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INTRODGCTION 

Since the early work of Debreu (1962), different sufficient (or necessary and 
sufficient) conditions have been used in the literature to prove existence of an 
Arrow-Debreu equilibrium when agent's consumption sets are unbounded below. 

Among these conditions, one finds in particular : 

i) The assumption that the individually rational attainable allocations set is 
compact, 

ii) The assumption of existence of a "no arbitrage price" (in other words, a 
price for which aggregate demand exists), 

iii) The assumption of absence of net trades that improve all agent's utilities. 

These conditions are not always equivalent, hence one of the main purposes 
of this paper is to classify these assumptions and give conditions under which 
they are equivalent. A second purpose of the paper is to prove existence of an 
equilibrium under the assumption that the individually rational utility set is com
pact, by the demand approach. We improve existing results in the literature: our 
result is stronger than Nielsen's (1989) who assumes that the individually ra
tional attainable allocations set is compact. It is also stronger than the results 
obtained by Brmvn, Werner (1995) and Dana, Le Van and Magnien (1995), who 
have used Negishi's approach in an infinite dimension setting but had to assume 
that preferred sets had non empty interior. 

The paper is organised as follows : 

In part one, ,ve first set the model. \Ve then give an example of a two
dimensional, two agents economy of which the individually rational utility set 
is compact while the individually rational attainable allocations is not. Lastly 
we prove existence of an equilibrium under the assumption that the individually 
rational utility set is compact. 

In part two, we recall and compare various notions of absence of arbitrage for 
individuals and for the economy. We then compare the hypothesis of absence of 
arbitrage with that of compactness of the individually rational attainable utility 
set. Lastly we give conditions on utilities for equivalence between absence of 
arbitrage and existence of equilibrium. 
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1. EXISTENCE OF EQUILIBRIUrvl 

1.1. The model 

We consider an exchange economy & with m agents (m 2'.: 1). Agent i has a 
consumption set Xi which is a closed, convex, non-empty subset of Ri(f 2'.: 1), a 

utility fonction ui from Xi to Rand an initial endowment ei E Xi, We normalize 
the utility fonctions by requiring ui(ei) = O. An allocation is a m-tuple (x1 , .. , Xm) 

m 
with Xi E Xi, Define ë = Lei, An allocation is attainable if L Xi = ë. It is 

i i=l 

individually rational attainable if it is attainable and if ui(xi) 2'.: ui(ei) for all i. 
We denote by A the set of all individually rational attainable allocations. The 
individually rational utility set U is defined as follows : 

U = { (v1 , .. ,,vm) ER: l 3x E A s.t. 0 ~ vi ~ ui(xi), 'v'i}. 

A quasi-equilibrium is a pair (x* ,p*) E A x (Re\ {O}) such that : 

(x* ,p*) is an equilibrium if: 

An allocation (x1 , ... xm) is Pareto-optimum (P.O) if it belongs to A and if 
there exists no (x~, ... x~rJ in A such that ui(x:), 2'.: ui(xi) for every i, with at least 
one strict inequality. 

We list now the assumptions which might be used in the sequel of the paper. 

{Hl) ui is quasi-concave, i.e. the set 

is convex for all Xi E Xi; 

{H2) ui is strictly quasi-concave : if Xi and Yi belong to Xi and ui(Yï) > ui(xi) 
then ui(>.xi + (1 - >.)yi) > ui(xï) for all À E [O, 1[; 

{H3) ui is upper semi-continuous, i.e. the set Pi(xi) is closed for all Xi E Xi; 
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{H4) If Xi belongs to Ai (the projection of A on Xi), then the set 

is non-empty ; 

{H5) The sets Pi(xi), for all Xi E Xi, have the same asymptotic cone ; 

{H6) ~(xi)= {x E Xi I ui(x) = ui(xi)} does not contain a half-line for every 
Xi E Xi; 

{H7) Agent i has no satiation point i.e. Pi(xi) -:j:. </J for all xi E Xi. 

Let us recall that assumptions H2 and H3 imply Hl (see Debreu (1959)). 

Let us denote by W(xi) the asymptotic cone of the set Pi(xi) and Wi(ei) = Wi 
for short. Then assumption H5 means that Wi(xi) = Wi for all xi E Xi. 

Notations 

int(X) is the interior of X; if W is a cone, then its polar W 0 is : 

W 0 = {p I pw :s; 0, \fw E }V}. 

For x, y E Rt, ]x, y[= { ,\x + (1 - ,\)y,,\ E ]O, 1[}, [x, y] = {,\x + (1 - ,\)y,,\ E [O, 1]}; 

If X C Rl' X denotes its closure and ax its boundary. 

1.2. An example when U is compact while Ais not 

Now, we present an example of a finite asset market in which the set A of in
dividually rational attainable allocations is not compact whereas the individually 
rational utility set U is compact. We mention that in infinite dimension, there is 
already an example given by Cheng in LP (Cheng, 1991). Unfortunately, one can 
show that in finite dimension this example fails to be true. The following seems 
to be the first in finite dimension. 

Example 1. Consider an economy with two agents. Agent 1 has the following 
consumption set, X 1 = {(x, y) E R2 1 y~ -x/2} and his utility fonction is defi.ned 
by 
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y+i! { X } (1) ui(x, y) = 2 x 
2 if (x, y) E Z1 = (x, y) E X1 1 --

2 
5 y 5 x2 + 1 , 

X + - + l 2 

(2) u1(x,y) = y- x2 if (x,y) E Z2 = {(x,y) E X1 1 y~ x2 + 1} 

Notice that 

{ 

0 5 u1 < 1 on Z1 \Z2 
(3) u1 = 1 on Z1 n Z2 

u1 > 1 on Z2\Z1 

Clearly, u1 is continuous on X 1. 

ln order to check that u1 is strictly quasi-concave, let (xo, Yo) and (x1, Y1) E X 1 
be such that u1(x1 ,Y1) > u1(xo,Yo), \Ve shall prove that 

u1(x,y) > ui(xo,Yo) if (x,y) = À(x1,Y1) + (l -À)(xo,Yo), with O <À< 1. 

