all 

plans that are feasible from some initial condition. Also let D = O(H) c A and 

note that E c Dx. 
The objective fonction is an extended real-valued total return fonction U on 

E. It is assumed to be recursive in the sense that there is an aggregator iv : 
D x U(E) -, U(E) for which U(a) = W(1ra, U(aa)) for alla E E. Note that 1r 

is denoting the first coordinate projection fonction while a is the shift operator. 

\Ve assume IU(a)I < oo for at least some a E E so that we do not loose generality 

if we assume that U (E) 3 O. The value fonction is defined as 

v(x0 ) = snp U(a) (2.1) 
aE~(xo) 

for all x 0 E X. The optimization problem at the right-hand sicle of this E-1uality 

is the problem whose solutions we aim to analyze. A plan a is said to be optimal 

from x0 E X when a E E(x0) and v(x0 ) = U(a). A solution to Bellman equation 

can be seen as a fixed point of the maximizing operator defined over all real-valued 

fonctions f on X as 

Tf(x) = sup sup W(a, f(y)) (2.2) 
yEf(x) aEO(x,y) 

for all x E X. Dynamic programming arguments rely on finding some equivalence 

between these two problems. In particular we would like the value fonction to 

solve Bellman equation v = Tv and a feasible program (x, a) to be optimal if and 

only if it verifies r(xt) = iv(at, v(xt+i)) for all t 2 O; when this is true we say that 

the principle of optimality holds. 
An immediate observation is that while the original problem ( 2.1) is stated in 

terms of the return fonction, the Bellman equation (2.2) is ,\Titten in terms of the 

aggregator. Hence the identification between U and iv constitutes and important 

part of the analysis. Consider the recursion operator R defined over all extended 

real-valued fonctions V on E as RV(a) = lV(1ra, \'(aa)) for alla E E. ~ote that 

a fixed point for this operator is a recursive return fonction. 

In order to prove that the principle of optimality holds we will show that under 

some conditions the recursion operator R is a contraction in a suitable space of 

fonctions and that the return fonction U is recursive in the sense that U = RU. 

This will ensure that partial sums of returns RNO will converge pointwise to the 

return fonction U which in turn helps to prove that the value fonction vis indeed 

the only bounded continuous solution to Bellman equation. As soon as r solves 

Bellman equation it is not difficult to show that the principle holds. 
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2.2. Returns in the limit 

Following Lucas and Stokey (1984) and Boyd (1990), instead of starting from a 
total return fonction, an aggregator will act as a primitive in our model. The 
aim is to show the very close relationship between the recursion operator and the 
maximizing operator. 

Let A be some closed subset of the extended real line containing zero. Let 
our aggregator be a continuous fonction W : D x . \ -+ A increasing in its second 
argument and with the property that À E A and !>.i < oo implies IW(a, .X)! < oo 
for all a E D. Define the total return fonction as 

U(a) = lim W(a0 , W(a1 , .•. W(aN- 1 ,0) ... )) = lim RNO(a) (2.3) 
N-oo N-oo 

~Jr all a E I:. A bound to the returns to a single action and some kind of 
discounting will act as a transversality condition ensuring not only that U is 
well defined and recursive but also that v solves Bellman equation and that the 
principle of optimality holds. Assume: 

(Al) One action return is bounded IIRO!I < oc. 

(A2) W is Lipschitz continuous of constant ô < 1 in its second argument. 

The following three propositions summarize the standard results for the bounded 
,non lineàr aggregator case. They are stated and proved for later reference. \Ve 
first see what is the relationship between the return fonction and the recursion op­
erator providing us the link that will help us proving afterwards that the solution 
to Bellman equation is in fact the value fonction. 

Proposition 2.1. Under (Al) and (A2) the return Eunction U defined in (2.3) is 
the only bounded and continuo us fl..yed point of the recursion operator R. 

Proof Endow I: with the relative product topology and let B("2:.) be the 
collection of bounded continuous real-valued fonctions on I: together with the 
supnorm. Under (A2) the recursion operator possesses the Lipschitz property: let 
V, L be two elements of B(I:) and a be an action plan. then 

IRV(a) - RL(a)I = !H'(1ra, V(a-a)) - vV(1ra, L(o-a))I < ô IV(o-a) - l(aa)I 

< b !IV- LI!. 

