
LINEAR EXCHANGE ECONOMIES 
WITH A CONTINUUM OF AGENTS 

Monique FLORENZANO * 
Emma MORENO GARCÎA ** 

N° 9609 

* CNRS-CEPREMAP, 140 rue du Chevaleret, 75013 Paris, France. 

Août 1996 

** Departamento de Economia, Universidad Carlos III de Madrid, Calle Madrid 126, 

28903 Getafe (Madrid), Espagne. 

This work was clone during reciprocal visits of the authors. Both institutions, CEPRE

MAP and Universidad Carlos III de Madrid, are gratefully acknowledged for their hospi

tality. We have benefitted from dicussions with J.M. Bonnisseau and Pascal Gourdel in 

Paris and C. Nufiez in Madrid. 



ECONOMIES D'ECHANGE LINEAIRES 
AVEC UN CONTINU D'AGENTS 

Résumé 

Le but de ce papier est d'étudier comment varient les pnx d'équilibre en 

fonction des ressources initiales des agents, dans une économie d'échange linéaire 

dont l'ensemble des agents est un espace mesuré sans atome. Après avoir défini le 

modèle, on donne des conditions suffisantes d'une force croissante pour l'existence, 

l'unicité et la continuité des prix d'équilibre. On montre ensuite que, si on se res

treint aux économies dont les ressources initiales sont essentiellement bornées et 

qui n'ont, du point de vue des préférences, qu'un nombre fini de types d'agents, le 

vecteur des prix d'équilibre est une fonction indéfiniment différentiable des dota

tions initiales, sur un sous-ensemble ouvert et dense de l'espace de ces dotations. 

La clef de ce résultat est une formule explicite permettant de calculer le vecteur 

des prix d'équilibre au voisinage d'une dotation initiale dite "régulière" où ces prix 

sont connus. 

Mots clés: Utilités linéaires - Fonction d'utilié indirecte - Equilibre de Walras - Espace d'agents mesuré 

sans atome - Théorème de l'application ouverte. 

LINEAR EXCHANGE ECONOMIES 
WITH A CONTINUUM OF AGENTS 

Abstract 

The purpose of this paper is to study how the equilibrium prices vary with 

respect to the initial endowments in a linear exchange economy with a continuum 

of agents. We first state the model and give conditions of an increasing strength 

for existence, uniqueness and continuity of equilibrium prices. Then, if we restrict 

ourselves to economies with essentially bounded initial endowments and if we 

assume that there is, from the point of view of preferences, only a finite number 

of types of agents, we show that, on an open dense subset of the space of initial 

endowments, the equilibrium price vector is an infinitely differentiable fonction of 

the initial endowments. The proof of this daim is based on an explicit formula 

allowing to compute the equilibrium price vector around a so-called "regular" 

endowment where it is known. 

Key words : Linear utilities - Indirect utility function - Walrasian equilibrium - Atomless measure 

space of agents - Open mapping theorem. 

JEL : C62, D51. 



1 Introduction 

Linear exchange economies with a finite number of consumers have been exten

sively studied (see, for example, Gale (1957, 1960, 1976), Eaves (1976), Cheng 

(1979) and Cornet (1989)). These economies are interesting in themselves for 

different models but they are also interesting as a local approximation of an 

economy with standard differentiable strictly quasi-concave utility fonctions (see 

Champsaur-Cornet (1990)). Recently, Bonnisseau and Jofré (1994) have proved 
that, on an open dense subset of the space of initial endowments, the equilibrium 

price vector is an infinitely differentiable fonction of the initial endowments. 

In this paper, we consider a pure exchange economy with a continuum of 

agents whose preferences are represented by linear utility fonctions. Unlike 

Mertens (1995) who is interested in a somewhat different equilibrium concept, 
we deal with conventional Walrasian equilibrium. Our aim is to study how the 

equilibrium prices vary with respect to preferences and initial endowments. Ac

tually, our main objective is to see if the above quoted result of Bonnisseau and 

Jofré (1994) holds in continuum economies. 

We first state the model and give sufficient conditions of an increasing strength 

for existence, uniqueness and continuity of equilibrium prices. Next, we provide 

an explicit formula which will be used in the following to compute the equilibrium 

price vector around a well-defined point where it is known. Finally, if we restrict 

ourselves to economies wi th essentially bounded initial endowments and if we 

assume that, from the point of view of preferences, there is only a finite number 

of types of agents, we show that on an open dense subset of the space of initial 

endowments, the equilibrium price vector is an infinitely differentiable fonction 

of the initial endowments. 

2 The Model. Existence, uniqueness and con
tinuity of equilibrium prices 

We consider in this paper linear exchange economies with a positive finite number 

f of commodities and an atomless positive, bounded measure space (J, A,µ) of 

agents. For simplicity, we assume that / is the real interval (0, 1], A the Borel 

u-algebra of subsets of / and µ the Lebesgue measure. The consumption set 

of each agent t E / is Xt = IRt, his initial endowment is w(t) E IRt and his 
preference relation is represented by a linear utility fonction Ut : Xt -+ IR, defined 

as Ut(x) = a(t) ·x = Ei=1 ah(t)xh, for some given vector a(t) E IRt. If we denote 

by w : / -+ IR~ and by a : / -+ IR~ the fonctions that respectively associate to 
each agent his initial endowment and the vector a(t), a linear exchange economy 

is defined by the following list of data E(a,w) = ((I,A,µ),(a(t),w(t))teI). 