Case 1: Let (xo,Yo) E Z2. It follows from (3) that u1(x1,Yi) > 1 and from (2) 
that: 

( 4) Y1 - XÎ > Yo - X~ 

ln this case, the daim may easily be checked. 

{ 
a-1 } Let Co= {(x,y) E Z1 1 u1(x,y) >a}= (x,y) E R 2 

I y> ax2 + -
2
-x + a . 

Clearly C0 is convex and since u1 is continuous, (x0 , y0 ) E 8C0 • 

Subcase a : (xi, y1) E Z1. Then, from (1) and since u1 (x1, y1) > a, one has 
(x1, yi) E C0 • It implies that 

(5) (x, y) E C0 (since C0 is open and convex). 

If (x,y) E Z1, then (1) and (5) imply u1(x,y) >a= u1(xo,Yo). 
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If (x, y) E Z2, then u 1 (x, y) 2: 1 > u1 (xo, Yo) from (3). 

Subcase b: (x1 ,Y1) E Z2\Z1. Since (xo,Yo) E Z1\Z2, there exists (a,b) E 
Z1 n Z2 such that 

(6) ](xo,Yo); (x1,Y1)[n Z2 = [(a,b); (x1,Y1)[ 

(7) ](xo, Yo), (a, b)[ C Cc. n Z1. 

lndeed, (6) follows from the convexity of Z2 and (7) from (x0 , y0 ) E 8Cc. and 
b+.!! 

(a, b) E Cc. (since (a, b) E Z1 n Z2, u1(a, b) = 
2 

a 
2 = 1 > a). 

a + 2 + 1 

If (x, y) E ((a, b); (xi, Y1)[, then (x, y) E Z2, thus u1 (x, y) 2: 1 > a = u1 (xo, Yo). 

If (x, y) E ](xo, y0 ); (a, b)[ then, from (7), (x, y) E Cc. n Z1 hence, from (1), 
u1(x, y)> a= u1(xo, Yo). · 

Agent 2 has the following consumption set and utility fonction 

Consumers 1 and 2 have the same initial endowments e1 = e2 = (0, 0). 

A is not compact : 

Since ui(ei) = Min ui(Xi) (i = 1, 2), Ais the set of all pairs ((x, y), (-x, -y)) 
E X1 x X 2 • Hence 

(8) A= { ((x,y), (-x,-y)) ER 2 x R 2 I -~~y ~ -2x} 

Notice that x ~ 0 and y 2: 0 for all ((x,y); (-x,-y)) in A. 

U is bounded : 

If ((x, y); (-x, -y)) E A, then from (8) and since -2x ~ x2 + 1 for all x ER, 
one has (x, y) E Z1 . Thus, from (3), u1 (x, y) ~ l. Moreover 

(-y) 
--

2
- ~ - X~ - 2(-y) 
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since -! $y$ -2x. Hence (-y, -x) E Z1 and u2(-x, -y) = u1 (-y, -x) $ 1. 

U is closed: 

Consider a sequence vn = (vî,v2) in U which converges to v = (v1,v2 ) E R2. 

From the definition of U, there exists a sequence ( ( x1, YÎ), ( x2, y2)) in A such that 

0 $ vf $ ui(xf,yf) for all n and i = 1,2. 

Since U is bounded, we may assume without lost of generality that ui(xr, yf) --+ 

ai, hence O $ vi $ ai. 

Suppose first that (x1) is bounded. Then (yî) is also bounded since, from (8), 
0 $ YÎ $ -2x1. Hence, by extracting subsequences, (xi, yf) tends to (xi, Yi) 
E Xi. One has a1 = u 1(x1,y1) and a2 = u2(-x1,-y1), thus v EU. 

Now suppose that (x1) tends to -oo (recall that x1 $ 0). Since YÎ $ -2x1 $ 
(x1)2 + 1 one has (x1,yf) E Z1. Then since YÎ $ -2x1, we deduce from (1) that 

n 

a 1 = O. Moreover, (8) implies- xd $ YÎ or-x1 $ -2(yf). Hence-x1 $ (-yf)2 +1. 

Then from (1), one deduces that u 1(-yî, -xî) tends to Oso that a 2 = O. Hence 
vi = ui(ei)(i = l, 2) and v EU. 

(INSERT FIGURE 1) 

1.3. Existence of an equilibrium 

We shall now state a theorem which is stronger than Nielsen 's theorem who 
requires the compactness of the individually rational atttainable allocations set 
(see Nielsen, 1989). But, as shown in the previous section, this assumption may 
not be satisfied while the individually rational utility set U is compact. 

Theorem 1. Assume H2, H3, H4 and U compact, then there exists a quasi
equilibrium. 
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The idea of the proof is as follows. \Ve first truncate consumption sets with 
a ball of radius r. Using the same trick as in Florenzano-Le Van (1986), we then 
prove that, for r large enough, there exists a quasi-equilibrium for the truncated 
economy. This trick consists in adding fiat money to the model. It is used in 
Kajii (1996). Under the assumptions of the model, the quasi-equilibrium price 
of fiat money equals zero. Lastly, as n --+ oo, we deduce the existence of a 
quasi-equilibrium (x*, P*) for the original economy. 