Take the supremum over alla and get IIRV - RLII ~ b IIV - LI!. Let VE B(I:) 
and note that iv was assumed to be continuous and that 1r, a- are continuous 
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fonctions when the product topology is considered on B('E). Then RV can be seen 
as the composition of continuous fonctions iv, 1r, rJ and V and therefore continuous 

itself. Using the Lipschitz property of R we have 1/RVII ::; 8 IJi,ïJ + IIROIJ < oc 
under (Al) so that RV E B('E). Then Ris a contraction of modulus 8 on B('E) and 
as a consequence of the contraction mapping theorem there is a unique element 

in this space U* such that U* = RU* and 11 RN O - U* 11 - 0 so that it must be 
the case that U* = U. Q.E.D. 

Recall that this proves that U defined in (2.3) is bounded, continuous in the 
product topology and recursive in the sense that U = RU as soon as boundedness 
(Al) and discounting (A2) hold. However, the importance of this result is that 
RN O --t U pointwise as this will help us proving that the maximizing operator is 

a contraction and t' at the value fonction is its fixed point. 

Proposition 2.2. Under (Al) and (A2) the value fonction v defined in (2.1) is 
the only bounded and continuous fixed point of the maximizing operator T. 

Proof Let B(X) be the collection of bounded, continuous real-valued fonctions 
on X. Under (A2) the max:imizing operator possesses the Lipschitz property: let 
f, h E B(X) and note that 

JTJ(x) -Th(x)I < sup sup JH'(a. f(y)) - W(a, h(y))I 
yEr(x) aEfl(x,y) 

< sup 8 Jf(y) - h(y)J ::; 8 Il/ - hJI. 
yEf(x) 

Taking the supremum over X we get IIT/ - Thil ::; 8 Il/ - hJJ. Just as before is 
easy to see that IIT /Il ::; 8 1//11 + IIROII < x as soon as (Al) holds and f E B(X) . 

. Continuity of T f follows from the continuity assumptions on r, n and iv, the 
choice of f as a continuous fonction and the maximum theorem. Hence T f E 

B(X) and the contraction mapping theorem yields existence off* unique up to 
elements in B(X) with the property that f* = Tf*. 

Now consider the fact that for any x0 EX and x E TI(x0) we have 8NIJ*(xN )1 -
0 because O::; 8Nlf*(xN)I::; 8N llf*II --t O. Also RN>. is Lipschitz continuous of 
constant 8N in its last argument and RN O - U pointwise. Using these two facts 
the proof that f* = v follows closely the argument in theorem 4.3 in Stokey and 
Lucas (1989). Q.E.D. 

Hence v is in fact the only bounded continuous solution to Bellman equation 
and that TN O --t v uniformly. \vlüle the first fact helps us proving that the 
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principle of optimality holds the second is at the core of many algorithms designed 
to approximate numerically solutions to (2.1). 

Proposition 2.3. Under (Al) and (A2) the principle of optimality holds. 

Proof. Let x0 EX and a E E(x0 ) with x satisfy 1•(xt) = W(at, v(xt+d) for all t, 
then we may \\-Tite v(x0 ) = RNv(xN )(a) :S RNO(a)+bNlr(xN )1 :S RNO(a)+8N llvll 
which in the limit yields v(x0 ) :S U(a). Since by definition of v it is true that 
v(x0 ) ?: U(a) both inequalities imply that this plan is optimal. The reverse way 
is exactly as in theorem 4.4 in Stokey and Lucas (1989) using now the fact that 
the aggregator is increasing in its second argument. Q.E.D. 

The advantage of dynamic program aing arguments is precisely that the awful 
task of analyzing the solutions to (2. lJ directly reduces now to the analysis of a 
simple problem like 

v(x) = sup sup W(a, v(y)). 
yEf(x) aE!1(x,y) 

Under boundedness and discounting v has been shown to be continuous while 
W was assumed to be so. Also r and O were assumed to be compact-valued. 
Then for all x there is in fact a choice for a and y that attains the supremum. 
Further, the maximum theorem ensures that there is an upper semicontinuous 
policy correspondence G : X ----. D x X such that (a. y) E G(x) implies v(x) = 
W(a, v(y)). For any initial condition x0 E X construct a plan choosing each 
period t a pair (at, Xt+1) E G(xt) so that v(xt) = }V(at. r(xt+1)). The previous 
proposition ensures that this plan is optimal. 

Further, we may be interested some comparative d_ynamics analysis so that 
the properties of G would be of importance. But we should be sure that G 
is in fact generating every optimal plan. And this is the case, let a E E(x0 ) 

with x be optimal, since the principle of optimality holds ,ve know that v(xt) = 
î-V(a1, v(xt+d) for all t so that it must be the case that (at, Xt+d E G(xt) for all 
t. lt cannot be the case that some plan is optimal but it is not generated by the 
policy correspondence. 

