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ON THE DESIGN OF OPTIMAL INSURANCE POLICIES 
UNDER MANIPULATION OF AUDIT COST 

Abstract :This paper characterizes optimal insurance policies under de
terministic auditing, in a situation where the policyholders can misrepresent 
their losses. First, it is shown that a pure deductible contract (i.e. a 100 per 
cent coverage above a deductible) is optimal when the policyholders are in 
a position allowing them to inflate their daims by intentionally increasing 
the dam.ages. The paper then focuses on the situation where policyholders 
can manipulate the audit cost and the insurer is unable to observe the cost 

incurred by his auditor, which leads to a moral hazard problem and to an 
auditor-insurer cost-sharing rule. When the auditor is risk-averse, the opti
mal insurance policy involves some degree of coinsurance. An upper limit 
on coverage is optimal when the auditor is infinitely risk-averse. 

Keywords : insurance, audit, coinsurance. 
JEL classification number : DS 

CONTRATS D'ASSURANCE OPTIMAUX AVEC 
MANIPULATION DES COÛTS D'AUDIT 

Résumé : L'objet de cet article est de caractériser les polices d'assurance 
optimales dans un contexte où les assurés sont en mesure de masquer le mon
tant exact de leurs pertes et où les assureurs mettent en place des procédures 
d'audit déterministe. On montre tout d'abord qu'il est optimal d'offrir un 
contrat de franchise pure (c'est-à-dire une couverture à 100 % au-delà d'une 

franchise) lorsque les assurés peuvent accroître leurs demandes d'indemnité 
en accroissant délibérément le montant de leurs pertes. On considère en
suite la situation où les assurés peuvent manipuler le coût d'audit et où 
l'assureur ne peut observer le coût supporté par son auditeur, ce qui conduit 
à un problème de risque moral et à une règle de partage des coûts entre 
l'auditeur et l'assureur. Lorsque l'auditeur a de l'aversion pour le risque, la 
police d'assurance optimale inclut un certain degré de coassurance. De plus, 
il est optimal de fixer une limite supérieure à la couverture lorsque l'auditeur 
a une aversion au risque infinie. 

Mots clefs : assurance, audit, coassurance. 
JEL numéro de classification : DS 
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1 INTRODUCTION 

In a situation where insurance purchasers can misrepresent their losses, and 
where verifying the actual extent of damages is costly, an optimal insurance 
policy should reach a compromise between two conflicting objectives : shar
ing the risk between the insured and the insurer optimally and minimizing 
the expected verification cost. This trade-off leads to an optimal second-best 
policy that departs from the perfect information full insurance solution. In 
particular, a deterministic audit policy specifies whether there is verification 
or not, as a fonction of the magnitude of damages. The purpose of this paper 
is to characterize optimal insurance contracts, under such a deterministic au
diting policy. We shall more particularly focus our attention on the possibility 
for policyholders to inflate daims by manipulating audit costs. 

The analysis of optimal contracting under exogenous audit cost will pro
vide a useful benchmark for our analysis of audit cost manipulation.Under 
deterministic auditing1 and exogenous audit cost as shown by Townsend 
(1979), a risk-neutral insurance company should offer policies that involve 
positive coverage only if the loss exceeds a minimum level. More specifically, 
we shall provide conditions under which the optimal policy actually involves 
100 percent coverage above a deductible (what we shall call a pure deductible 
contract). As a matter of fact, Townsend's solution corresponds to a discon
tinuous indemnity schedule that may encourage the policyholder to create 
further damage when the loss is less than the deductible. The optimal indem
nity schedule should trade-off risk-sharing and audit cost minimization, but 
it should also urge the insured not to inflate the size of the daim by inten
tionally increasing the damages. As a matter of fact, we will show that the 
optimal policy is a pure deductible contract. This proposition extends a result 
due to Huberman, Mayers and Smith (1983) to a costly state verification2 

1 For simplicity's sake in this paper,we shall limit our attention to deterministic audit 
procedures in which daims are either monitored with certainty or not monitored at all, 
depending on the size of damages. This simplification of the auditing procedure will allow 
us to focus on the effect of the auditor-insurer agency relationship on the shape of the 
indemnity schedule in a tractable way. On random auditing, see Townsend (1979), Baron 
and Besanko (1984) and Mookherjee and Png (1989). 

2Huberman's, Mayers' and Smith's proof (1983) is rather informai, while we prove the 
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and it provides another motive for offering pun~ deductible contracts, besicles 
the wellknown interpretations in terms of transaction costs (Arrow, 1971) or 
moral hazard (Holmstrêim, 1979). 

In ma11y cases, policyholders are also in a position allowing them to inflate 
daims by manipulating the audit costs so as to make the monitoring activ
ity more difficult3

. This manipulation is costly to the policyholder since it 
typically involves some kind of coausion with middlemen (such as healthcare 
providers, garage owners or lawyers) who are in position to falsify the dam
ages and to make it more costly to prove that the daim has been built up. 
In such a situation tbe insurer may not be able to observe the cost incurred 
by his auditor (be he a consulting physician, an expert, a daim handler, 
an investigator or a lawyer) which leads to a moral hazard problem. The 
payment from the irnurer to the auditor should then be contingent on the 
amount of lOE5es so as to induce efficient auditing in order to dissuade the 
policyh0lder from manipulating the audit cost. This will result in larger ex
pected cost if the auditor is risk-averse. We will show that some degree of 
coinsurance ab0ve a deductible is then optimal in order to decrease the risk 
premium paid to the auditor. In particular, when the auditor is infinitely 
risk-averse, the optimal policy entails an upper limit on coverage. In some 
cases, the optimal policy entails coinsurance of large losses or an upper limit 
on coverage without any deductible for small losses, although there are fixed 
costs per daim. 