We shall use the following lemma : 

Lemma 1.1- Let P Ç Re be a closed convex cone which is not a linear 
subspace. Let ?°, B and S denote respectively the polar of P, the unit ball and 
the unit sphere of Re. Let Z be an u.s.c., non-empty, compact, convex-valued 
correspondence /rom S n P into Re such that 

Vp ES n P, :lz E Z(p),p.z :s; O. 

Then there exists p E Sn P such that Z(p) nP0 f. </). 

Proof : See Florenzano-Le Van (1986).D 

Proof of Theorem 1 

Consider the truncated economy obtained by replacing agents' consumption 
sets Xi, i = 1, ... , m by Xf = Xi n Bn where Bn is the ball of radius n. Let n be 
large enough so that ei E XI', 

Let çf and Qf be the two correspondences in S n (Re x R+) defined as follows: 

çf(p, q) 

Qf(p, q) 
{xi E Xf I ui(xi) 2:: ui(ei) and pxi :s; pei + q}, 

{xi E çf (p, q) 1 Yi E Xf and ui(yi) > ui(xi) ~ PYi 2:: pei + q}. 

Lemma 1.2 - For all i = l, ... , m, Qf is an u.s.c non-empty, convex compact
valued correspondence. 

Proof : see Appendix. 

Let zn(p, q) = [i~l Qf (p, q) - ë] x { -m}, V(p, q) E Sn (Re x R+ ). 
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It follows from lemma 1.2 that zn is u.s.c, non-empty, compact convex-valued. 

Moreover (p, q).x s; 0, V(p, q) E Sn (Ri x R+), Vx E zn(p, q). 

It follows from lemma 1.1 that there exists (pn, qn) E Sn (Ri X R+) such that: 

Since (Ri X R+ )0 = Oat x R_, there exists xf E Qf (pn, qn), Vi = 1, ... , m, such 
m 

that E xf = ë. Since xf E Qf(pn, qn),we have pnxr s; pnei + qn and 
i=l 

Since U and Sare compact, we may assume without lost of generality that 

By definition of v, there exists x* E A such that 

(11) ui(x;) ~ vi for all i = 1, ... ,m. 

We will prove that (x*, p*) is a quasi-equilibrium of the initial economy. Indeed, 
let Xi E Xi be such that ui(xi) > ui(x:). (Since x* E A, the existence of such 
an Xi follows from H4). Let À E JO, lJ and x; = Àxi + (1 - À)x;. It follows from 
H2 that ui(xt) > ui(x;). Hence, from (11) and (10), there exists n>. , such that 

x; E Xf and ui(xt) > ui(xf) for all n ~ n>., hence, by (9): 

When n -t oo, we get: 

(12) À p*xi + (1 - ..\)p*x; ~ p*ei + q*, V..\ E JO, 1],Vi 

and, when À -t O: p*x; ~ p*ei + q*, Vi. 

Since x* E A and q* ~ 0, adding these inequalities, we get that q* = 0 (so 
that p* -=J 0) and p*x; = p*ei, Vi. 
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Lastly, applying (12) with À = l we obtain : 

Hence, (x*,p*) is a quasi-equilibrium. D 

Remark 1.1 

We will prove now that for n large enough, qn = 0 and then ( xn, pn) is a 
quasi-equilibrium of the truncated economy. Indeed, for n large enough, xf is not 
a satiation point for i in Xf. If not there would exist a subsequence (x7k)k with 
xf" a satiation point for i in Xfk .Hence, for all Xi E Xi, one has ui(x?) 2: ui(xi) 
for k large enough. Thus ui(x:) 2: vi 2: ui(xi), in contradiction with H4. \Ve 
daim that pnxf = pnei + qn. Indeed, let Yi E Xf be such that ui(Yi) > ui(xr) 
and let y; = >.xf + (1 - >.)yi with À E [O, 1 [. Then ui(yt) > ui(xf) by H2; hence 
pny; 2: pnei + qn. As À -t 1, one has pnxf 2: pnei + qn, hence pnxi = pnei + qn. 
Summing over i one gets qn = O. 

Remark 1.2 

Observe that p* is the limit of pn but x* is not necessarely the limit of (x1.! )b1 

nor is ui(x:) the limit of ui(x1.! ). 

Remark 1.3 

In example 1, assumption H2,H3,H4 are satisfied. Hence, by Theorem 1, there 
exists a quasi-equilibrium. 
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2. RELATIOXS BET\VEE~ DIFFERENT NOTIONS OF ARBITRAGE 
AND THE UTILITY SET CO:.IPACTNESS 

2.1. Useful commodity bundles 

Let üi = sup ui(xi). 
ZiEXi 

Recall that wi denote the asymptotic cone of A(ei)• w E wi iff ei + tw E xi 
and ui(ei + tw) 2:: ui(ei), Vt 2:: 0. Equivalently w E Wi iff Xi + w E Xi and 
ui(xi + w) 2:: ui(ei), Vxi E .A(ei). Equivalently w E Wi iff there exists a sequence 

(xn) such that Uï(Xn) 2:: ui(ei) and a sequence (.Xn) E R+ such that ÀnXn - w 

and Àn - 0 when n - oo. 

Definition 2.1 - w is W-useful if w E Wi. 

Wi is a closed convex cone. In order to sumrnarize its properties, let us intro
duce a lemma : 

Lemma 2.1. - Let r be a cone in Re and let w E int(f). Then 

Vx E Re,:3t0 2:: 0 such that x+tw E f,Vt > t0 . 