We will consider on E( a, w) the following assumptions that we adapt from 
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Cornet (1989): 

(A.1) The map a : I -t IR~ that associates to each agent t E J the vector 
a(t) E IRt which defines his utility fonction is measurable and a(t) =f O for 
almost every t E J. 

(A.2) The map w : J -t IR~ that associates to each agent his initial endowment 
is integrable and w( t) =f O for almost every t E J. 

(A.3) For every commodity h E {1, · · · ,f}, there exist measurable subsets of 
agents A, B C I, with µ(A) > 0, µ(B) > 0 such that ah(t) > 0 for almost every 
t E A and wh(t) > 0 for almost every t E B, where ah(t) and wh(t) denote the 
h-th coordinate of a(t) and w(t) respectively. 

(A.4) If A E Ais such that for some H C {1, · · · ,q, wh(t) = 0 for almost every 
t E A, for all h E H, and ak(t) = 0 for almost every t ~ A, for all k (/; H, then 
either µ(A) = 0 or µ(A) = 1. 

(A.5) There exists J E A with µ(J) > 0 such that w(t) >> 0 for almost every 
t E J. 

(A.6) a(t) >> 0 for almost every t E J. 

(A.7) w(t) >> 0, for almost every t E J. 

Assumptions (A.1) and (A.2) are standard and define linear exchange econo
mies with a continuum of agents. When it is made on some l'(a,w), Assumption 
(A.3) is clearly harmless, for if it were violated it would be simply possible to 
remove the goods h that don't satisfy (A.3). Note that (A.3) guarantees that 
f1w(t) >> O. (A.4) is an irreducibility assumption, first formulated by Gale 
(1957) for an economy with a fini te number of agents ; in view of ( A.l) and 
(A.2), (A.4) is in particular satisfied under (A.6) which guarantees desirability 
of the commodities as in Aumann (1966). (A.5) (and a fortiori (A.7)) and (A.6) 
strengthen (A.3) and (A.4). 

Recall that an allocation is a µ-integrable fonction x : J -t IR~. An allocation 
x E L1 (IRt) is said to be feasible if J1 x(t)dµ :S: J1 w(t)dµ. A quasiequilibrium 
is a pair (p, x) E IRt x L1 ( IRt), consisting of a nonzero price system p and a 
feasible allocation x, such that for almost every t E J, p · x(t) :S: p · w(t) and 
a(t) · z > a(t) · x(t) :::} p · z 2: p · w(t). This quasiequilibrium is a competitive 
(or Walrasian) equilibrium if for almost every t E J, x(t) maximizes a(t) · z in 
Bt(P) = {z E IRtlP · z :S: p · w(t)}. 

Before establishing an existence and uniqueness result, we prove a lemma for 
which we need some additional notation. Given a price system p E IR~+, let us 
denote by Ht (p) the commodi ty su bset defined as 

{ 
ah(t) ak(t)} Ht(P) = h E {l, ... ,f} 1- = max- . 

Ph k Pk 

Let us denote by dt(p,w(t)) the demand correspondence of the agent t E J, by Vt 
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his indirect utility fonction. Finally, let è E IRt be the vector whose coordinates 
are equal to 0, except the h-th which is equal to 1. 

Lemma 2.1 LetE(a,w) be a linear exchange economy. Thenfor allp,q E IRt+ 
and for all t E J, such that a(t) =f O and w(t) =f 0, the following statements 
hold: 

i) 

ii) 
iii) 

dt(p,w(t)) = co({p·w(t)eh I h E Ht(p)}), where for XC IR'-, co(X) denotes 
Ph 

the convex hull of X 

Vt(P) = p · w(t) maxh a:~t) 
Let a E )0, 1 [ and let ra, 
for every h E {1, · · · ,f}. 

E IR~+ be defined by r,: = (Ph) 0 (qh)l-a 
Then, for all t E J, it is satisfied that 

vt(ra,) ~ avt(P) + (1 - a)vt(q) 
iv) Furthermore, the inequality is strict whenever vt(P) =f vt(q) 

Proof. dt (p, w( t)) is the nonempty set of solutions and Vt (p) the value of the 
linear programming problem 

max a(t) · z subject to z ~ 0 and p · z ~ p · w(t). 

i) follows from necessary and sufficient conditions for optimality of any element 
belonging to dt (p, w( t)). 

ii) follows from Vt(P) = a(t) · x for any x E dt(p,w(t)). 

For every t E J, let us now consider the fonction ½ : IR'- --+ IR defined 

by ½(q) = Vt(exp(q1 ), ... ,exp(q1,)). By definition of½ one has that ½(q) = 
maxh [Ef= 1 wk(t)ah(t)exp(qk-qh)] for every q E IR'-. One deduces that ½ is 

convex as the supremum of convex fonctions. iii) follows from the convexity of 

Vt. 

The proof of iv) can be found in Cornet (1989) and lies on the simple obser

vation that for all x,y E IR+, a E]0,1[, it is verified that ax+(l-a)y ~ x0 y1- 0
, 

with a strict inequality if x =f y. o 

Next, we state the existence and uniqueness of equilibrium prices in linear 

exchange economies with an atomless agent space. Proposition 2.1 extends Gale 
(1976) and proves the existence of equilibria and the uniqueness of equilibrium 
utility levels for almost every consumer. Proposition 2.2 extends Theorem 3 in 
Cornet (1989). 