2.3. The case of linear technology 

As an example consider the one sector model of economic growth with linear 
technology. A planner is assumed to produce the good in period t using the good 
of the previous period through a linear production fonction f(x) = Ax for A> O. 
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Here x is interpreted to be capital stock and A the net of depreciation marginal 
product of capital in the productive sector. Thus the feasibility correspondence 
is r(x) = [O, Ax] for ail x 2: O. An action is a level of consumption: admissible 
consumption choices are those not exceeding output minus gross investment. The 
admissibility correspondence would then be O(x, y) = [O, Ax -y] for all x 2: 0 and 
0 :S y :S Ax. 

Consider the Uzawa aggregator W : lR+ x ]R _ _, ]R_ defined as W(a, >.) = 
(-1 + ..\)e-u(a) where u : lR+ .- lR++ is some increasing fonction. First we know 
that W is bounded in its first argument because lvV(a, >.)/ :S 1- 1 + >.! so that 
(Al) holds. Also (A2) holds because 

IW(a, >.) - W(a,µ)I = e-u(a)/>. - µ/ :S e-u(O)I>. - µ/ 

therefore vV is Lipschitz continuous of constant e-u(OJ < 1 because u(O) > O. By 
proposition 2.1 we know then that 

X 

U(a) = lim RNO(a) = - ~ e- ~;=ou(aj) 
N--->oo L 

t=O 

is the utility fonction. Note that U takes values between -e-u(Ol(1-e-u(OJt 1 and 
zero because e-u(O) < 1. The importance of the Lipschitz condition, of discounting, 
~s clear because if u(O) fails to be greater than zero U(O) = -oc even if the 
boundedness condition holds as it is here the case. If this happens r(O) = -x so 
that the value fonction also fails to be bounded. 

Results like those in chapter 4 in Stokey and Lucas (1989) will prove other 
properties of t· like in this case concavity and differentiability. \Vith those prop­
erties at hand the analysis of 

t 1(x) = snp (-1 + v(y) )e-u(Ax-y) 

O:Sy:SAx 

becomes a rather easy task while the principle of optimality will ensure that we 
are indeed characterizing all the solutions to the original problem. 

3. Weighted bounded returns 

Let us consider an identical model in which the boundedness assumption is re­
la..·œd and the discounting assumption will have now to be related to admissible 
sustainable rates of growth of returns. In particular ,ve will allow returns to grow 
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unboundedly but wit h an upper bound to the factor at which they may do so that 
is sufficiently discounted by the Lipschitz constant of the aggregator. 

Non linear aggregators can be seen as generating return fonctions whose im­
plicit discount factor is bounded from above by its Lipschitz constant. As soon as 
the aggregator acts as a primitive and a return fonction is defined as in (2.3) the 
return fonction will in some sense be bounded from above by an additive fonction 
obtained from the aggregator and the Lipschitz constant. Then if a E I: we may 
write 

N-1 

RNO(a) S 2::>5tir(at.O). (3.1) 
t=O 

In the bounded case it is obvious that as soon as H'(·, 0) is bounded, the return 
fonction is bounded from above by lllV(-,0)11 (1 - 15)-1 . Hmvever, it may bf the 
case that W(·, 0) is not bounded but cannot grow steadily along any feasible path 
at a factor higher than 15-1 in which case the return fonction will also be bounded 
m some sense. 

From a technical point of view the problem is to find a different complete 
space of fonctions on which our operators possess the Lipschitz property so that 
the contraction mapping theorem applies as in the bounded case. Let C(D) be the 
collection of continuous and real-valued fonctions on D and let 'P E C(D) be any 
fonction such that 'P > O. For any fonction u E C(D) define its weighted _norm 
as llull.P = snpaED lu(a)/<p(a)I. Then let C'-"(D) denote the subset of fonctions 
in C(D) that are (f)-bounded endow it with the <p-norm. The key fact exploited 
by Boyd (1990) is that the operator S : B(D) -----. C.,,(D) defined as Su = <p · u 
is a distance-preserving isomorphism so that C'-"(D) inherits the completeness of 
B(D). 