These results may be compared to other cases for coinsurance that have 
been put forward in the literature. Raviv (1979) shows that coinsurance is 
optimal if the insurer is risk-averse or if insurance costs are a convex fonc
tion of the coverage. He also justifies ceilings on cov':lrage through regula
tory constr.1ints. Likewise, Huberman, Mayers and Smith (1983) argue that 
bankruptcy rules may lead insurers to offer undercoverage of high losses. We 
here provide a complementary explanation for coinsurance and for an upper 
limit on coverage, which results from imperfect monitoring of the auditor's 
activity by the insurer. 

optimality of a standard deductible contract by using an optimal control argument. 
3 0ur description of build upas pertaining to the possibility for the insureds to manip

ulate audit costs follows Bond and Crocker (1995). However, Bond and Crocker assume 
that the auditor's activity (and particularly the cost of monitoring daims) is perfectly ob
served by the insurer, while the present paper focuses on the agency relationship between 
the insurer and the auditor, in a context where audit costs are not observed by the insurer. 
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Our results are particularly relevant to markets covering medical and dis
ability insurance, fire, theft or liability insurance for consumers and small 
businesses where coinsurance clauses or ceilings on coverage are commonly 
observed. For instance, in the case of health care, co-payment rates on pre
scription charges for drugs are frequently combined with a deductible system 
that makes the consumer pay 100 % up to a certain level above which the ex
penditures are subsidized. In the above mentioned markets, individual losses 
are small compared to the aggregate payments made by the insurer, therefore 
assuming that insurers are risk neutral seems to be qui te acceptable. Further
more, there is no obvious reasons for assuming that the costs associated with 
such insurance payments are a strictly convex function of the coverage. On 
the contrary, assuming fixed costs of processing daims and a nonincreasing 
marginal cost associated with insurance payments seems much more realistic 
(see Collier, 1987). Under such assumptions, Raviv's (1979) analysis pre
dicts that pure deductible contracts should be observed, contrary to many 
insurers' actual behavior. However, the above mentioned insurance markets 
involve significant auditing costs, and the policyholders may make it more 
costly to detect build up by colluding for instance with health care providers 
or by appealing to lawyers for help4 . Furthermore, the consulting physicians, 
the experts or the lawyers hired as auditors by the insurers may conceiv
ably be risk-averse, or their behavior may be affected by limited liability 
constraints. In such cases, our model predicts that a coinsurance clause or 
an upper limit on coverage should be combined with a deductible system 
and also that the optimal auditor-insurer contract corresponds to a simple 
cost-sharing formula. 

The paper is organized as follows. Section 2 presents the model when 
audit cost cannot be manipulated. In this framework, we establish the opti
mality of pure deductible contracts when the policyholders can create extra 
damages in order to inflate their daims. Such policies with straight de
ductibles are benchmarks for the subsequent analysis of audit cost manipu
lation. In section 3, we characterize the insurer-auditor relationship and the 

4An interesting example is provided by Dionne and St-Michel (1991) in their analyses 
of workers' compensation. They describe the behavior of a worker who tries to find and 
convince a physician to write a medical report permitting more days of absence from work 
than the level that would be decided upon under perfect information. They show that 
this build-up mechanism is particularly significant for injuries (such as lower back pain or 
spinal disorder) that are difficult to diagnose. 
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optimal insurance contract when the policyholders can manipulate the cost 

born by the auditor. ln particular, we establish the optimality of coinsurance 
or of ceilings on coverage. Section 4 condudes. All proofs are in appendix. 

2 OPTIMAL INSURANCE CONTRACTS 
WHEN AUDIT COSTS CANNOT BE 
MANIPULAT ED 

Identical insurance buyers own an initial wealth W and they face a risk of 
loss x, where x is a random variable with a support [O, x] and a cumulative 
distribution F(x). The no-loss outcome may be reached with positive prob
ability. Therefore, we assume that xis distributed according to a mixture of 
discrete and continuous distributions : x has a mass of probability J(ü) at 
x = 0 and there is a continuous probability density fonction J(x) over (ü,x], 

with J(x) > 0 for all x. In other words J(x)/[1 - f(ü)J is the density of 
damages conditional on a loss occurring. 

The insurance policy is described as a contract specifying the (non-negative) 
payment t(x) from the insurer to the policyholder if the loss is x as well as a 
premium P paid by the policyholder. The realization of x is known only to 
the policyholder unless there is verification. The cost of an insurance contract 
indudes the payment t(x), a fixed administrative cost Cf whenever a daim 
is filed and an audit cost Ca when a daim is verified. We note c =Cf+ Ca. 

The policyholder's final wealth is Wf = W - P - x + t(x). Policyholders 
are risk-averse. They maximize the expected utility of final wealth EU (Wf), 
where U(.) is a twice differentiable von Neumann-Morgenstern utility fonc

tion, with U' > 0 , U" < O. 
We define a deterministic audit policy as a verification region M C (ü, x], 

with complement Mc that specifies when there is to be verification. 
For simplicity's sake, we assume that at zero cost the policyholder can 

misrepresent the magnitude of damages downward : this assumption will 
straightforwardly ensure that the actual payment is a non-decreasing fonction 
of the damages and that the verification region Mis an upper interval in [ü, x] 
in all the variants of our model -see lemma 1 below5

• The implementation of 

5 Assuming that damages can be misrepresented downward is not essential to establish 
the main results of the paper but it simplifies the proofs significantly. See the proof of 
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an insurance contract is as follows. A policyholder who experiences a loss x 
may choose to file a daim x und he can misrepresent the damages at any level 
x such that x :::; x. If x E M , the daim is audited, the loss x is observed and 
the payment is t(x). If x E MC, the daim is not audited and the payment to 
the policyholder is t(x). 

A contract 8 = { t(.), M, P} is said to be incentive compatible if the pol
icyholder truthfully reveals the actual loss, i.e. if x = x = x is an opti
mal strategy for the policyholder. Lemma 1 establishes that any contract 
is weakly dominated6 by a non-decreasing incentive compatible contract, in 
which the daims are audited when they exceed a threshold rn E [ü, x]. 

Lemma 1 Any contract 8 = { t(.), M, P} is weakly dominated by an incen
tive compatible contract 6 = { i(.), M, P} such that: 
(i) M = (m, x] with m E [ü, x] 
(ii) i(x) is non-decreasing with i(x) = t0 2: 0 if x:::; m and i(x) > to if x > m 

Hence the optimal contract may be described by P, m 2: 0, t0 2 0 and 
t(.) : (m, x] -+ R+ such that t(.) is non-decreasing and t(m+) 2: t0

7
. The 

optimal contract maximizes the policyholder's expected utility 

EU= {m U(W - x - P + t0 )dF(x) + (x U(W - x - P + t(x))dF(x) lo lm+ 
subject to the constraint which assures that the expected profit of the insurer 
is non-negative, as well as to monotonicity and sign constraints. 

When x E [ü, m], a daim is filed only if to > O. The non-negative profit 
constraint may then be written : 

and 

P 2 (to + Ct )F(m) + rx [t(x) + c]dF(x) if to > 0 lm+ 

proposition 3.2 in Townsend's paper when such an assumption is not made. 
6Dominance is here defined with respect to the expected utility of the policyholder and 

to the expected profit of the insurer. 
7For any fonction cp(.): [ü,x]-. R, we note cp(x+) = limcp(x) 

y-. X 

y>x 
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P 2". 1:+ [t(x) + c]dF(x) if t0 = O 

Consider a contract ô characterized by t0 = t0 > 0, t(.) = t(.), m = m and 

P = P. Then define the contract fJ' such that t0 = 0, t(.) = t(.) - t0 , P = 
P- t0 - c1F(m) and m = m. ô and fJ' yield an identical expected profit and 

8' gives a larger expected utility than ô. Hence t0 = 0 is optimal, which is 

quite intuitive since a zero payment in the no-verification region saves fixed 

administrative costs8
. 