Proposition 2.1 Under the assumptions (A.1)-(A.4), the atomless linear ex
change economy E(a,w) has an equilibrium (x,p) such that p >> 0 and J1 x(t)dµ = 
J1 w(t)dµ. 

Furthermore, if (x,p) and (y, q) are two equilibria of E(a,w), let us define for 
a E]0,1[, z0 = ax+(l-a)y, and for every h r,: = (Ph)a,(qh) 1

-
0

• Then (z0 ,r0
) 

is also an equilibrium of E and for almost every t E J, Vt(P) = Vt(r 0
) = Vt(q). 
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Proof. The proof of the fist assertion is as in Mertens (1995) (see lemma 3). Let 
an(t) = a(t) + n-1(1, ... , 1) and consider the sequence of perturbed economies 
En= ((J, A,µ), (an(t),w(t))te1). (En) satisfies all assumptions of Aumann (1966) 
for the existence of a competitive equilibrium (pn, xn ), with pn > > 0, normalized 
in the unit simplex, and J1 xn(t)dµ = J1w(t)dµ. W.l.o.g, one can assume that 
pn --+ p =/ O. Then, by Fatou's lemma (see for example Hildenbrand (1974) or 
Artstein (1979)), there exists an integrable fonction x : [O, 1] --+ IRt, such that 
J1x(t)dµ ~ J1w(t)dµ and x(t) is a limit point of (xn(t))n>I for almost every 
t E [O, l]. It is easy to check that (x,p) is a quasiequilibrium of î(a,w). Then let 
A= {t E [O, l]jp·w(t) = O} and H = {hjph > O}. ln view of (A.3), µ(A)< 1. On 
the other hand, for almost every t ri, A, x(t) maximizes a(t) · x subject to x 2:: 0 
and p · x ~ p · w(t). Hence, ah(t) = 0 for almost every t ri, A and for all h ri, H. 
It then follows from (A.4) that µ(A)= 0 and that (x,p) is an equilibrium. From 
(A.3), one deduces that p >> 0 and J1 x(t)dµ = J1w(t)dµ. 

Assume now that (x,p) and (y,q) are two equilibria of E and let a E]0,1[. 
From iii) in lemma 2.1, we deduce that for almost every t E J, a(t) · za(t) = 
avt(P) + (1-a )vt( q) 2:: Vt(ra). From the definition of the indirect utility fonction, 
it follows that ra· za(t) 2:: ra· w(t). On the other hand, f1 za(t)dµ = J1w(t)dµ 
and it is easily seen that for almost every t E J, ra · za(t) = ra · w(t) and 
Vt(ra) = a(t) · za. Hence (za,ra) is an equilibrium of î. ln view of iv) in Lemma 
2.1, Vt(ra) = Vt(P) = Vt(q) for almost every t E /. D 

Proposition 2.2 Under (A.1)-(A.4), let (x,p) and (y,q) be two equilibria of 
E(a,w), with ra defined as in proposition 1.1, for a E]O, 1[. Let also (Hi)~=I be 
the partition of H = { 1, ... , f} generated by the equivalence relation: h ,...., k ~ 

qhPk = qkPh· Then 

i) For almost every t E J, there exists i such that Ht(ra) C Hi and 
wk(t) = 0 for all k r/. Hi 

ii) Consequently, under (A.5), the equilibrium price vector p(a,w) is 
unique up to the multiplication by a positive scalar 

Proof. For every h, k E H and for every t E J, it is verified that ahwk(t)ah(t) + 
Ph 

(1 - a)itwk(t)ah(t) > (a)a (1t)(I-a) wk(t)ah(t). Furthermore, the inequality is 
qh - Ph qh 

strict whenever wk(t) > 0, ak(t) > 0 and fi ...J. it. 
Ph T qh 

Summing over k such that wk(t) > 0, we get 

ah(t) ah(t) a ah(t) 
ap · w(t)- + (1 - a)(q · w(t))- 2:: r · w(t)-a . 

Ph qh Th 

Then, applying the second assertion of Proposition 2.1, we get that for almost 
every t E J, Ht(ra) C Ht(P) n Ht(q), hence Ht(ra) C Hi for some i = 1, ... , k. 
Furthermore, if wk(t) > 0 for some k ri, Hi, it holds true that avt(P) + (1 -
a)vt(q) > Vt(ra), a contradiction which proves the second part of i). 
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If J is as in (A.5), then for almost every t E J Ht(r 0
) = H, which proves ii). 

D 

ln the following, the equilibrium price is normalized so as to belong to the 

unit-simplex ~ of lll; recall that ~ is compact. We now restrict ourselves to 

linear exchange econoinies that satisfy (A.1)-(A.7). Such an economy can be 

described as a measurable mapping [ of ( I, A, µ) into IR~+ x IR~+ such that 

Je o [ dµ <: oo, where e•denotes the second projection of IR~+ x IR~+ ôn mt+· 

The distribution a = µ o[-1 of [ is called preference-endowment distribution. 

It is known that the equilibrium price p( [) only depends ori the preference

endowment distribution. 

Let V denote the space of probability measures a on mt+ x IRt+ such that 

. Je da <: oo, endowed with the following metric: given a1, a2 E V, 77(01, a2) = 
p(a1, a2)+ Ife da1 - Je da21, where p denotes the Prohorov metric. Recall that 

p induces the weak conyergence topology on V and (V, 71) is a separable space 

(see Dierker (1975)). 

ln the following proposition, we state the continuity of the equilibrium price 

fonction in a result where we consider economies as similar if they have similar 

preference-endowment distributions and similar mean endowments. 