3.1. Bounding one-stage growth of returns 

ln this case (Al) will be replaced by the requirement that lV(·. 0) is (f)-bounded 
for some 'P E C(D) with 'P > 0 and with 15<p(a1_i)/<p(at) < 1 asymptotically along 
any admissible action path. Note that 'P can be seen as a short of absolute-value 
upper bound to the one-period return. Hence. this new requirement will amount 
to impose that one-period return cannot grow steadily at a factor greater than 
15-1 so that sustained growth of future returns is sufficiently discounted by the 
Lipschitz property of lV. The link between growing returns and technology will 
be given by fonction 1/J : vV -----. lR with the property that 'P(at) S 'l/J(xt) along a 

10 



feasible state-action plan and such that one-stage feasible growth of 1/J is strictly 
less than 8-1

. Assume: 

(Bl) Exists <p E C(D) with <p > 0 such that IIROII. < oo. 
T' 

(B2) W is Lipschitz continuous of constant 8. There is some î/J E C(X) such 
that (a, x) feasible implies <p(at) ::S: 1/;(xt) for all t and exists n > 0 with 

8 sup î/J((y)) ::S: n < 1 for all x E X. (3.2) 
yEr(x) 1P X 

It should be noted that as soon as <p has been found, a rather natural can­

didate for î/J is given by 0(x) = snpyEf(x) supaEfl(x.y) :;(a). Under the continuity 
assumption on the feasibility and admissibility correspondences î/J is a continuous 
full' .,ion on X ta.king positive real values. Hence Ct,'(X) is a complete metric 

space in its 'l/i-norm. 
Hence, we only need to find some î/J bounding H' ( ·. 0) in absolute value and 

being discounted by 8 in order to find a î/J-bounded fix:ed point f* for the max­
imizing operator. Analogously, we need to find some 'V bounding W(n·, 0) and 
being discounted by 8 in order to find a 'l!-bounded fixed point U* for the recur­
sion operator. However, considering the way in which the recursion operator was 
defined, in terms of iv, it should be natural to think that once î/J has been found, 
some 'V must exist with the required properties. 

Indeed, if (B2) holds we can choose some constant t < ç < 1 small enough so 
that f3 = aç8-l < 1. Then ç supyEf(x) 1/J(y)/w(x) ::s: 3 < 1 and let 'V : :E -+ A be 
defined as w(a) = I::o çt<p(at), This fonction is positive rea.1-valued: as soon as 
a with xis feasible for some initial condition we have w(a) ::S: I::o Çtîp(xt) < oo 
because çw(xt+i)/'l/J(xt) ::S: /3 < 1 so that the series is summable. This implies that 

r w(aa) s.: w(aa) s.: w(aa) 8 · 
t 1-- = u------ < u--- < - < 1 

w(a) <p(a0 ) + ç'l!(aa) - ç'l!(aa) - ç 

for all a E :E. Consider the coarser topology on ~ Kith respect to which 'li is 
continuous; choose the finer of this and the relati\·e product topology or the one 
generated by bath collections if they are not ordered. This topology makes 'V, n 

and a continuons functions. Let Cw(:E) be the collection of 'l!-bounded continuous 
real-valued fonctions on I:. The following is the Continuous Existence Theorem 
of Boyd (1990) applied to our case: 

Proposition 3.1. Under (Bl) and (B2) the return fimction U defined in (2.3) is 
the only w-bounded and continuous fixed point of the recursion operator R. 
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Proof Under (B2) the recursion operator possesses the Lipschitz property: let 
V, L be two elements of C-v(~) and a E ~, then 

b jV(aa) - L(aa)I W(i:ra) 'l'(a) 
IRV(a) - RL(a)I < w(aa) Wia) 

ô 
< - IIV - Lll-v 'l'(a). 

ç 

Divide the whole expression by 'l'(a) and take the supremum over alla E ~ to get 
IIRV - RLll-v ::; 8ç-1 IIV - Lll-v· Let V E C-v(~) and note that iv was assumed 
to be continuons and that 1r, a are continuous fonctions on~- then RV can be seen 
as the composition of continuous fonctions vV, 1r, a and V and therefore continuous 
itself. Using the Lipschitz property of R we have IIRVll-v ~ tc 1 IIVll-v + IIROll-v 
but under (Bl) it is t' 1e that IIROll-v ::; IIROll'I' < oc so R\ · E C-v(~). Then Ris 
a contraction of modulus 8C1 on C-v(~) and as a consequence of the contraction 
mapping theorem there is a unique element in this space [,·· such that U* = RU* 
and JJRNO - U*ll-v - 0 so that U* = U because weighted uniform convergence 
still implies pointwise convergence as W > O. Q.E.D. 

Again this proves that U defined in (2.3) is W-bounded. continuous in some 
topology equally or stronger than the relative product top,:1logy on ~ and recur­
sive in the sense that U = RU as ~oon as weighted boundedness (Bl) and net 
discounting (B2) hold. Note that the particular topology wi:h respect to which U 
is continuous will not be of interest for us because it is the principle of optimal­
ity that we will use to show existence and characterize soh.:tions. In practice, as 
soon as <p has a particular fonctional form it should not be difficult to find some 
weighted topology on~ making this fonction continuous ~ Boyd (1990) does in 
analyzing a Ramsey problem. 