The optimal contract ô = {t(.), m, P} is characterized by maximizing 

EU= fm U(W - x - P)dF(x) + fx U(W - x - P + t(x))dF(x) (1) 
Jo lm+ 

subject ta 

P 2". 1:+ [t(x) + c]dF(x) (2) 

t(x) being non-negative and non-decreasing over (m, x] with m 2". O. 

Proposition 1 characterizes the optimal contract. 

Proposition 1 An optimal contmct satisfies the following conditions: 

t (X) = 0 if X ::; m 
t (X) = X + z - m if X > m 

with m > 0, 0 < z < m and M = (m,x]. 

The optimal contract is described in figure 1. No daim is filed when the 

loss is less than a threshold m > O. When the damages are larger than m, 

the optimal contract entails verification of the daims and partial insurance. 

Furthermore marginal damages are fully insured, i.e. t'(x) = l for x > m. 

8 Note that this result would not hold any more if the fact that the policyholder had 

suffered some loss were publicly observable, while the size of the damages is private infor

mation known only to the policyholder. Paying a positive indemnity in the no-verification 

region would then be optimal (see Bond and Cracker, 1995). 

7 



0 

/ 

/ 
/ 

,/ 

, 

, 
,/ 

, , 

/' , 
/ 

, , , , , 

, 
/ , 

,. . 

/ 

/ 

, , 
/ 

/ 

,, / 
,/ 

., 
/ 

,/ 
/ 

/ 
, 

/ 
/ 

/ / 
; r-~'rn~=-~=---:m±------------> X. 



The shape of the optimal indemnity schedule t(x) may be interpreted 

as follows. For cost minimization reasons, it is optimal to choose a positive 

threshold m so as to decrease administrative and audit costs. Then, t(.) 
should equalize the marginal utility of final wealth in each state where there 

is verification with the expected marginal utility of final wealth. This is an 

obvious consequence of the fact that any increase in the insurance payment 

in an interval [a, b] C (m, x] should be compensated by an increase in the 

insurance premium which is paid in all states of nature. Because no daim 

is filed under the threshold, the expected marginal utility of final wealth 

is larger than the marginal utility in the no-loss state. Consequently, only 

partial insurance is optimal when the threshold is crossed. 

The optimal contract that we have just described does not look like the 

policies that are most frequently offered by insurers and the explanation to 

this discrepancy is probably the following : because of the upward disconti

nuity of the optimal indemnity schedule at x = m, once some damage has 

occurred, the insured may be incited to create further damage and to inflate 

the size of the daim. More precisely, a policyholder who suffers a loss x less 

than m but greater than m - z will profit by increasing the damage up to 

x = m insofar as the insurer is not able to distinguish the initial damage and 

the extra damage. A policyholder would never increase the damage if and 

only if t(x)-x were non-increasing over [0,x]. When t(x) is non-decreasing, 

this no-manipulability condition implies that t(x) should be a continuous 

fonction. 
In what follows, we will refer to Al as to the assumption according to 

which the policyholders can create extra damage so as to inflate their claims9
. 

Under Al, an insurance contract is said to be incentive compatible when 

policyholders do not create further damage and they truthfully announce 

their loss. 

9Extra damages may be deliberatly brought about by the insured, as for instance when 

a firm lets stocks in warehouse burn so as to pocket the insurance compensation (In the US, 

the Insurance Committee for Arson Control (ICAC) estimates that arson costs insurance 

companies nearly 30 % of the total dollars spent on fire losses !). However, in many cases, a 

Joss increase is made thanks to the help of a middleman : think for instance of a physician 

who increases the prescription drugs or the hospital charges, so as to exceed the threshold 

of the insurance policy of his patient. Garage owners or lawyers may also be in a position 
allowing them to inflate the cost of road accidents or casualties. In such cases, Al means 

that eliciting verifiable information about overpayment is too costly or too time consuming 

to the insurer. 
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It is straightforward to check that under Al, the contract defined in 
Proposition 1 is dominated by a pure deductible contract defined by t(x) = 
Sup{O, x - m + z} and M = (m - z, x]. To establish the optimality of pure 
deductibles, we proceed in two steps. Lemma 2 establishes that under Al, any 
contract is weakly dominated by an incentive compatible contract in which 
the largest daims are verified. Proposition 2 then says that pure deductible 
contracts are optimal. 

Lemma 2 : Under Al, any contract b = {t(.), M, P} is weakly dominated 
by an incentive compatible contract 15 = {t(.), M, P} such that: 
(i) M = (m, x] with m E (0, x] 
(ii} i(x) is continuous and non-decreasing and i(x)-x is non-increasing with 

i(x) = t 0 ~ 0 if x:::; m and t(x) > t0 if x > m. 

Once again, because of the fi.xed cost of daims Cf , choosing to = 0 is 
optimal. U sing Lemma 2, the optimal contract b = { t(.), m, P} is derived by 
maximizing EU given by (1) subject to (2) and O :::; dt/dx:::; 1, t(m+) = 0, 
m ~ O. This leads to Proposition 2. 

Proposition 2 Under A 1, the optimal contract is a pure deductible con
tract 

t(x) = Sup{O,x - m} 

with m > 0 and M = (m,x]. 

3 MANIPULATION OF AUDIT COST AND 
OPTIMALITY OF COINSURANCE 

We now turn our attention to the contractual relationship between the insurer 
and the auditor. The latter incurs the cost Ca whenever an audit is carried out. 
Letting r denote the payment from the insurer to the auditor, the auditor's 
net wealth is w = r - c where c denotes the cost beared by the auditor in case 
of daim verification. Under the previous assumptions we had c = Ca in case 
of audit and c = 0 otherwise. We will now focus our attention on situations 
where the policyholder may affect the audit cost c and where the insurer 
does not observe c: he can only verify (without cost) whether an audit has 
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been performed or not. The fixed cost c1 is borne by the insurer when a 

claim is filed. The auditor maximizes the expected utility of his net wealth 
EV(w), where V(.) is a twice-differentiable von Neumann-Morgenstern utility 
fonction, with V' > 0, V" :S O. He is willing to participate if his expected 
utility is larger than a reservation utility v. 