Proposition 2.3 The eq1iilibrium price function a--+ p(a) E ~ is continuous 

on (V,71). 

Proof. See Hidenbrand (1974), Proposition 4 p. 152. D 

Corollary 2.1 Let [(a,w) and, for every n, [(an,wn) be economies satisfying 

(A.1)-(A.7) and such that (an,wn) converges to (a,w) almost everywhere, and 

J1wn(t)dµ converges to J1w(t)àµ. Then p(an,wn) converges to p(a,w). 

Proof. Since convergence almost everywhere implies convergence in distribution, 

one obtain that 77(a(an,wn), O(a,w))--+ 0 when n--+ oo. Use now Proposition 2.3 to 

obtain that p(an,wn) converges to p(a,w). 

However, we can use Fatou's lemma in order to give a direct proof of this 

result. Let us consider xn : J --+ JRt, competitive equilibrium allocations 

of the economies [(an,wn). W.l.o.g., one can assume that p(an,wn) converge 

to some p E ~ and that limn-+oo J1 xn(t)dµ exists. By Fatou's lemma, one 

conclu des that there exists an integrable fonction x : J --+ JRt, such that 

f1x(t)dµ ~ limn-+oof1xn(t)dµ ~ limn-+oof1wn(t)dµ = J1w(t)dµ and x(t) is a 

limit point of (xn(t))n?:l for almost every t E J. It is easy to check that (p,x) is a 

quasiequilibrium and, in view of (A.7), a Walrasian equilibrium of the economy 

[(a,w). Hence p = p(a,w). 
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Actually, we have just proved that every converging subsequence of p( an, wn) 
converges to p(a,w). As~ is compact, it is enough to guarantee that p(an,wn)-+ 
p(a,w). D 

3 An explicit formula for the equilibrium price 
vector 

From now and for the remainder of the paper, we fix the measurable mapping 
a : J -+ IRt+ which defines individual utility fonctions, so that the price vector 
is a fonction w-+ p*(w) defined on L1 (1Rt+)-

In this section, we provide the explicit formula which will be used in Section 4 
to compute the equilibrium price vector around a point where it is known. In fact, 
we show that the equilibrium price vector is the unique ( up to a multiplicative 
real factor) positive solution of a linear system. Towards stating the explicit 
formula, we introduce the following notations. 

Let C be the set of correspondences from the agent set J to the commodity 
set {1, ... , R}, and let n be a subset (to be precised later) of L 1(IRt+)· We 
consider the mapping 0 from n to C defined as follows : for each w E n, the 
image 0w is given by 0w(t) = Ht(p*(w)), for every t E J. Let C be the range 
of 0 and, for all C E C, let us define ne = 0-1 (C) = {w E n10w = C}. 
We fix now C = ew E è and define the following subsets of agents. For each 
LEP (where P denotes the collection of all nonempty subsets of {1,···,R}), 

h = {t E IIL = C(t)}. If N = U{hlL E P, µ(h) = O}, note that µ(N) = 0, 
I = (U{hlLEP, µ(h)>O})UN and hnlu = 0 if L =f L'. So, {hlL E 
P, µ(L) > O} UN is a finite partition of the agent set J. Let us define the non
oriented graph Ge as follows. The set of vertices is {hlL E P, µ(h) > O}, and 
there exists an edge between h and lu if and only if L n L' =f 0. We denote 
by If, · · ·, I:_ the connected components of Ge and by Hf, ... , H~ the subsets 

of {1, · · ·, f}, defined by Hf = LJ {L }, j = 1, · · ·, n. One readily sees that 
hEif 

Hf,···, H~ is a partition of the commodity set {1, ... , R}. Finally, for each 
j E {1,···,n}, we choose an element (hj,hi) E If x Hf, such that hi E Li, 
that is, hi E C(t) = Ht(p*(w)), for all t Eh,. 

Next we state a lemma which shows the link between the equilibrium price 
vector and the fini te partition of J. For each good h, let S h = { t E JI h E C ( t)}. 
Observe that µ(Sh) > 0 whatever the commodity h may be. Furthermore, h C 

Sh if h EL; if h =f h' and {h,h'} CL, then h C Shnsh'· 

Lemma 3.1 There exists a vector ,e E JRt+ such that for all w E ne, for all 

j E {1, · · · ,n} and for all h E Hf, it is verified that Ph(w) = ,f Piij(w). 

Proof. Let us consider w E ne, j E { 1, · · · , n} and h E Hf. By definition of the 
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commodity subsets Hf, thère exists L E 'P such that h E If and h E L. By 

definition of connected components, one deduces that there exist q - l elements 

of 'P, Li,···, L9 _ 1 and q goods hi,···, h9 , such that h1 E Li nLi, hk E Lk-l nLk, 
k = 2, · .. , q - l ar.d h9 E L9_ 1 n L. Recall that L = Ht(P*(w)) for all t E h. So, 

by definition of the commodity subsets Ht(p*(w)), one deduces that 

Phi ( w) Phi ( w) 
ahi (t) ah1 (t) 

Pt(w) Phk+1 (w) 
for all t E Shk n Shk+i k = 2, ... ,q - 1 

ahk(t) ahk+i (t) 

Ph/w) Pii(w) 
for all t E Sh

9 
n Sh, 

ah
9
(t) ah(t) 

Note that, by construction, !Li C Shi nShi, hk C Shk nShk+1' for k = 2, · · ·, q-1 

and h c Shq n Sh, Therefore, µ(Shi n Sh 1 ) > 0, µ(Shk n Shk+i) > 0, for k = 
2, · · ·, q - 1 and µ(Shq n Sh) > O. Let us consider t 9 E Shq n Sh, tk E Shk n Shk+i 
for k = 2, · · ·, q - 1, ti E Shi n Sh1, and define ,c E JRt+ as follows 

ah2 (t1) ah1 (ti) 
ah1 (t1) ahi(ti)' 

Hence, from the above equalities, we can conclude that P'ii(w) = ,f PÎii(w). 