Proof : Since w E int(f), there is a ball B(w, r) such that B(w, r) Cr. Since 
fis a cone, Vt > 0, tB(w, r) = B(tw, tr) Cr. 

Let x E Re, then 

ll(x + tw) - twll = llxll < tr if t > to = llxll; 
r 

hence x + tw E B ( tw, tr) C r if t > t0 • D 

We next summarize the properties of Wi. 

Proposition 2.1 - (1) Assume Hl, H3, H7. Then Wi f {O}. 
(2) Assume H2 and H3. Then Wi contains a line iff ~(ei) contains a line. 

(3) Assume H2, H3, H6. Then Uï(ei + tw) > Uï(ei), Vt > 0, Vw E Wi - {0}. 
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(4) Assume H2, 113, HS {resp. H6}. Then \/w E Wi - {O}, \/xi E Xi, the map 

t - ui(xi + tw) is non decreasing (resp. increasing). Assume H2, H3, HS, H6, 

then Wi =/= {O} ç=:} H7. 
(5) Assume Hl, HS, H7 and int (Wi) =/= </). Then \/w E int (Wi), the map 

t - ui(ei + tw) is non-decreasing and lim ui(ei + tw) = üi. 
t->oo 

Proof - To prove assertion (1), assume Hl, H3, H7 and Wi = {O}. Then F;(ei) 
is compact, hence there exists si such that ui(si) = sup ui(xi)- Hence Pi(si) = · 

XiEXi 

contradicting H7. 

To prove (2), clearly if Ri(ei) contains a line, then l-Vi contains a line. Con
versely if Wi contains a line, then there exists wi E Wi - {O} with -wi E Wi. 
Therefore, 

If for some t, ui(ei + twi) =/= ui(ei - twi), then under H2, ui(ei) > min{ ui(ei + 
twi), ui(ei -twi)} : a contradiction. Hence ui(ei +twi) = ui(ei-twi) = ui(ei), \/t > 
0 and R(ei) contains a line. 

Proof of (3) : Assume that ui(ei + twi) = ui(ei) for some t > 0 and wi E Wi -
{O}. Let t' > t. If ui(ei + t'wi) > ui(ei + tw), then from H2, ui(ei + twi) > ui(ei): 

a contradiction. Hence ui(ei + t'wi) = ui(ei), \/t' 2: t contradicting H6. 

Proof of (4) : Under H2, H3, H5 and H6, it follows from (3) that 

Hence under H2, H3, H5 and H6, if Wi =/= {O}, then ~(xi) =/= <P, \/xi. 

Proof of (5) : Let int(Wi) =/= </J. Let xi E Xi. lt follows from lemma 2.1 
that there exists t0 such that ei - Xi+ tw E Wi, \/t 2: t0 . Equivalently ei + tw E 

Xi+ Wi, \/t 2: to. Under H5, ui(ei + twi) ~ ui(xi), \/t 2: t0 • It follows from H5, that 
the map t - Uï(ei + tw) is non decreasing and that lim ui(ei + tw) = üi. D 

t--+oo 
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We now generalize the notion of C-useful vectors introduced by Chichilnisky 
(1994). 

Definition 2.2 - w E Rl is C-useful for i if ei + tw E Xi, Vt > 0 and 
Vxi E Xi, 3t > 0 such that ui(ei + tw) 2 ui(xi). 

Let Ci denote the set of C-useful vectors for i and <Ii the set of satiation 
consumptions (si E ai iff ui(si) = ui = sup ui(xï)). Clearly Ci is a cone. 

x,EX, 

In order to characterize Ci, we first prove two lemmas. 

Lemma 2.2 - Let f : R+ ---+ R be an upper semi-continuous quasi concave 
function. Then there exists x0 E [O, oo) such that J is non decreasing on [O, x 0] 

and J is non increasing on [x0 , +oo[. 

The proof of Lemma 2.2 may be found in the appendix. 

Lemma 2.3 - Assume H2 and H3. Let w E Ci. Then 
i} either for some t0 2 0, ei + tow E ai. 
ii} or the map t ---+ ui ( ei + tw) is non decreasing on R+ and lim uï( ei + tw) = 

t->oo 

Proof - Let w E Ci, then the map t---+ ui(ei + tw) is quasi-concave and upper 
semi-continuous on R+, hence by lemma 2.2 either it is non decreasing on R+ 
or there exists t0 2 0 such that it is non decreasing on [O, t0) and non increasing 
on [to, +oo[. In the last case, ui(ei + tow) = Uï, In the first case, lim ui(ei + tw) 

t-+oo 
exists and lim ui(ei + tw) = ui since w is C-useful for i. D 

t->oo 

We next compare Wi and Ci, 

Proposition 2.2 - Ass-ume Hl and H3. Then 
1} If <Iï =J <P then 

2) Assume moreover H7. Then 
{i} Ci is a convex cone {which may be empty), 
{ii} Ôï Ç Wï, 
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{iii) Under H.5, if int (vVi) =J </;, then int (vVi) Ç Ci, 

{iv) Ci U {O} = vVi iff lim ui(ei + tw) = üi, 'vw E vVi \ {O}. 
t-+oo 

Proof - Proof of 1) : By defini tion of Ci, if ai =J cp, then 'r/w E Ci, there 

exists t0 > 0 such that ui(ei + t0w) = üi. Hence ei + tow E ai and Ci Ç 

{.X(si -ei),.X > O,si E ai}. Conversely let si E ai. Then ui(ei+si-ei) = ui(sï) ~ 

ui(xi), \;/xi E Xi, hence si - ei E Ci which implies that {.X(si - ei), À> 0} Ç Ci, 

since ci is a cone. 