The auditor sends a report x E [O, x] to the insurer which is an evaluation 
of the size of the loss in case of audit. When no audit is performed, we let 
x = cp. Messages x E [O, x] can be sent only after auditing, which costs at 
least Ca to the auditor. However, the policyholder may engage in actions which 
increase the cost to the auditor of establishing the actual loss unambiguously. 
More precisely, the economic loss x is observed at cost Ca when an audit is 
carried out. However, by incurring expenditures e 2:: 0, the policyholder 
increases the cost to the auditor of elicitating verifiable information on the 
loss, which reaches Ca + be, with b > O. Hence, we here distinguish the 
cost Ca of observing the loss which is incurred once the claim is audited, 
and the cost of elicitating verifiable information, which is larger and may be 
manipulated by the policyholder. For instance, the latter may pay middlemen 
such as health-care providers, garage owners or lawyers to make it more costly 
or more time-consuming to the claim handler or to the insurer's lawyer to 
establish the level of damages unambiguously10. The insurer does not observe 
the auditor's cost, which lead to a moral hazard problem : the auditor
insurer contract should induce the auditor to make effort to gather verifiable 
information about fraudulent daims. 

In this context, we will describe the auditor-policyholder relationship as 
a three stage game. At stage 0, the loss level x E [O, x] is realized. At stage 1, 
the policyholder announces a loss x E [O, x] and he incurs the manipulation 
cost e. At stage 2, the claim is audited if and only if x E M. When x E M, 
the auditor observes x and he reports x E {x,x}. If x = x =/- x, the auditor 
incurs the cost Ca + be so that his report incorporates verifiable information. 
If x = x the auditor only incurs the audit cost Ca. If x E Mc, we have x = cp. 

10Evidence on the fact that middlemen have an action on daims build-up for auto bodily 
injury insurance is provided by Derrig, Weisberg and Chen (1994) in their study of the 
Massachusetts no-fault automobile insurance system. They particularly show that the 
presence of an attorney and the pattern of treatment, much more than the injury itself, 
determine whether the driver reaches the ($ 2,000) monetary threshold that restricts the 
eligibility to file a tort daim. 
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This sequence will be called A211 . 

In what follows, the indemnity paid to the policyholder will depend on the 

auditor's report and we will have : t = T(x). Likewise we will restrict atten

tion to simple auditor-insurer contracts R = R(x) that specify the transfer 

(net of the standard audit cost Ca in case of audit) paid to the auditor as 

a fonction of his report. We then have r = R(x) + Ca in case of audit, and 

r = R(x) = R( cf>) otherwise. These restrictions on contracts deserve some 

comments. Assuming that the indemnity payment only depends on the audi

tor's report makes sense if the insurer cannot prove in court that the insured 

has deliberately overestimated the damages (when x > x ). Hence, we as

sume that more general insurance contracts t = T (x, x) are not feasible, 

either because the amount of the initial daim x cannot be unambiguously 

verified by an outside party (while verification of the auditor's report x is 

possible) 12 , or because in case of established overestimation of losses, the pol

icyholder may maintain that he was in good faith or because of prohibitive 

transaction costs arising from the implementation of more complex contracts. 

For similar reasons, the (net) transfer to the auditor depends on x and not 

on x , i.e. R = R(x) . As we shall see, such simple contracts R(x) may be 

interpreted in terms of auditor-insurer cost-sharing rules, which gives them a 

straightforward interpretation. Finally, unlike the Bond-Crocker (1995) ap

proach, the fact that the audit cost is not observed by the insurer prevents 

from conditioning T and R on c. 
Insurance contracts are still denoted 8 = { t(.), M, P}, with t(.) : [O, x] _, 

R+ and M E (ü,x], where t(x) is the indemnity payment when the loss 

is x and daims are audited whenever x E M. The contract 8 is said to be 

admissible if it satisfies the characterization of 8 in Lemma 2. In what follows, 

we restrict our attention to admissible contracts since under Al any contract 

11 Very likely, eliciting verifiable information about the actual level of losse;:; is easier 

for the auditor (or equivalently manipulating audit costs in harder for the insured) when 

claims' build up is totally untrue than when it follows from a deliberate increase in the 

damage;:;. In other terms, b should be larger in the latter case than in the first one. This is 

captured by assumptions Al and A2 : under Al, bis infinite as long as x does not exceed 

the level of damage;:; and the latter may be chosen in [x, x] and, under A2, b is finite when 

x exceeds the level of damages. 
12 More explicitly, at stage 1, the policyholder suggests a Joss level x to the insurer 

(possibly by transmitting qualitative information on damages) but this message remains 

private : it bas no legal value and cannot be put forward in court in case of !itigation 

between the insurer and the insured or between the insurer and the auditor 
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is weakly dominated by an admissible contract. We assume for simplicity 

that R(x) is continuous over M = (m, x] 
Let 8 = {t(.), M, P} be an admissible contract and let w(x) specify the 

auditor's net gain as a fonction of the policyholder's loss. Let T(.) , R (.) : 
[O, x] U { <:p} ---+ R! be fonctions that specify the indemnity payment T(x) and 

the payment to the auditor R(x) as fonctions of the auditor's report x . We 

will say that {T(.), R(.)} implements { 8,w(.)} under Al-A2 if 

t(x) = T(x) and w(x) = R(x) if x E M (3) 

to = T(</J) and w(x) = R(</>) if x E Mc (4) 

and if 
e = 0, x = x, x = x if x E M, x =</>if x E Mc 

is the unique perfect equilibrium of the audit game. 
In words, {T(.), R(.)} implements {8,w(.)} if at equilibrium there is no 

audit cost manipulation13 and the net payments are t(x) (or t0 ) and w(x) 

when the loss is equal to x. We have : 

Lemma 3 Under A1-A2, when {T(.),R(.)} implements {8,w(.)}, the gross 

payment from the insurer to the auditor satisfies 

r =a+ p(x) - bt(x) + Ca if x E M 

r = ro if X E Mc 

where p( x) : M ---+ R is a nonincreasing function such that p( m+) = 0 and 

a, ro are constants. 

Lemma 3 states that a larger level on indemnity paid to the policyholder 

should imply a lower net income paid to the auditor for audit cost manipula

tion to be detered. The intuition behind lemma 3 is as follows. Starting from 

the truthfol revelation of loss without manipulation of audit cost, a deviation 

13In appendix 3, we show that allowing for cost manipulation is a weakly dominated 

strategy for the insurer. 
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at stage 1, x = x' > x, e > 0 would be profitable to the policyholder (assum

ing t(x') > t(x)) if the daim is accepted by the auditor and if t(x')-e > t(x). 

Accepting the daim x = x' is optimal for the auditor if R(x') ::::C: R(x) - be. 

Both conditions are incompatible (for all e) if R(x') + bt(x') :S R(x) + bt(x), 

which shows that a 1$ increase in the indemnity payment to the policyholder 

should lead at least to a b$ decrease in the auditor's earnings for audit cost 

manipulation to be detered. 
We now are in position to characterize the optimal insurance contract. 