Let us now define the linear map, rc, from JRl to ]Rn, as follows : 

rf (x) = I: ,f xh, for every x E ~, 
hE'}-{c 

J 

where rf(x) is the j-th component of rc(x), with j E {1,···,n}. Let us also 

consider the n x n matrix Ac(w), whose ij-element is defined by 

a0'.(w) = { rf (f(rfyw(t)dµ) 
'
3 -r; (Irp w(t)dµ) 

if J = z 

if j t- i 

where (If)c is the complement set of If. We will denote by AJ'(w) the (n -
1) x (n - 1) submatrix of Ac(w) obtained by suppressing the j-th column and 

the j-th row. 

Lemma 3.2 The rank of Ac(w) is n -1. 

Proof. Let us first notice that Ac ( w) is a singular matrix. It is so because the 

sum of its columns is zero. Let us calculate now the sum of the k-th column of 

the (n - 1) x (n -1) submatrix AJ'(w). 

t a~(w) = rf (/4rfy w(t)dµ - t h.c w(t)dµ) = rf (/,; w(t)dµ) > o. 
•V'J •V'J,k 
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So, Af (w) is a matrix with non positive nondiagonal terms and a strictly positive 
sum of columns. The properties of such matrices ( called diagonal dominant 
matrices) are known and used in Leontief's systems (see McKenzie (1960), Gale 
(1960) or Nikaido (1972)); in particular, they are regular and have a nonnegative 
inverse. Consequently the rank of the matrix A O ( w) is n - 1. D 

Theo rem 3 .1 For all w E n°, the equilibrium price vectors are the positive 
solutions of the following linear system : 

· C . C 
For all J = 1, · · ·, n, for all h E Hi , h -/- hJ, Ph = 'Yh Phi. 

Proof. Consider w En°. Let us first show that p*(w) solves the linear system. 
By lemma 3.1, it is sufficient to prove that 

= o. 

Let us consider an equilibrium allocation x of the economy E(w). Then, for 
almost all t E I it is verified that p*(w) · x(t) = p*(w) · w(t). Hence, 

J,f p•(w) · x( t)dµ = p•(w) · J,f w( t)dµ = fi ph, (w )rf (J,; w(t)dµ) 

where the last equality cornes from Lemma 3.1 and from the definition of the map 
r0

. By Lemma 2.1, one has, for all j = 1, · · ·, n and for all h E Hf, xh(t) = 0 
if t ri. If. So fzc xh(t)dµ = J1 wh(t)dµ, whatever h E Hf may be. Furthermore, 

J 

for all h ri. Hf, it is verifed that fzc xh(t)dµ = O. 
J 

It is also verified that 

fzc p*(w) · x(t)dµ 
J 

Hence one has for all j = 1, · · · , n, 

t, Ph• (w) (J,
7 

w( t)dµ) = Ph, (w )rf (fc w(t)dµ - J,f w(t)dµ) . 
k~J 
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Since J1w(t)dµ - fry w(t)dµ = f(If)c w(t)dµ, one concludes that p*(w) solves the 

linear system. 

It remains to show that, if p is a positive solution of the linear system, then 
p is an equilibrium price. By Lemma 3.2, we know that the rank of the matrix 
A0 (w) is n - 1 and so the solution set of the linear system is a one dimensional 
subspace of Jlf_( which contains the half line {>.p*(w)I>. > O}. Hence, the solution 
set is IRp*(w) and every positive solution is an equilibrium price vector. D 

Corollary 3.1 Assume that we choose a good hi as numeraire, with 1 ::; j ::; n. 

Then, for all w E n°, the price vector p* ( w) cornes determinated by the following 

equations : 

Ph,-1(w) 
Phi+1(w) 

Phn(w) 

( c )-1 = - Ai (w) 

and for all j = 1, · · · , n, for all h E 'Hf, h -=/ hi, 

Ph(w) = ,f Phi(w). 

af;(w) 

af-1/w) 
af+Ii(w) 

Furthermore, allthe elements of the matrix (Af(w))-1 
are non negative. 