The proof of 2.i) is omitted. To prove ( ii) let w E Ci. Under H7, it follows 

from Lemma 2.3 that fort ~ 0, ui(ei + tw) ~ ui(ei). Hence w E Wi. Since Wi is 
closed, ëi ç wi. 

Proof of 2.iii) : It follows from proposition 2.1, (5) that lim ui(ei + tw) = 
t-+oo 

üi, 'r/w E int (Wi). Hence int (vVi) Ç Ci. 

2.iv) follows from Lemma 2.3. D 

Remark 2.1 - 1) If ai =I= </;, then the inclusion Ci Ç Wi may not hold as shown 
by the following example : 

Let Xi = R,ui : R--+ R be defined by ui(x) = -(x - 1)2 + 1 and ei = O. Then 

ai= {1}, Ci= R++ but Wi = {O}. 

2) Ci may be empty as shown in the following example : 
xi= {(x,y) 1 X~ 0,0::; y::; jx},ui(x,y) = y and ei = (0,0). Then wi = 

{.X(l,O),.X ~ O} and Ci= cp. 

2.2. Different notions of arbitrage 

Let us now introduce difference notions of arbitrage. 

Definitions 2.3 - A price vector p E Rl is a "no arbitrage price" for i if 

p.wi > 0, 'vwi E Wi - {O}. 

A price vector p E Rl is "limited arbitrage" for i, if pw > 0, 'vw E ëi n ~ 
where ~ denotes the unit sphere of Rl. 

A price vector p E Rl is "arbitrage free" for i if for all sequence (xn) in Rl such 

that eï+Xn E Xi, 'r/n, lim ui(ei+xn) = üi and lim PXn exists, then lim PXn > O. 
n-+oo n-+oci n-too 
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A price vector p E Rt is "viable" if the problem px ~ pei has a solution. 
{ 

max Uï(x) 

XE Xi 

. Let Si = {P E Re I pwi > 0, \twi E Wi - {0}} denote the set of no-arbitrage 
pnces. 

Let wp denote the polar of Wi: wp = {P E Rt I pw ~ 0, \tw E Wi}. 

Proposition 2.3 - Assume Hl and H3. Then Si = int ( -WP) and 
Si=/ </J <=> Wi contains no line, <=> R-i(eï) contains no line. 

Proof - Let <I>i(P) = min p.w where L is the unit-sphere. Then <I>i is con
wEWinL 

tinuous and by definition of the polar set, p E -WP iff <I>i(P) ~ O. Hence <I>i(P) > 0 
implies p E int ( -WP). 

Conversely if p E int (-WP),<I>(p + z) ~ O,\tz E B(O,€) with ë > O. Hence 
pw ~ zw, \tw E Wi, \tz E B(O, €) and hence pw > 0 \tw E Wi and p E Si, 

Since wi is closed, (WP)0 = Wi, Hence, by Rockafellar's corollary 14.6.1, if wi 
contains no line then int (Wi0 ) =/ </J. 

Conversely if Wi contains a line, Si = </J (if not pwi > 0, -pwi > 0 for some p 
and wi =/:- 0, a contradiction). D 

ln the following proposition, we study the relation between the various notions 
of arbitrage that have been introduced. 

Proposition 2.4 - 1} Assume Hl and H3. If p E Si, then p is viable. 
2) Assume H2, H3, H5 and H6. Then p E Si iff p is viable. 

Proof - (1) is obvious. To prove 2) let p be viable. Let xi(p) be an optimal solu
tion to the demand problem. By proposition 2.1, ui(xi(p) +wi) > ui(xi(p)), \twi E 
Wi - {O}; hence pwi > 0 which implies that pis no arbitrage. D 

Proposition 2.5 - 1} Assume Hl, H3 and H'l. If p E Si, then p is arbitrage 
free and limited arbitrage. 
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2) Assume Hl, H3, H7 and lim ui(ei + tw) = üi,Vw E Wi - {O}. Then: 
n-+oo 

p E Si <==} p is limited arbitrage <=> p is arbitrage free <=> p is viable. 

3) Assume Hl, H3, H5 and int (Wi) =J </>, then : 

limited arbitrage <=> no arbitrage 

Proof -To prove 1), let p E Si. If pis not arbitrage free, there exists a sequence 
(xn) such that 

lim Ui(ei + Xn) = Üi and lim PXn ~ O. 
n-i>OC> n-+oo 

Under H7, ui(ei + Xn) 2: ui(ei) for n large enough and (xn) is unbounded. 

Indeed, assume the contrary: (xn) is bounded. One may assume that the 
sequence (ui(ei + Xn)) is increasing and Xn -+x. Let In = {x I ui(ei + x) > 
ui(ei + Xn)}, By H3, In is closed. Since Xj E In if j 2: n, we have x E In, '<ln. In 
other words, ui(ei + x) 2: ui(ei + Xn), '<ln: a contradiction with H7. 

. f . ei + Xn { } We may assume w1thout lost o generahty that llxn Il - w E Wi - 0 · 

But then pw = J~~ p Il:: Il ~ 0 contradicting the assumption that p E Si. 

Under Hl, H3 and H7, by proposition 2.2, ëi Ç Wi. Hence if p E Si, then 
pw > 0, Vw E Ci n I:, implying that pis limited arbitrage. 

To prove 2) : By proposition 2.2, we have Wi = Ci U {O}, hence p E Si iff pis 
limited arbitrage. 

If lim ui(ei + tw) = üi for every w E Wi - {O}, and if pis arbitrage free, we 
t-+oo 

have lim t p w > 0 ; hence pw > O.Thus if p arbitrage free then p E Si. The 
t-+oo 

converse is true by 1). 