As before, it involves to = 0 and t(x) > 0 if x > m. Then, the non-negative 

profit constraint and the auditor's participation constraint are respectively 

P ::::C: F(m)ro + 1:+ [a+ p(x) + (1 - b)t(x) + c]dF(x) (5) 

F(m)V(ro) + 1:+ V(a + p(x) - bt(x))dF(x) ::::C: v (6) 

At the optimum, t(.) : (m, x] --, R+ , p(.) : (m, x] --, R, m, a and r0 

maximize EU given by (1) subject to (5), (6), 0 :S dt/dx :S 1, t(m+) = 
0, dp/dx :S 0, p(m+) = 0, m ::::C: O. Characterizing the optimal solution 
with standard optimal control methods, leads to proposition 3. The optimal 

insurance policy and the payment to the auditor are illustrated in figure 2. 

Proposition 3 Under A1-A2, when the auditor is risk-averse, the optimal 

insurance contract is a deductible contract with coinsurance for high levels of 

damages: 
t(x) = 0 if O :S x :S m 

t (X) = X - m if m < X '.S Xo 
t' (X) E ( 0, 1) if Xo < X '.S X 

with O :S m < x 0 :S x and M = ( m, x]. Furthermore, a sufficient condition 

for m > 0 is c > bf(O)[l - f(O)]/ J(O+)-

Proposition 3 may be interpreted as follows. As stated in lemma 3, the 

constraint of immunity from audit cost manipulation involves a linkage be

tween the indemnity payment to the policyholder and the transfer to the 

auditor : larger indemnity payments should entail lower transfers to the au

ditor for the policyholder to be dissuaded from manipulating audit costs. 
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More precisely, lemma 3 shows that dr / dx should be less than -bdt / dx. In 

fact, the proof of proposition 3 shows that p (x) _ 0 at the optimum, which 

gives 
r = a - bt + Ca if t > 0 (7) 

r = r0 E (a - bt(x), a) if t = 0 

Equation (7) has an attractive cost-sharing interpretation: for any damage 

larger than m, the insurer bears the fi.xed cost c.= ca+ct and the variable cost 

t is linearly shared between the insurer and the auditor who respectively bear 

a+ (1 - b) t and bt - a . Hence, a greater variability in indemnity payment 

entails a greater variability in the auditor's net incarne. A risk-averse auditor 

should then be compensated by a higher risk-premium for his participation 

constraint to be satisfied. Then, some degree of coinsurance for large levels 

of damages decreases the risk-premium that should be paid to the auditor, 

which is ultimately beneficial to the policyholder14. Proposition 3 also states 

that a positive deductible m > 0 remains optimal if the fi.xed cost per daim 

c is large enough. In appendix 1 we give a sufficient condition for x0 to be 

strictly lowar than x. Intuitively, this condition is satisfied when the auditor 

is sufficiently risk-averse. 

The previous argument on the cost -:i providing incentives to the auditor 

does not hold anymore when the auditor is risk-neutral. Then the auditor 

becomes the insurer and a pure deductible contract remains optimal. When 

the auditor is infinitely risk-averse or when he is affected by a limited liability 

constraint, the linkage between the indemnity payments and the transfer to 

the auditor exerts the most extreme effects and as expressed in proposition 

4 an upper bound on coverage is then optimal : 

Proposition 4 Under A 1-A2, when the auditor is infinitely risk-averse or 

when he is uff ected by a limited liability constraint, the optimal insurance 

contract combines a deductible with an upper bound on coverage, with full 

insurance of marginal damages for intermediate values : 

t(x) = Inf{Sup{O,x - m},xo - m} 

with O ::; m < x0 < x and M = ( m, x]. Furthermore, sufficient conditions 

for m > 0 arec> bf(O)[l - J(ü)]/ J(O+) or f(.) nonincreasing over (0, x]. 

14The optimal shape of fonction t (x) may be further characterized under specific as

sumptions about preferences. For instance, the proof of proposition 3 shows that t (x) is 

piecewise linear when U (.) and V(.) are quadratic. 
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Propositions 3 and 4 suggest that choosing m = 0 may be optimal and 

appendix 2 shows that this is actually the case under infinite risk aversion, 

when c/b is low enough and band c are not too large. We then obtain 

t(x) = Inf { x, xo} 

with O < x 0 < x, which is the opposite of a pure deductible contract : no 

deductible and a ceiling on coverage15 . This result may be intuitively in

terpreted as follows. We know that full coverage above a deductible m is 

optimal when there is no manipulation of audit cost or when the auditor is 

risk-neutral. ln such a case, atm= 0, the policyholder has perfect insurance 

and then an increase dm > 0 entails no first-order risk-sharing effect. How

ever, such an increase cuts down the expected administrative costs, which 

is ultimately beneficial to the policyholder. This gives m > 0 at the opti

mum. On the contrary, when the auditor is risk-averse and audit costs can 

be manipulated by the policyholder, some degree of coinsurance is optimal. 

Then, atm= 0, increasing the threshold m for a profile { dt/dx, x E (m, x]} 
unchanged, entails a negative first-order risk-sharing effect because of un

derinsurance of large losses. This risk-sharing effect counterbalances the 

beneficial effect of lower administrative. cost and this trade-off may tip more 

in favor of keeping m = O. 

4 CONCLUSION 

Coinsurance clauses such as partial insurance for large damages or ceilings 

on indemnity payments are frequently inserted in insurance policies. The 

previous literature on optimal insurance contracting has justified such clauses 

on the basis of assumptions on the insurer's risk-aversion, convexity of the 

insurance cost fonctions or bankruptcy rules. Our explanation does not fully 

depart from the first of these assumptions since it relies on the auditor's 

risk-aversion : the latter cannot be fully insured because of an incentive 

constraint. Nevertheless, by focusing on the auditor's activity, this paper has 

emphasized what we think is a major difficulty for the insurer who struggles 

15Such a result strongly contrasts with the conclusions of Raviv (1979) 's model, in which 
upper limits on coverage are Pareto suboptimal. 
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against insurance fraud ; namely the fact that the verification costs can be 

manipulated by the policyholders, which undermines the credibility of the 
audit policy16 . The relationship between the insurers and the agents who are 
in charge of proving fraud may entail agency costs and it affects the shape 

of the optimal indemnity schedule as well as the auditor-insurer contract. 
More particularly, the results of this paper suggest that straight deductibles 
may be optimal in markets where policyholders can easily be dissuaded from 
defrauding -for instance because the audit cost is low compared to the fixed 
administrative cost of daims- but coinsurance clauses should be included in 
insurance contracts when agency problems limit the efficiency of audit policy. 