Just as in the bounded case, pointwise convergence R·': 0 - U will help us 
proving the next result. Now the maximizing operator is sb)'\\ïl to be a weighted 
contraction and that the value fonction is its unique weighte,:. bounded fixed point. 

Proposition 3.2. Under (Bl) and (B2) the value functio:; 1· defined in (2.1) is 
the only 1/J-bounded and continuous fixed point of the ma.x:mizing operator T. 

Proof Under (B2) the maximizing operator possesses t!:I:' Lipschitz property: 
let f, h E C,µ(X) and note that 

IT J(x) - Th(x)I ~ sup b lf(y) - h(y)I ~(y) 1/J(x) ~ et f - hll1P 1/J(x). 
yEf(x) 1/J(y) 1p(x) 
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Divide by 'lj)(x) and take the supremum over X to get IIT f - Thl!v ~ a Il! - hll,t,· 
Now consider the fact that TO(x) ~ IIROIL,, w(x) so that IITO!I,.. ~ IIROll'I' < x 

under (Bl), hence, IIT fll,t, ~ a 11!111/1 + IITOlll/1 < oo as soon as f E C,t,(X). 
Continuity of T f follows from the continuity assumptions on r. n and W, the 
choice of f as a continuous fonction and the maximum theorem. Hence T f E 

Cv,.(X) and the contraction mapping theorem yields existence off* unique up to 
elements in Cl/l(X) with the property that f* = T f*. 

Now note that for any x0 EX and x E 11(x0) it is true that c5Nlf*(xN)I-. 0 

because O ~ 8Nlf*(xN)I ~ c5N 11!*111/1 W(xN) -. 0 which in turn is a consequence 

of the fact that (3.2) holds so that the series is summable. Also RN À is Lipschitz 
continuous of constant ( c5C 1 ) N in its last argument and RN O -. U pointwise. 
Again these two facts and the argument in theorem 4.3 in Stokey and Lucas 
(1989) prove that J* = v. Q.E.D. 

With these two results and in regard that c5N I J* ( x N) 1 -. 0 along any feasible 
state path, the proof that the principle of optimality holds under (Bl) and (B2) 
is exactly as in proposition 2.3. 

3.2. Linear technology with homogeneous returns 

Consider the AK model described in the previous section but nmv consider a 

,linear aggregator W : IR+ x IR+ -. IR+ defined as vV ( a, À) = a8 + 8 À where 
0. À E (0, 1). Choose .p(a) = 1 + a8 and note that in this case we can set w(x) = 

1 + (Ax) 8
. Clearly (Bl) holds because <pis continuous and positive-valued on R.­

The aggregator W is Lipschitz continuous of constant c5 in its second argument. 
Also note that 

i: 1 + (Ay)e i: l + (A2x)0 i: 1· 1 + (A2x)0 i: 40 
u sup ---- = u---- < u 1m ---- = u. 

O:<=;y:<=;Ax 1 + (Ax) 9 1 + (Ax)8 - x-x l + (Ax) 8 

so that (Bl) and (B2) will hold as soon as 6A8 < 1. This simply requires the 
maximum rate of growth of returns to be strictly less than the inverse of the 
discount factor so that we ensure that grüwth is sufficiently discounted along any 
feasible path. In this particular case it should be noted that tA8 < l is not only 
a sufficient but also a necessary condition for the principle of optimality to hold: 
otherwise there will be an incentive to choose pure accumulation paths in order 
to consume infinite in the limit. 

The observation that everything we care about 't/J is that bounds <p from above 
was not spurious. Consider the same linear aggregator as above but now let 
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r(x) = [ü, Cx 0 + Ax) for some C > 0, a E (O. 1) and A > 1. Since a < 1, 
the only sustainable factor of grm\ih of feasible accumulation paths is A because 
the marginal of the decreasing returns part of the production fonction tends to 
disappear as x grows. Intuitively 8A9 < 1 should again be the necessary condition 
for (Bl) and (B2) to hold. However, if we try to construct 7/J as before we would 
have to deal with 1 + ( Cx0 + Ax )° which is an awfol fonction to work with in 
many applications. Instead. we may observe that there must be some constant 
H > 0 for which Cx0 + Ax :S H + Ax for all x EX. As this is true we can simply 
set 1/;(x) = 1 + (H + Ax)° and check that 

, 1 + (H + Ay)° < 
v sup ( )0 

0:$y:$Cx 0 +Ax 1 + H + Ax 
8

1 + (H +AH+ A2x) 8 

1 + (H + Ax)8 

< 8 lim 1 + (H + AH· r- A2x)° = 8Ae. 
x-oo 1 + (H + Ax)9 

As we can see, again 8A0 < 1 is all we need for the principle of optimality to hold 
in this model. This example also illustrates how asymptotic rates of growth is all 
we should care about. Scale effects like that induced by Cx0 do not matter as 
soon as they cannot be sustained in the long run . 