Let us prove that if lim ui(ei +tw) = üi,Vw E Wi - {O}, then p viable implies 
t-+oo 

p E Si. Since ui(ei +tw) - üi, one has ui(ei +tw) > ui(xi(P)), fort large enough. 
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Hence p(ei + tw) > pei. Under H7, pxi(P) = p.ei , thus pw > O. By proposition 
2.4.1) the converse is true. 

To prove 3) : by proposition 2.2. under H5 and if int (Wi) =J. </), we have 
Wi = ëi . Thus p E Si iff p is limited arbitrage. D 

We next give an example of a price that is viable, arbitrage free, limited 
arbitrage but which is not no arbitrage, because H6 is not satisfied. 

Example 2.1 - Let Xi= {(x,y) E R2 I x ~ 0 and O ~y~ Jx} ,ui(x,y) = y 
and ei = (0, 0). Then Wi = {..\(l, 0), ,\ER+} and Si= {p = (p1,P2) E R2 

1 P1 > O}. 
Let p = (0, 1). p ri. Si, but pis viable since the problem 

{ 

ma.'< y 
y~O 

(x, y) E Xi 

has a solution. p is arbitrage free. Indeed if ui(Xn, Yn) = Yn ._ oo then 
p(xn, Yn) = Yn ._ oo. pis limited arbitrage since Ci = </) (remark 2.1.2). 

In this example, Hl, H3, H5, H7 are fulfilled, but H6 is violated. One can also 
remark that wi-:/ ëi. 

2.3. No arbitrage, market-arbitrage and compactness of the utility set 

A price vector p E Re is a "no arbitrage" price for the economy & if pwi > 0, 
\/wi E Wi - {O}, Vi = 1, ... , m. Equivalently p E Reis a "no arbitrage" price for & 

m 
iff p E n Si. 

i=l 

m 
A vector (w1, ... , Wm) E rr wi with Wi =J. 0 for some i is a "market arbitrage" 

i=l 
m 

if I.: wi = O. 
i=l 

m 
There is "no market arbitrage" if I: wi = 0 with wi E Wi, \li, implies wi = 

i=l 
O,Vi. 
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Proposition 2.6 - Assume Hl, H3 and that R(ei) contains no line. Then 
the following are equivalent: 

a) There exists no market arbitrage, 

m 
b) E Wi contains no line, 

i=l 

m 
c) n si f ,p. 

i=l 

m 
Proof : a=:> b - Assume that E Wi contains a line. Then there exists y f 

i=l 

O,(w1,···,wm) and (w~, ... ,w~) such that 

y= (w1 + ... + wm) and - y= (w~ + ... + w~) 

m 
Hence E (wi + wD = O. Since there is no market arbitrage, Wi + w~ = 0, Vi. 

i=l 
From proposition 2.3, Wi contains no line, hence wi = 0, Vi, contradicting y f O. 

m m 
b =:> c - Let us fi.rst remark that if I: vVi contains no line, then E Wi is closed 

i=l i=l 
m 

(Debreu, 1959). Hence, from Rockafellar (1970), corollary 16.4.2, one has E Wi 
i=l 

m m 
= ( n wp)0 and from Rockafellar (1970), Corollary 16.4.1, n wp has non empty 

i=l i=l 
m 

interior. Since int (n wp) = n int (WP) = - n si (proposition 2.3), we have 
i i i=l 

c =:> a - The proof which is obvious is omitted. D 

Proposition 2.7 - Assume Hl and H3. Then there is no market arbitrage iff 
A compact. 

If furthermore, R(ei) contains no line, Vi, then 

m 
n Si f ,p ~ no market arbitrage ~ A compact =:. U compact. 
i=l 
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?roof - Let A:x:i denote the asymptotic cone of A : 

Hence A00 = {O} iff there is no market arbitrage. Since Ais closed and convex, 
A00 = {O} iff A compact. The implication: A compact=} U compact follows from 
H3. The rest of the assertion follows from the proposition 2.6. D 

Observe that in example LU is compact while Ais not because Hï(ei) contains 
a line. 

2.4. Arbitrage and equilibrium 

m 
Proposition 2.8 - (1) Assume Hl, H3, H5 and H6. Then n Si =/- cp # A 

i=l 
compact # U compact # Existence of a P.O. # No market arbitrage. 

(2) Assume furthermore H2 and H4, Then any pre'l.lious assertion implies 
existence of a quasi-equilibrium. 

(3) Assume furthermore 

(*) \fi, in/ pXi < pei, Vp E n S\, pi- O. 
i 

Then any pre'l.lious assertion is equi'l.lalent to existence of an equilibrium. 

Assume furthermore : Vi, int (î-Vi) =/- cp. Then any pre'l.lious assertion is equi'l.1-

alent to limited arbitrage or to existence of an equilibrium 

?roof - (l) From proposition 2.7, it suffices to show that under HS, H6, U 
compact implies existence of a P.0. which in turn implies no market arbitrage. 

m 
Assume U compact. Let g : U ._ R be defined by g(v) = L vi. Since g is 

i=l 
continuous, g has a maximum v* = (vi, ... , v~) E U. Hence there exists x* E A 
such that v; = ui(x;). Clearly x* is a P.O. 

Let x* = (xi, ... , x:n) be a P.O and assume that there exists w* = ( wi, ... , w~) a 
market arbitrage. Then w; =/- 0 for some i. Under HS, H6 ui(x; +w;) ~ ui(x;), Vi, 
with a strict inequality for some i, contradicting the assumption that x* is a P.O. 
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(2) follows from theorem 1. 