Of course, it should be acknowledged that these results have been ob

tained in the framework of a highly simplified model and considering more 
general settings would allow us to appraise their robustness. ln particular, we 
may consider a generalized formulation for the audit cost activity in which the 
cost of elicitating verifiable information on daims is a (possibly non-linear) 
fonction of the insured's expenditures e and of the level of damages x. The 
issue of audit cost manipulation could also be approached in a model where 
some degree of damage falsification is inevitable or optimal, as in papers by 
Crocker and Morgan (1995) or Maggi and Rodriguez-Clare (1995). Finally, 

the modelling could incorporate stochastic auditing, a credibility constraint 
on the audit strategy or more general auditor-insurer contracts. 

16Picard (1994) shows that credibility constraints on daims' verification may deeply 
affect the insurance markets and call for a cooperative action of insurers. 
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APPENDIX 1 

Proof of Lemma 1 
Let t(x) be the maximal indemnity obtained by the policyholder when 

the loss is x and the contract 8 = {t(.), M, P} is implemented. t(x) is non

decreasing since the policyholder can misrepresent downward the magnitude 

of damages. 
Let t0 = t(O),m = Sup{x I t(x) = t(O)},M = (m,x] and P = P. 

Obviously, the contract 8 _ {t(.), M, P} is incentive compatible. Hence 8 
and 8 yield the same insurance payment. 

Let x(x) be an optimal daim of the policyholder under the contract 8 
when he suffers a loss x. 

Let x E M. We then have t(x) > t(O) which gives x(x) E M , (otherwise 

x(x) would be a better daim than x(ü) when x = 0). Audit costs are thus 

lower un der 6 than un der 8. • 
Proof of Proposition 1 
Let us delete the non-negativity and monotonicity constraints on t(x) 

over (m, x]. We may check that the resulting optimal solution actually verifies 

these constraints. Assigning a multiplier À ~ 0 to the non-negative profit 

constraint, the first-order optimality conditions ont(.) and P are respectively 

U'(W - x - P + t(x)) - À(x) = 0 for all x in (m, x] (8) 

!am U'(W - x - P)dF(x) + .r:+ U'(W - x - P + t(x))dF(x) - À= 0 (9) 

(8) implies that t(x) - xis constant over (m, x]. We thus have t(x) = 
x + z - m for all x in (m, x], where z is a constant. Furthermore, (8) gives 

À = U' (W - m - P + z) (10) 

and (9) yields 

À= !am U'(W - x- P)dF(x) + [1- F(m)]U'(W - m- P + z) (11) 
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Using (10) and (11) we deduce 

l rm 
U'(W - m - P + z) = F(m) Jo U'(W - x - P)dF(x) 

There exists x0 E [O, m] such that 

U'(W - x0 - P) = -
1

- {m U'(W - x- P)dF(x) 
F(m) lo 

with O < x0 < m if m > O. (12) gives 

U'(W - m- P + z) = U'(W - x0 - P) 

which implies z = m - x0 ~ 0, 0 < z < m if m > 0 and z = 0 if m = O. 
The optimality condition on mis 

(12) 

U(W - m - P)J(m+) - U(W - m - P + z)f(m+) + À(z + c))J(m+) :S 0 
= 0 if m > 0 

(13) 
If m = 0, we have z = 0 and (13) would give Àcj(O+) :S 0, hence a 
contradiction. • 

Proof of Lemma 2 
For any contract 8 = {t(.), M, P}, if the policyholder cannot inflate the 

size of the claim by creating further damage, we know from Lemma 1 that 
there exists an incentive compatible contract b = {t(.), M, .P} that weakly 
dominates 8, with t(x) = t 0 if x E ]Çjc and t(x) > t 0 if x E M. Furthermore 
t(.) is non-decreasing. 

Under Al, let x(x), be an optimal loss level when the actual initial loss in 
x and 8 is implemented. Since bis incentive compatible (for given damages), 
x(x) is an optimal solution to 

P(x) : Maximise t(x) - x with respect to x ~ x 

Note that x(x) = x if x(x) E Mc. Let 1v1 = {x I x(x) E M} and 
t(x) - t(x(x)) - x(x) + X and p = P. 

If x E Mc , then x(x) E Mc which implies i(x) = t(x) = t0 • If x E M 
,then x(x) E M which implies i(x) ~ t(x) > t0 (by using the fact that x = x 
is a feasible solution in problem P( x)). 
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l. Let us show that 8 = {i(.), M, .P} is an incentive compatible contract. 
We will prove that under 8 the policyholder cannot profit by creating 
further damages from x to x' > x or by misreporting the damages 
downward from x to x' < x. Let R+ (x, x') and .R_ (x, x') be respectively 
the net gains from these strategies and let 

R(x,x) = i(x) - X= t(x(x)) - x(x) 

If x' > x, we have: 

R+(x,x') = i(x') - x' = t(x(x')) - x(x') 

We have x(x') ~ x' > x. Hence x(x') is a feasible solution to P(x), which 
implies 

t(x(x')) - x(x') ~ t(x(x)) - x(x) = R(x,x) 

Hence R(x,x) ~ R+(x,x') if x' > x. 
Let x,x' E [O,x] with x < x'. Assume i(x') < i(x). We then have 

t(x(x')) - x(x') + X 1 < t(x(x)) - x(x) + X 

which gives 
t(x(x')) - x(x') < t(x(x)) - x(x) 

(14) 

(15) 

(15) implies that x(x) is not a feasible solution to P(x'), i.e. x(x) < x'. 
Furthermore, we have 

t(x(x')) - x(x') + x' ~ t(x') 

since x = x' is a feasible solution to P(x'). 
We also have 

t(x') ~ t(x(x)) 

(16) 

(17) 

since t(.) is non-decreasing. (14), (16) and (17) simultaneously give x(x) < x, 
hence a contradiction. We deduce that i(x') ~ i(x) and consequently that 
t(.) is non-decreasing. This giv~s R(x, x) ~ R,_ (x, x') if x' < x. 

2. The characterization of 8 may then be completed as follows : 
Using i(x) = t0 if x E Mc , i(x) > t0 if x E M and the fact that t(.) 

is non-decreasing gives M = (m,x]. Furthermore, i(x) - X= t(x(x)) - x(x) 
is non-increasing with respect to x (by using the definition of x(x)). Lastly, 
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any (upward) discontinuity of t(.) would contradict the fact that i(x) - xis 
non-increasing. _ 

3. Let us show that b weakly dominates b. 
Under Al, 8 and blead te the same audit costs (smce x E M iff x(x) E M) 

and to the same net ·gain t(x) - x for the insured. The payment from the 
insurer to the insured is equal to t(x) under 8 and to t(x(x)) under b. Using 
the de:finition of i(x) and x(x) 2: x gives 

i(x) = t(x(x)) - x(x) + x::; t(x(x)) 
- ~ ~ 

We deduce that b weakly dominates b. Since b weakly dominates b , the 
result is reached. • 

Proof of Proposition 2 
Let µ(x) _ dt/dx. Under Al, the optimal contract maximizes EU given 

by (1) with respect tom 2: 0, P and {t(.),µ(.)}: (m,x]-+ R2 subject to (2), 
0::; µ(x) ::; 1 and t(m+) = O. 