. 4. M-stage contractions 

When Denardo (1965) noted the contraction argument underlying dynamic pro­
gramming, he already pointed out that in many applications an N-contraction 
rather than a contraction was all we could expect. In economic applications many 
technological specifications yield homogeneous feasible sets on which gruwth of 
returns can be bounded from above. However, it is often the case that some of 

. these rates are not sustainable. 

4.1. Discounting in many periods 

Hence, sometimes, (3.2) can be a very strong assumption because it forces 8 to 
discount rates of growth that are irrelevant in the long run. Sometimes a more 
careful choice of rp can help but some others this is not so straightforward. In 
those cases it may be easier to find an N-stage wrsion of (3.2). Assume: 

(Cl) Exists rp E C(D) with r.p > 0 such that IIROIL,, < x 
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(C2) lV is Lipschitz continuous of constant ô. There is some 'ljJ E C(X) such 
that (a, x) feasible implies cp(at) ~ ip(xt) for all t and exists and exists a > 0 and 

an integer NI 2 1 with 

'lJJ(xM) 
{J" 1 sup · · · sup '•( ) ~ o < 1 for all x 0 EX. (4.1) 

x1Ef(xo) xuEf(x.u_1) V.: Xo 

Again, under (C2) is possible to find some f, < ç < 1 small enough so that 
(3 = açM 6-M < 1 in which case ( 4.1) ho Ids replacing b by ç and a by (3. If the 

rate of growth of 7./J discounted by ç is bounded after .\f stages it must be case 
that the one-stage factor of grû\vth is bounded so that there must be some, > 0 
such that ç supyEf(x) l/J(y)/'lj)(x) ~ ''f. Now define 'V as before and note that for 
any a E ~ with x associated 

oo x M-1 

w(a) ~ L ç\,(xt) = L L çt+j1,0(Xt+j) 

x M-1 , ( ) 
~ t\J ~ ·'l/.1 Xt+J· 

- L- ç' v(xtM) L- ç1 -i----''--
t=o j=O 'lf.l(Xt) t=O t=O j=O 

oc 

< (1 + "t + ... + ,M-1) L çt"\i'.,(XtM) 

t=O 

which is a finite number because ç1j,(x(t+l)M)/'l/,1(x01 ) ~ .B < 1 so that the series 
is again summable. Using this weight fonction the statement and proof of propo­
sition 3.1 would go without change. Hence R is still a contraction of modulus 
6C1 and U the only '11-bounded fixed point of the recursion operator. Of course. 
pointwise convergence still holds so that RN O -. C. 

The maximizing operator will now be an .i\1-stage contraction of modulus a. 
The proof of proposition 3.2 goes without change except for the observation that 
now, for any f. h E C,.:,(X) we have 

ITM f(xo) - T1'1h(xo)I < 6 sup ITM-i J(xi) - TM- 1h(xi)i 
:riEf(xo) 

< 62 sup sup IT\J-2 f(x2) - T·\l-2h(x2)I 
x1 Ef(xo) x2Ef(x1 i 

so iterating up to AI stages we get 

, 1 lf(x.,r) - h(xM)I' u(xM) , ( ) 
ITM f(xo) - Tuh(xo)I < fJ· sup sup ---------tJ x0 

x1Ef(xo) x.,Ef(Xn-1) th(x]\.!) îP(Xo) , 

< fJ·\111! - hl;, sup · · · sup l/J\x,,\) l/J(x0 ). 

x1Ef(xo) x.uEr(X.\f-d 'I/J Xo. 
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but under (4.1) this inequality can be written as ITM J(xo) - TMh(xo)I $ .3 
Il! - hllt/1 w(x0 ); <livide by 1/J(x0 ) and take the supremum over all x0 E X to 

obtain IIT.u f - TMhllv, $ .3 Il! - hll,t,· As TM is a contraction of modulus o: < 1 

there will be a unique f* in Cv,(X) such that f* = TM J*. But this will also be 
the unique fixed point for Tin that space [see theorem 3.12 in Stokey and Lucas 

(1989)]. 
As a consequence, under (Cl) and (C2) we can prove analogous results to 

those of propositions 3.1 and 3.2 so that the principle of optimality will again 
hold. 