Proof. By the proof of Lemma 3.2, one obtains that the matrix Af (w) has full 
rank. So, the given equation system has a unique solution. By Theorem 3.1, 

we know that the equilibrium price vector p*(w), with Ph;(w) = 1 is a solution. 
Therefore, p* ( w) is the unique solution of the system. Finally, as already noticed, 

the elements of the inverse matrix ( Af ( w) )-
1 

are non negative. D 

4 A generic property of equilibrium prices 

Let us now assume that the map a : J-+ IRt+, which defines the utility fonctions 

of the agents, is a given simple fonction. More precisely, a(t) = Li=l aiXA;(t), 
where for all i E {1, · · ·, s }, A E A, ai E JRt+, XA; is the characteristic fonction 
of Ai, and Ai n Ai = 0 if i -=/ j, I = Ui=l Ai. In other words, from the point of 
view of preferences, there exists in the economy a fini te number s of agents. Note 

that the subset of simple maps is dense in (L 1(1Rt+), li· Ili) and in (L 00 (1Rt+), Il· 
lloo), 

Moreover, we restrict ourselves to initial endowments w belonging to L 00 (1Rt+)· 
Note that it follows from the explicit computation of the equilibrium demand in 
Lemma 2.1 that the corresponding equilibrium allocations belong to L 00 (JR~). 
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Deflnition 4 .1 The economy E( a, w) is said to be regular if there exists a Wal
rasian equilibrium allocation x : J---+ IRt belonging to L00 (1R~), and a positive 
number bx > 0, such that for almost all t E J and for all h E Ht(p*(w)), it is 
verified that xh(t) 2: bx. 

Let us denote by n the set of initial endowments w E L00 (IRt+) such that 
the economy E( a, w) is regular. ln what follows, we prove that for each w E n 
there exists a neighbourhood of w included in n where the equilibrium prices 
map p* is an infinitely differentiable fonction of the initial endowments. In order 
to obtain such a result, we state some notations and prove, as technical lemmas, 
some intermediate daims. 

Consider an arbitrary but fixed w E n. For each i E { 1, · · · , s}, let Hi be 
the set of goods Ht(p*(w)), whoever agent t E A may be. Let /3: J---+ IR++ be 

the map defined by f3(t) =min{:~\~; 1 h E {1, · · · ,f} }. For each i E {1, · · · ,s }, 
let /3i denote the real number f3(t), whoever agent t E Ai may be. Using the 
notations of the previous section, state C = ew. We now consider the following 
linear spaces 

M = { x E L00 (1Re) 1 xh(t) = 0 if h r/:. Ht(p*(w)), for almost all t E J }, 

C = {(J,y) E L00 (1R)x1Re l ic/3(t)J(t)dµ(t) = L p*(w)yh, for all j = 1,···,n}, 
½ hEhc 

J 

and the following mappings 1.p : L00 (1Re) ---+ L00 (1R) x me, '1/; : L00 (IRt+) ---+ 

L00 (1R) X IRt+, defined by 

1.p(x) = ((a(t) · x(t)\E1 , j x(t)dµ(t)), 

'1/;(w) = ((vt(p*(w),w(t))tEI' j w(t)dµ(t)). 

It is worth noticing that M and C are closed (in L00 (JRl) and L00 (JR) x JRl 
respectively), that M contains the equilibrium allocations of E(a,w) and that 
x E L00 (JR~) is an equilibrium allocation of E(a,w) if and only if 1.p(x) = '1/;(w). 

Lemma 4.1 1.p(M) CC. 

Proof. Consider x E M and 1.p( x) = (J, y). By definition of M and 1.p, 

f(t) = a(t) · x(t) = L ah(t)xh(t) = /3(
1

) L Ph(w)xh(t). 
hEHt(p•(w)) f hEH1(p•(w)) 

Noticing that for all j = 1, · · · ,n, for almost all t t If, xh(t) = 0, if h ~ 'Hf, 
one deduces that for all j and for all h E 'Hf, 

Yh = 1 Xh(t)dµ(t) = kc xh(t)dµ(t). 
J 

10 



So, for all j = 1, · · · , n, we can conclude that 

fxç /3(t)f(t)dµ(t) 
J 

D 

Lemma 4.2 r..p is continuous. 

Proof. Let r..p1 .. (x)(t) = a(t) · x(t), and r..p2 (x) = fJx(t)dµ(t). The map 'P1 : 

L00 (JRl) ---+ L00 (1R) is continuous because x E L00 (JRl) and a is a simple fonc
tion. On the other hand, if llxn - xlloo ---+ 0, then there exists A E A, such that 
µ(J \A);;= 0, and ;n converges u_niformly to X on A. So, 'P2 : L00 (IR'-) ---+ IR is 
also a continuous map. Therefore r..p = ( r..p1 , r..p2 ) is continuous. D 

Lemma 4.3 r..p(M) = .C. 

Proof. Let us denote by :F0 the following set 

:Fo = {f E L00 (IR) 1 l. f(t)dµ(t) = 0 for all i E {1, · · ·, s}} 

and for each i = 1, · · ·, s, let :F;, denote the set defined as follows 

:F;, = {f E L00 (IR) 1 l, f(t)dµ(t) = µ(Ai), l,, f(t)dµ(t) = 0 for all i' =fi}. 

Let .C0 be the set defined by .Co= {(f,O) E L00 (IR) x IR'- 1 f E :F0 }. For each 
j = 1, · · ·, n, let [,i, Ci denote the sets defined by 

A;,Ak C If, Ai =f Ak, } . 
fi E :F;,, and fk E :Fk 

It is easy to check that the sets .C0 , [,i, and Ci are included in .C. Consider 
Q = Co U (Uf:1 Ci) U (Uf=1 .Cj) . It is also easy to check that Q generates .C ( a 
proof of this daim is given in the appendix). As r..p is a linear fonction, it is 
enough to prove that Q C r..p(M). 