This is an optimal control problem where t(x) is a state variable with 
initial point t( m+) = 0 and µ( x) is a (piecewise continuous) control variable. 
Bath are de:fined on the interval ( m, x]. 

For any fonction v(x) we note v _ dv/dx. 
Let q(x) be the costate variable associated with t(x) and let À be a La

grange multiplier associated with the constraint (2). The Halmiltonian fonc
tion is 

H(t, µ, q, x) = U(W - x - P + t)J(x) + qµ - ),(t + c)f(x) 

Given m and P, the necessary optimality conditions are : 

q(x) = -
0
: = - f(x)U'(W - x - P + t(x)) + ,Xf(x) (18) 

for all x in (m, x] 
q(x) = o (19) 

8 H 2: o if µ( x) = 1 } 
Bµ = q(x) = 0 if O < µ(x) < 1 

::; 0 if µ(x) = 0 
(20) 
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Furthermore optimality conditions on m and P are respectively 17 
: 

U(W - m - P)f(m) - H(m, µ(m), q(m), m) = 0 } 
if m > 0 

U(W - P)f(0-1-) - H(O+, µ(O+), q(O+), O+) :S O , 
if m = 0 

À= rm U'(W - x - P)dF(x) + 1x U'(W - x - p + t(x))dF(x) 
Jo m+ 

Using (21) and (22) and t(m+) = 0 gives 

q(m+)µ(m+) 2:: Àcf(m+) > 0 

which implies q(m+) > O. (18) gives 

q(x) = g(x)f(x) for all x in (m, x] 

with g(x) À - U'(W - x - P + t(x)) 

(21) 

(22) 

(23) 

Let .6.0 = {x E (m,x] s.t. q(x) > O}, with m+E E .6.0 for E positive and 
small. (20) implies that µ(x) = l if x E .6.o. Consequently, g(x) remains 
constant over .6.0 and we may note g(x) = g for all x in .6.0 . 

Assume ?J 2:: O. Then q(x) = gf(x) 2:: 0 if x E .6.0 . Consequently 
[x, x] C .6.0 if x E .6.o , which contradicts (19). We thus have g < O. 

Let x0 = Inf{x E (m,x] s.t. q(x) = O}. Assume x0 < x. We have 
g(xo) = ?J since function g(x) is continuous and g(x) = ?J for m < x < x0 . 

(23) then gives q(x0 ) = f(xo)?J < 0, which implies that q(x0 + E) < 0 for 
E > O. 

Let .6.1 = {x E (m,x] s.t. q(x) < O}. (20) implies that µ(x) = 0 if x E .6.1 . 

Hence 
g(x) = U"(W - x - P + t(x)) < 0 if x E .6.1 

We deduce that (x0 + E, x] C .6.1 which contradicts (19). We thus have 
.6.0 = (m,x]. Using t(m+) = 0 then gives t(x) = x - m if x 2:: m. 

Finally, assume m = O. We then have t(x) = x for all x in [O, x]. Using 
(22) then gives À= U'(W - P) and g(x) = 0 for all x in [O, x]. Thus q(m+) = 

q(x) = 0, which contradicts q(m+) >O.• 

17See Seierstad and Sydsaeter (1987) , theorem 9, chapter 3 or Beavis and Dobbs (1990), 
theorem 7.6. 
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Proof of Lemma 3 
Given {8,w'(.)} and {T(.),R(.)} such that (3) and (4) hold, let us derive 

the conditions under which starting from e = 0, x = x, there does not 
exist any deviation which is profitahle to the policyholder, given the reaction 
fonction of the auditor. 

Obviously, for an admissible contract, only deviations such that x E M 
can be profitable to the policyh0lder. Assume first that the deviation x is 
accepted by the auditor (i.e. x = x). Profitability of the deviation requires 
t (x) > t (x). Hence, let us consider a deviation x = x' =J. x, x' E M, with 
t(x') > t(x), e = e' 2: O. Then, at stage 2, after auditing, the auditor may 
report i = x after gathering verifiable information which gives him a net gain 
R(x) - be'. He may also accept the policyholder's daim and then his net gain 
is R(x'). It is an optimal strat6gy for the auditor to accept the daim x = x' 
if and only if be' 2: R(x) - R(x'). The upper bound of the policyholder's net 
gain induced by the deviation is obtained at 

, _ S { R(x) - R(x')} 
e - up 0, b 

Hence, the deviation cannot be profitable if and only if 

R(x) - R(x') 
t(x) 2: t(x') - Sup{O, b } 

or equivalently 
R(x) + bt(x) 2: R(x') + bt(x') 

This condition should hold for all x in [O, x] and all x' in M such that 
t(x') > t(x). Since t0 = t(m+) < t(x) if x E M, we obtain : R(x) 2: R(m+) 
if XE Mc. 

n 
Let M = U (ai, ai+1], with m = a1 < a2 ... < an+l = x, such that t(x) 

i=l 

is increasing (respect. constant) over (ai, ai+1] if i is odd (respect. even). 
Let i be an odd number in {1, ... , n }. Then, from the previous condition, we 
deduce that R(x)+bt(x) is nonincreasing over (ai, ai+1]. Let x* E (ai+1, ai+2]. 

Assume R(x*) + bt(x*) > R(ai+1 ) + bt(ai+1 ). Then R(x*) + bt(x*) > R(ai+l -
E) + bt(ai+1 - E) for E positive, small enough and such that ai < ai+l - E < 
ai+l, which contradicts t(x) > t(ai+l - E). We deduce that R(x) + bt(x) is 
nonincreasing over M = ( m, x]. 
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Assume now that the deviation x is not accepted by the auditor (i.e. 

x = x). It is profitable if and only if x E Mc and T (x) > T (</>) = to. Such 

profitable deviations do not exist if T (x) :S to if x E Mc. 
In short, under Al-A2, {T(.),R(.)} implements {8,w(.)}, if and only if 

(3) and (4) hold and 
(i) R(x) + bt(x) is nonincreasing over M 
(ii) R(x) 2 R(m+) and T(x) :S t0 if x E Mc. 
Lemma 3 is obtained with r0 = R(</>) and a= R(m+) + bto. • 
Proof of Proposition 3 
Letting µ(x) = i(x) and v(x) = p(x), the optimal solution maximizes EU 

given by (1) with respect tom 2 0, a, r0 , P, { t(.), µ(.), p(.), x(.)} : (m, x] -+ 