4.2. A model with human capital 

Consi :er the standard model with physical and human capital. At each period 
t the planner is endowed with a certain amount kt of physical capital and ht of 

human capital. Sorne amount O $ bt $ ht of human capital is devoted to the 
physical good sector while the rest ht - bt is invested in the human capital sector. 
Next period's state feasible choices are given by O $ ht+1 $ Bhf(ht -bt)I-/3 where 

B > 1 and O < (3 < 1 and by O $ kt+ 1 $ Akfbj-0 for A > 0 and O < o: < 1. 

Admissible consumption choices will then be given by O $ Ct $ Akf bj-0 
- kt+I · 

Let preferences be generated by lV(c, ).) = c0 + ôÀ where 0, 6 E (0, 1). 
It is not difficult to see that this technological specification yields continu­

'ous feasibility and admissibility correspondences. Note that the norm llk, hll = 
max{lkl, lhl} induces on X = JR! the usual metric. Note that for any given 
state k, h 2:: 0 we have k' $ Ak0 h1

-
0 $ A llk. hll while h' $ Bh $ B llk, hll­

Choose the bigger of A and B and denote it by C. Then (k', h') E f(k, h) implies 

llk', h'II $ C llk, hll- As in the linear case choose <p on D = lR+ to be defined as 
<p(c) = l+c0 and recall that any admissible from k, h 2:: 0 consumption choice must 
verify c $ Ak0 h1

-
0 $ A llk, hl! $ C llk, hll- Then choose w(k, h) = 1 + C0 ljk, hl( 

As technology is homogeneous we found an upper bound C to the factor of growth 
of the norm of the state. However, this C may be influenced by scale effects that 
are irrelevant in the long run because it is only B that be need to discount. 

Indeed. B is an upper bound to the rate of gro\\rth of human capital and 
therefore of the economy as the physical good sector is of constants returns to 
scale. Intuitively 6B9 < 1 is all we need for (Cl) and (C2) to hold. Consider a 
non feasible accumulation path constructed as h1+1 = Bht and kt+ 1 = Akf ht0 for 
all t. Clearly, this is an upper bound to any feasible path but also if Xt = kt/ ht ,1.re 
have Xt+l = Axf so that for N big enough Xt, t 2:: N must remain constant which 
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in turn implies that kt is also growing at a factor B. Hence, for any n ~ N we 

have llkn, hnll :s; B llkn-I, hn-111 and therefore, for any inital condition ko, ho~ 0 

and n ~ N we have llkn, hnll :s; Bn-NcN llko, holl- Then 

1 + C9 llk h 11
9 1 + B 9(n-N)C9(N+I) jjk h 11

9 

ôn n, n < ôn . O· 0 < (bB0r-N (bC(J)N 
1 + C0 llko, holl 0 

- 1 + C0 llko, holl 0 
-

so that as soon as bB9 < 1 we can choose some M > N for which (bB 9 )M-N (bC9 )N < 
1. Ifthis is the case (Cl) holds for <p while (C2) holds for î/J and M. Then8B9 < 1 

ensures that the principle of optimality holds for this problem. 

5. Sorne comments 

vVe have considered a slight variation of the old contraction argument to prove 

existence of a unique fixed point for a maximizing operator. By considering a 

weight function we relax the usual boundedness assumption by the requirement 

that an upper bound to the discount factor discounts the rates of growth of tlùs 

weight fonction. One of the most disappointing aspects of this strategy of proof 

is that it does not provide with a general proof for those cases in which returns 

are unbounded from below. 

·5.1. Returns unbounded from below 

Suppose that A C lRU{ -oo} including -oc and that iv : D x A-+ Ais continuous 

in the interior of its domain. However, let us now leave open the possibility that 

H'(a, >.) = -x for any l>-1 < oo for some a E ôD. This is typically the case in any 

growth model, bounded from above or not. in which the value of zero consumption 

is -~. To obtain a contraction using the kind of ,p used in the previous section 

is not possible unless very strong assumptions are made on the beha,ior of lV on 

its domain. The difficulty here is due to the fact that actions implying a return of 

-'.)() are usually feasible. Thus, for W(·, 0) to be ç-bounded, the function cp must 

be chosen so that it takes unbounded values from above on the boundary of its 

domain. 
Consider the case of logarithmic preferences n·(a, >.) = log(a) + b>. for some 