(3) If (x*,p*) is a quasi-equilibrium, then p* E n si since si = -WP by 

proposition 2.3. Hence inf p* Xi < p•ei, Then (x• ,p*) is an equilibrium. 

Conversely if (x•, p*) is an equilibrium, under H2, H3, H4, H5 and H6 

m 

Hence p*wi > 0, \/wi E Wi - {O}, \/i, equivalently p* E n Si which therefore 
i=l 

is non empty. 

The last daim follows from 3) in proposition 2.5. D 

We exhibit examples which show that if, in proposition 2.8, either assumption 

H6 or condition (*) is dropped, then we may have "pathological" situations. 

Example 2.2 - A two agents economy which has an equilibrium but no 

arbitrage-price. H2, H3, H4, H5 are fulfilled but not H6. 

Let X 1 = {(x, y) E R 2 
1 y 2:: O} and let u 1 (x, y) = y and e1 = (0, 0). 

Let X 2 = {(x, y) E R2 1 x E [O, 1], y 2:: O} and let u2(x, y)= y and e2 = (0, 0). 

W1 = {(x, y) E R2 
1 y 2:: O}. Obviously S1 = </J. 

W2 = {,\(O, 1), ,\ 2: O}, hence S2 = {(x, y) 1 y> O}. S1 n S2 = <P: there is no 

arbitrage-price. 

= {((x,0), (-x,0)) E R4 I x E [0,1]}; 

hence Ais compact. 

Let p* = (0, 1). We daim that (e1 , e2, p*) is an equilibrium. Indeed: 

ui(x,y) > u1(0,0) <=>y> 0 <=> p*.(x,y) > 0 

u2(x,y) > u2 (0,0) <=>y> 0 <=> p*.(x,y) > O. 
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Example 2.3 A two agents economy which satisfies H2, H3, H4, H5, H6 and 
not (*). It has a quasi-equilibrium which is not P.O and no equilibrium. 

Let 

X 1 = {(x,y) ER~ J x E [0,1] ,y E [0,2]} ,ui(x,y) = x, e1 = (0,1), 

and X2 = { (x, y) ER! 1 x::; 1}, u2(x, y)= y, e2 = (0, 0). 

Obviously H2, H3, H5, H6 are satisfi.ed. One can easily check that S1 = 
R 2; S2 = {(p1,p2) 1 p2 > O} and hence S 1 n S2 = S2. The individually rational 
attainable allocations set is : 

Thus H4 is fulfilled. Let p = (1,0). Then (e1,e2,p) is a quasi-equilibrium but 
it is not P.0 since, with a1 = a2 = (O,½), one has (a1,a2) E A,u1(a1) = u1(e1) 
and u2(a2) = ½ > u2(e2). 

We prove now that in this economy there is no equilibrium. Assume (ai,a2,p*) 
is an equilibrium. We have ai = (0, y;) and a2 = (0, 1 - yi). Let p* = (Pi ,p2). \Ve 
have: 

* * * * d * * * 0 *(l *) p al = p e1 = P2 an p a2 = p e2 = = P2 - Y1 . 

Let y > 1 - Yi· Then u2(0, y) = y > u2(a2) = 1 - Yi hence p2y > p*e2 = O. 
Therefore p2 > O. Let x > O; then u1(x, 0) = x > u1(ai) = 0, hence pix > p*ei = 
p2 > O. This is a contradiction since x can be chosen arbitrarily close to O. 

(*) is not satisfied since O = p.e1 = inf pX1 and O = p.e2 = inf pX2.D 

2.5. The concept of arbitrage in the literature 

a) Individual absence of arbitrage 

The cone Wi has been used in Nielsen (1989) where eiements of Wi are called 
"directions of improvement". It has been introduced by Werner (1987) who as
sumes H5 and calls elements of Wi "useful vectors". 
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The cone Ci has been introduced by Chichilnisky (1993, 1994, 1995) when 
Xi= Rt or Rt. \Ve extend her concept to any closed convex consumption set. 

The cone Si of no-arbitrage prices for i has been introduced by Werner (1987) 
under H5, while the cone of limited arbitrage prices for i is called the "market 
cone" by Chichilnisky (1993,1994,1995). Viable prices have been introduced by 
Werner (1987). Lastly "arbitrage free prices" have been defined by Brown-Werner 
(1995). 

b) absence of arbitrage for the economy 

Prices that we call "no arbitrage" prices for the economy have been used in 
many papers, in particular in Page (1984), Werner (1987) and Page and Wooders 
(1993). 

Limited arbitrage is defined in Chichilnisky (1993, 1994, 1995) and Chichilnisky 
and Heal (1993). 

The concept of "no market arbitrage" goes back to Debreu (1962). It was, 
at least, used later by Hart (1974) in an asset equilibrium model, then by Milne 
(1979), Hammond (1983), Page (1987), Nielsen (1989) ("positive semi-independence 
of directions of improvement") and Page and \Vooders (1995) who use the termi
nology "no unbounded arbitrage". 

c) Absence of arbitrage, aggregate demand and existence of equilibrium 

All papers mentionned before, prove that the absence of some kind of arbitrage 
implies existence of an equilibrium and sometimes give necessary and sufficient 
conditions for existence of an equilibrium. 

The proof of existence of an equilibrium by the demand approach when con
sumption sets are not bounded below goes back to Green (1973) and Grandmont 
(1978, 1982) who prove existence of a temporary equilibrium. Grandmont has 
kindly provided to us the following lemma which is a corollary of his "Market 
equilibrium lemma" (see "Grandmont" (1982)). 