Let (!, 0) belong to .C0 • For each i E {1, · · ·, s }, consider a commodity h(i) E 

Hi, Define Xh(i)(t) = ....JJ!L(t)' and xh(t) = 0 if h =f h(i), for all t E Ai, By 
ah(i) 

construction, x E M and r..p(x) = (f,O). 

11 



. 1 
Consider now (!,y) E f,J for some j E {1, · · ·, n }. That is, f = pX(w) µ(Ai) li, 

and y= f3ieh, with h E Hi, Ai C If, and fi E ;:;. So, f3i = p*(w)(ai)h, For each 
i' # i, let us consider h(i') E Hi,, and define x: J--+ Dl'· ~s follows 

0 
if { either t E Ai', i' # i and k # h(i'), 

or t E Ai and k # h 

Pi:(w) (A) l ( )li if t E Ai,, i' # i and k = h(i') 
µ i ah(i') t 

By construction, x E M and cp(x) = (!, y). 

Finally, let us consider (!, 0) E Ci for some j E {1, ... , n }. That is, f = 

µ(~i)fi - f)piiAP)fp, with Ai,Ap C If, AP # Ai, fi En, and fp E :Fp. Two 

possibilities can now occur, namely, Hi = Hp or Hi # Hp. 

Suppose Hi = HP. For each i' # i,p, let us consider h(i') E Hi, and a fixed 
h E Hi = Hp. Define X : J--+ me as follows 

0 
if { either t E Ai,, i' # i,p and k =J h(i'), 

or t E Ai U Ap and k # h 

f(t) . if 
ah(i')(t) 

*(-) f(t) 
Ph w ah(t) 

tEA,, ifi,p and k=h(i') 

if t E Ai U Ap and k = h 

By construction, one concludes that x E M and cp( x) = (!, 0). 

Suppose Hi # Hp. Consider h E Hi and hp E Hp, hp # h. As in the proof of 
Lemma 3.1, there exist q - l elements of P, L1 , · · ·, Lq-I and q goods hi,···, hq, 
such that h1 E Hij n L1, hk E Lk-I n Lk, k = 2, · · · ,q -1 and hq E Lg-1 n Hi, 
For each k = l, · .. , q - 1, let Ai(k) be a subset of hk, that is Hi(k) = Lk, By 
definition of the commodity subsets Ht(p*(w)), one has 

Pi:(w) Pt(w) 
ah(t) 

-
ah1(t) 

for all t E Ai 

Pt(w) PÏ:k+1 (w) 
ahk(t) ahk+i(t) 

for all t E Ai(k) k = 2, · · ·, q - l 

Phq(w) Ph/w) 
ahq ( t) ahp(t) 

for all t E Ap. 
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Recalling that cp is a linear mapping and C) C cp(M, j = 1, · · ·, n, one deduces 
that there exist xk, x" E M, k = l, .. · ,q, sùch that 

cp(x1) -

cp(xk) -

cp( xk) -

cp(x'l) -

((ai)h 1 µ(~i)fi,, eh
1

) 

( (ai(k))hk (1 )XA;(k)' ehk) ; 
µ i(k) 

k=l,···,q-l 

( (ai(k-1))hk (A-l )XA;(k-t)' ehk) ; 
µ ,(k-1) 

k = 2,···,q 

Let us denote ak = II ( (ai(r)hr , for all k = l, · · ·, q- l. Let us now consider 
r=l ai(r) hr+l 

q-1 

the map x : J --+ JRl, defined by x = x1 - x1 + Lak(xk+l - ~+1 ). 

k=l 
By a simple computation, 

<p(x) = ((a;,)•,µ(~;,/;, - a,_,(a;)k, µ(~/;, 0) 

(aïh1 (µ(~i)fi - f3ï~~p)fp,o). 

Lemma 4.4 'ljJ is a continuous function. 

D 

Proof. Denote 'ljJ = (VJ1, 'ljJ2). The map 'ljJ2 is continuous (see Lemma 4.2). Recall 
that Vt(p*(w),w(t)) = p*(w) · w(t) maxh a:,((t)) = p*(w) · w(t) a:,((t)) with h E 

ph w ph w 

Ht(p*(w)). Note that the continuity of the equilibrium price vector mapping 
obtained in Corollary 2.1 implies that p* is a continuous fonction with respect 
to the initial endowments w E L00 (IRt+)· Then if JJw11 

- wJJ 00 --+ 0, as a is 
a simple fonction, one has for large enough 11, Ht(p*(w 11

)) C Ht(P*(w)) and 
Vt(P*(w 11 ),w11 (t)) = p*(w11

) • w11 (t) ~h(CtJ) with h E Ht(p*(w)). It is now obvious 
ph w 

that v(w 11
) = (vt(p*(w 11 ),w11 (t))) converges to v(w) for li· lloo· D 

tEI 

We are ready now to state the main results of this section. 

Theorem 4.1 For each w E n, there exists a neighbourhood W of w included 
in n, such thatfor allw' E W, Ht(P*(w')) = Ht(P*(w)), for almost allt E /. In 
particular, n is an open subset of L00 (IRt+)· 
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Proof. Let w be arbitrary but fixed as in Lemmas 4.1, 4.2, 4.3. As we have 
already noticed, Corollary 2.1 irnplies the continuity of the equilibriurn prices 
with respect to the initial endowments. So, there exists a neighbourhood V of w, 
such that for all w EV, Ht(p*(w)) C Ht(p*(w)), for almost all t E J. From this, 
it is readily deduced that for all w E V, every equilibriurn allocation of &( a, w) 
belongs to M and hence v,(w) E <p(M) = C. On the other hand, let 

A= {x E M 1 :lbx,xh(t) 2:: bx, for almost all t E J and for all h E Ht(p*(w))}. 