0 < b < 1 in the context of the AK technology when r(x) = [O. Ax] for all 

x E X = IR++ so that now D = IR++· In this case the weight fonction may be 

..p(a) = 1 + l log(a)I which indeed is positive-valued. continuous on D and weights 

the one-stage return return fonction. However, as Ois always an admissible action, 
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any admissible action plan a can be such that at = 0 for some t in which case 
<p(at) = t;(O) = oo so that it is impossible to find a real-valued 'ljJ fonction with 
the property that <p(at) :S 'lf;(xt) for all t and all feasible state-action plan. Hence, 
the mere application of the previous argument to this case will not work unless 
we find some uniform lower bound to the rate of convergence to zero of feasible 
paths. It does not seem that this problem is solved by choosing t; more carefolly. 

Other authors have sorted this problem in various ways but none of them en­
tirely satisfactory. In the Upper Semicontinuous Existence theorem, Boyd (1990) 
finds a fonction '11 for which the recursion operator at zero is '11-bounded. How­
ever, he also assumes that 8 11'11 o a-11,i, < 1; the example above shows that in 
practice it may not be easy to find a '11 with such property. 

5.2. Homogeneous programs 

In a recent paper Alvarez and Stokey (1995) deal with a wide class of homogeneous 
problerns. They work with the standard linear aggregator with discount factor 
0 < 8 < 1 and with an homogeneous of degree 0 one-stage return fonction F(x, y) 
defined on H. In their work they assume that O (/:. X but also that F: H---. IR and 
they bound the rates at which returns may be converging to -oc by assuming, 
for example in the case of 0 < 0, that there are positive constants b, B such that 

0 < b llxll 8 :S IF(x, y)! :S B (llxll + IIYll)8 for all (x, y) E H. 

This is a strong requirement, though. In the AK model with X = IR++, [(x) = 
[O, Ax] with W(a, À) = -a9 + 8>.. and 0 < 0 we have that (x. Ax) E H but 
IF(x, Ax)I = 1 - 08

1 = x. That is, the standard AK model with returns un­
bounded from below does not meet such a requirement. 

The point is that these author's assumption represents a bound to the rate 
of convergence to zero of feasible paths. \Vhen such a bound is imposed, a con­
traction may be obtained in many cases. Consider again the AK model with 
logarithmic one-period utility we shaw in the previous subsection but now let 
r(x) = [Jx. Ax] for some O < J < A. A contraction is again obtained. Choose 
again ip(a) = 1 + j log(a)I and note that IIROII _ = 1 so that (Bl) holds. But 
also I log(a)I will be less or equal than j log(J) + log(x)I or I log(A) + log(x)I 
so that in any case I log(a)I :S I log(J)I + 1 log(A)I + 1 log(x)j. Then choose 
'lf;(x) = 1 + j log(J)I + j log(A)I + j log(x)I and note that it verifies (B2) because 
<p(at) ::S 1L1(xt) along any feasible plan. Now simply note that 

8 sup 'lf;(y) = ô 1 + j log(J)I + j log(A)I + max{j log(J)I, j log(A)I} + j log(x)! < ô < 1. 

ax$y$Ax 'l/;(x) 1 + j log(J)I + j log(A)j + j log(x)I -
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\v11at happens is that the logarithm linearizes any exponential factor of divergence 

or convergence to zero so that as soon as 8 < 1 everything is working. But this 

depends cruzially on the fact that J > 0 so that j log(J)I < oc. This same 

model with W(a, >.) = -a0 + 8>. and 0 < 0 would meet (Bl) and (B2) as soon 

as 811
-u < 1. Again choose <p(a) = 1 + a0 while 'lj;(x) = 1 + (Jx) 0 . Indeed, in 

this case we should not care of returns growing from above but of convergence to 

-oo so that the principle of optimality will holds when 8 discounts the factor J 

of convergence to zero of feasible paths. 

5.3. Biconvergence 

Streufert (1990, 1992) introduces the notion of biconvergence; a limiting condition 

ensuring that returns to any feasible path are on one hand suffi< :ently discounted 

from above ( upper convergence) and from below (lower convergence). However, in 

those cases in which a one-stage return of -oo is admissible, the return fonction 

fails to be lower convergent. Also, as uniform discounting is substituted by a 

pointwise limit condition, he looses information about computational errors when 

iterating on the maximizing operator; he obtains convergence to the value fonction 

but pointwise convergence. His approach is interesting, though, as it allows to 

deal with models in which Lipschitz di~counting is not possible to be obtained. 
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