Disaggregated market equilibrium lemma 

Let (Di) be a collection of open convex cones of Re for i = l, ... , m. For 
each i, let Zi be an upper semi-continuous, non empty, convex, compact valued 
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correspondence /rom Di into Rt. Assume that every Zi is homogenous of degree 
zero and satisfies the f ollowing boundary condition: 

if {pk} E Di and 
11~:II -+ p E 8Di then pzk -+ +oo for every p E Di and for 

every zk in Zi(pk). 

Assume finally Walras' Law : 

Vp En Di, p. L Zi(p) = O. 
i i 

Then there exists a market equilibrium, i.e. p* such that O E I: Zi(p*), iff 
i 

\Verner (1987) has proven another corollary of Grandmont's market equilib
rium lemma. He deduces from it a sufficient condition for existence of an equilib.: 
rium. 

We will show that statement 3) of our proposition 2.8 (n Si =/= cf; # existence 
i 

of equilibrium) may be deduced from Disaggregated Market Equilibrium Lemma. 
But observe that the sufficient conditions for the existence of an equilibrium in 
our Theorem 1 are weaker than the ones of this statement. 

Proposition 2.9 - Assume every Ui concave, H2, H3, H4, H6 and (*). For 
p E Rt, define Zi(P) = argmax { ui(x) 1 x E Xi, px~ pei}. Then : 

(i) Zi(P) =/=cf;# p E Si 
(ii) Zi is convex, compact valued and u.s.c. 
(iii) If pk -+ p E 8Si\ {O}, then Vzk E Zi(pk), the sequence (zk) is unbounded 

or, equivalently, p.zk -+ +oo, Vp E Si. 
(iv) I:Zi verifies Walras' law. 

i 

Proof: 
(i) That is one of the statements in Proposition 2.4. 
(ii) Its proof is easy. 
(iii) If (zk) is bounded then (zk) could be assumed to converge to z E Zi(p). 
From (i), p E Si : a contradiction since Si is open. 
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For every p E Si we have p.zk ::;Il p Il Il zk Il . Hence, p.zk - +oo =>Il zk Il 
- +oo. Conversely, assume Il zk Il - +oo and (p.zk) bounded above. Then 
zk / 11 zk Il - z E îVi\ {O} and we have p.z::; 0 : a contradiction since p E Si, 

(iv) We prove that p.Zi(P) = p.ei for every p E Si, Assume the contrary: 
p.Zi(p) < p,ei, Let Wi E Wi\{O} and t > O. Then ui(Zi(p) + twi) > ui(Zi(p)) 
(proposition 2.1 (4)). For t sufficiently small one has p.(Zi(p) + twi) < p.ei, a 
contradiction. D 

24 



APPENDIX 

1. Proof of lemma 1.2 

For n large enough, ei E çf(p, q), which is therefore non empty. It is convex 
since ui verifies H2, H3 (and hence, Hl; Debreu, 1959) and compact, since Xf is 
compact and ui verifies H3. Since ui verifies H3, the correspondence çf has closed 
graph. Clearly 

Vn 2 l,V(p,q) E Sn (Rl x R+)-

Q?(P, q) =/ </; for n large enough since it contains the set of maximizers of 
ui on çf (p, q). It is convex valued since ui verifies H2 and H3. Let us prove 
that the correspondence Qf has also closed graph. Let (pk, qk) - (p, q) and xf E 
Qf(pk, qk), xf - Xi. Then Xi E çf (p, q) since çf has closed graph. Let Yi E xr 
be such that ui(Yi) > ui(xi). Since ui verifies H3, ui(Yi) > ui(xf) for k large 
enough, hence pkyi 2 pkei + qk which implies in the limit that PYi 2 pei + q. Hence 
xi E Q? (p, q) and Qf has closed graph. It follows from (*) that it is u.s.c. 

2. Proof of lemma 2.2 

Let a= sup {J(t) 1 t 2 O}. There are two cases : 

(i) J(t0 ) = a for some to 2 O; 
(ii) J(t) < a, Vt 2 O. 

Case (i) Let O ::; t ::; t' ::; to. By quasi-concavity, J(t') 2 J(t) i.e. f is non 
decreasing on [ 0, to]. 

Let to::; t::; t'. Again, by quasi-concavity, J(t) 2 J(t') i.e. J is non increasing 
for t 2 t0• 

(ii) We will prove that, in this case, J is non decreasing. Let (t~) be a sequence 
such that lim f(t~) = a. Since f is u.s.c. and the supremum is not attained, we 
may assume { t~} increasing and t~ - +oo. Define a sequence (tn) as follows: 

J(to) = max {J(t) I t E [O, t~]}, 
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and , for ail n ~ 1 

f(tn) = max {J(t) 1 t E [tn-1, t~]}. 

Such a sequence exists since f is u.s.c. We observe that : 

a) the sequence f(tn) is non decreasing, 
b) f(tn) 2: f(t~), \:ln, and hence f(tn) - a, 

c) (tn) is non decreasing and tn - +oo, 
d) f(tn-1) ~ J(t) ~ J(tn), Vt E [tn-l, tn] by a), the quasi-concavity of J and 

the definition of tn. 

Now, let O ~ t ~ t'. If tn ~ t ~ t' ~ tn+ 1,from d) one gets J(t') 2: J(t), by 

quasi-concavity. If tn-1 :-::; t ~ tn and tn'-1 ~ t' ~ tn' with n' > n, then J(t') 2: J(t) 
from d) and a). The proof is now complete. D 
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Consumption set and individually rational attainable allocations set of agent 1 

( characteristics of agent 2 are symmctric with respect to the first diagonal of the ones of agent 1) 

- figure 1 -