Since ê(a,w) is a regular economy, ê(a,w) has an equilibrium allocation x E A 
and v,(w) = <p(x) E <p(A). Note that Ais an open subset of M. Since <p is a 
continuous linear mapping from M onto C, it follows from the open mapping 
theorem (see, for example, Beauzamy (1985) or Kothe (1969) p. 166), that <p(A) 
is open in C. Since v, is continuous, there exists a neighbourhood V' of w such 
that v,(V') n ,C c <p(A). Finally, w E V n V' => v,(w) E <p(A), that is w E n 
and Ht(p*(w)) C Ht(P*(w)) C Ht(P*(w)). D 

Corollary 4.1 For each w E n, let W be as in Theorem 4,1. The mapping 
w' --+ p* ( w') is infinitely diff erentiable on W. 

Proof. Using the notations of Section 3, set C = ew. It follows from Theorem 
4.1 that W is included in ne. Consequently, the formula given in Corollary 3.1 
remains true on W. As a continuous linear fonction of w', each integral used in the 
computation of the elernents of the matrix Ac (w') is an infinitely differentiable 
fonction of w' (see Cartan (1977) for a relevant definition of differentiability on 
Banach spaces). On W, each coordinate of p*(w') is a polynomial fonction of 
such integrals. D 

Proof. Consider w E L 00 (1Rt+) and x E L 00 CIRt) a Walrasian allocation of the 
econorny &( a, w ). For each real number c > 0, let we denote the initial endowment 
map de:fined by 

we(t) = w(t) + é L eh 
hEHt(p•(w)) 

and let xe denote the allocation defined by 

xe(t) = x(t) + é L eh. 
hEHi(p*(w)) 

Obviously, \/h = 1, · · · ,f, llwh - whlloo < é. Moreover, x%,(t) 2:: é for almost all 
t E J and for all h E Ht(p*(w)). To prove that we En, it suffices to prove that 
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(x\p*(w)) is a competitive equilibrium of the economy ê(a,wE). Indeed, 

Finally, note that 

ah(t) 
p*(w) · wE(t) max--

h PHw) 

( p*(w) ·w(t) + ë p*(w) · L · eh) 
hEH1(p*(w)) 

·ah ( t) 
max-(-)' 

h PÎi w 

a(t) · x(t) + ë a(t) · L eh 
hEH,(p•(w)) 

ah(t) 
p*(w) · w(t) max-- + ê a(t) · 

h Pii(w) 
I: eh 

hEH,(p*(w)) 

(
ê p*(w) · L eh) max ah(t) = ê a(t) · L eh. 

hEH,(p*(w)) h pÎi(w) hEHi(p*(w)) 

Appendix 

Proof that Ç generates C. 

Let (!,y) be an element of C. Let us consider two cases. 

and 

D 

First case. Suppose that y= O. Let ai = f f(t)dµ(t), i = 1, ···,m. Since 
}A, 

(!, 0) E C, one has for each connected component j = 1, · · ·, n, L aif3i = O. 
A;CI'J' 

Consider now a fixed connected component j. Let Si = { i I Ai C I';', such that ai =f 
O} and Si= {i I Ai CI';', such that ai= O}. For for each i, such that Ai CI';', 
define the following fonction 

{ 

µ(Ai) f(t)XA, if ai =f 0 
fi(t) = O'.i 

f(t)XA; if ai= 0 

So, if t E I';', then f(t) = L (:·)fi(t) + Lf(t)XA,· 
iES; µ ' iESi 

Note that if Si = {1, · · ·, s }, the proof is finished because if ai = 0, then 
fi E :Fo. 
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Suppose now that Si =f 0. Then there exist i, k, such that ai, O'.k =f O. By 

definition of C, one obtains that O'.k = - ; Lai.Bi· Then, f (t)XI'f can be written 
/Jki# 

as follows 

(! · xx7) (t) 
Û'.k O'.i 

-(A )fk(t) + L (A-)fi(t) + I:J(t)XA; 
µ k ,es; µ ' iES' 

i~k 

1 ( O'.i ,Bi ) O'.i --,8 I:-(A )fk(t) + L (A·)fi(t) + I:J(t)XA; 
k ,es; µ k ,es; µ i iESJ 

i~k i~/c 

( 
1 A ) = LO'.i -(A-)fi(t) - ,8 (A )!k(t) + I:J(t)XA;• 

,es; µ ' kµ k iES' 
i~k 

Finally, note that (µ(~i) fi - ,BkiiAk) fk, 0) belongs to Cj, whatever i E Sj, 

i =f k may be. 

Second case. Suppose now that y =f O. Let Ji = {h E 'Hf IYh =f 0}. If Ji = 0, 
we are in the first case. So, consider j such that Ji =f 0, and let S(j) = Si U Sj. 
On the other hand, there exists k E Sj, i.e., ak =f O. Consider hk E Hk. By 

definition of C, one has ak = -,8
1 

Lai.Bi + ,BI L PÎiYh· For each h E 'H'J such 
ki,# khEK"! 

J 

that h =f hk, consider now Ai(h) C If, such that h E Hi(h)· So, if t E If, then 
J(t) can be written as follows 

( f · xx7) ( t) = 
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So, for each connected component j, one has 
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