R 4 subject to (5), (6) and O :S µ(x) :S 1, v(x) :S 0, t(m+) = 0, p(m+) = O. 
Letting q1 (x) and q2 (x) be costate variables respectively associated with 

t(x) and p(x) and letting À1 and À2 denote the Lagrange multipliers that are 

respectively associated with (5) and (6), the Hamiltonian fonction is 

H(t, µ, v, q1, q2, x) = U(W - x - P + t)f(x) + q1µ + q2v 
-À1[a + p + (l - b)t + c]f(x) + À2V(a + p - bt)f(x) 

with x E (m, x]. 
Given m, P, a and r0 , the necessary optimality conditions are : 

8H 
41(x) = -&t - f(x)U'(W - x - P + t(x)) + À1(l - b)f(x) 

+À2bV'(a + p(x) - b t(x))f(x) 

. 8H 
q2(x) = - Bp = Àif(x) - À2V'(a + p(x) - bt(x))f(x) 

q1(x)=O 

BH 2 0 if µ(x) = 1 } 
f) = ql (X) = 0 if O < µ(X) < 1 

µ :S O if µ(x) = 0 

23 

v(x) = 0 } 

v(x) < 0 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 



Furthermore, the optimality conditions on m, P, a and r0 can be respec
tively written as follows : 

[U(W - m - P) + À2 V(ro) - À1ro]f (m) 
-H(t(m), µ(m),p(m), v(m), q1(m), q2(m), m) = 0 
[U(W - P) + -X2V(ro) - À1rolf(O+) 
~H(t(O+),µ(O+),p(O+),v(O+),q1(0+),q2(0+),0+):::; 0 

if m > 0 } 

if m = 0 

(30) 

À1 = rm U'(W - X - P)dF(x) + rx U'(W - X - p + t(x))dF(x) (31) 
Jo lm+ 

.\2 jx V'(a + p(x) - bt(x))dF(x) - .\1 [1 - F(m)] = 0 (33) 
m+ 

l. Let us first show that p(x) _ 0 at the optimum. Suppose that v(x) < 0 
in an interval [a,b] C (m,x], b > a. Then from (29) we have q2(x) = 0 
over [a,b]. Using (25), we deduce that a+p(x)-bt(x) is constant over 
[a, b] which gives v(x) = p(x) = 0, hence a contradiction. We thus have 
v(x) _ 0 which gives p(x) _ O. 

2. Let us establish that µ(x) = l if x E (m,x0 ] and O < µ(x) < l if 
x E (x0 ,x], with m < x0 :::; x. 

Using (29) and t(m+) = 0 gives 

(32) and concavity of V(.) then yield 

q1(m+)µ(m+) > [-X2((a - ro)V'(ro) - V(a) + V(ro)) + À1clf(m+) 

> À1cf(m+) > 0 
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which gives q1 ( m+) > O. 
Let q1(x) = h(x)f(x) for all x E (m,x] with 

h(x) = ,\1(1- b) + ,\2bV'(a - bt(x)) - U'(W - x - P + t(x)) 

Let .6.0 = {x E (m,x] s.t. q1 (x) > O}, with m+c E .6.0 for c positive and 

small. We have from (28) : 

µ(x) = 1 and h(x) = -,\2b2V"(a - bt(x)) > 0 for all x E .6.0 

q1(x) has no local maximum in D.o (since ~~ (x) = h(x)f(x) > 0 if 

q1(x) = 0 and x E .6.0 ). Using q1(x) = 0 then implies q1(x) < 0 over .6.0 . We 

thus have .6.0 = (m, x 0 ) with x 0 E (m, x]. 
Let .6.1 = {x E (m,x] s.t. q1(x) < O}. Assume .6. 1 =/=- <p. Then there exists 

x' E .6.1 such that q1 (x') < O. We have from (28) : 
µ(x) = 0 and h(x) = U"(W - x - P + t(x)) < 0 for all x E .6.1 . q1(x) 

d. 
has no local minimum in D-1 (since --1!.(x) = h(x)f(x) < 0 if <i1(x) = 0 and 

dx 
x E D-1). Hence [x', x] C D-1 which contradicts q1 (x) = O. 

Hence .6.1 = <p and q1(x) = 0 for all x in [x0 ,x], which gives 

U'(W ~ x - P + t(x)) - ,\2bV'(a - bt(x)) = ,\1 (1 - b) 

Hence 

. U"(W-x-P+t(x)) 
µ(x) = t(x) = U"(W - x - P + t(x)) + ,\

2
bV"(a - bt(x)) E (ü, l) 

if x E (xo,x]. 

3 Finally, we will find a sufficient condition for m > O. Integrating (24) 
and using (26), (32) and (33), give 

q1 (m+) = -[1- F(m) + bF(m)] /~ U'(W - P - x)dF(x) 

+(1 - b)F(m)[(F(x0 ) - F(m))U'(W - P - m) 
+ J! U'(W - P - x + t(x))dF(x)] + ,\2bV'(r0 )F(m) 

(34) 
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Furthermore, we have lh(x) = 0 for all x E [x0 ,x], which gives 

/x U'(W - P - x + t(x))dF(x) = (1 - b)[l - F(xo)]>q (35) 
lxo 

+>.2b 1: V'(a - bt(x))dF(x) 

Using (32), (33), (34) and (35) then yields 

[F(xo) - F(m)]F(m) [U'(W - P- m) - - 1- Jt U'(W - P - x)dF(x) 
F(xo) F(m) 0 

+>.2bV'(ro) - F(xot~b F(m) J:i~ V'(a - bt(x))dF(x)] 

(~~6) 
Assume m = O. We would then have 

qi(O+) = À2bf(O)[F(xo) - f(O)] [V'(ro) _ Jt; V'(a - bx)dF(x)] 
F(xo) F(xo) - f(O) 

which implies -using (32)-

(0 ) 
À2bf(O)[F(xo) - f(O)]V'(ro) _ À1bf(O)[F(xo) - J(O)] 

q1 + < --------- - -------
F(xo) F(xo) 

This contradicts q1.(0+) ~ À1cf(O+) if c > bf(O)[l - J(O)]/ J(O+) • 

A sufficient condition for x 0 < x is obtained as follows. Let m E (0, x). 
Let us first show that at the optimum m E [O, m] if band c are not too large. 

Let <I>(m, b, c) be the optimal expected utility level, written as a fonction 
of m ( considered here as a parameter) and of b and c. The optimal solution 
entails full insurance when b = c = O. We also have 

which gives 

8<1> am (m,0,0) < 0 

<I>(m, 0, 0) < <I>(m, 0, 0) = <I>(O, 0, 0) - E 
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for all m > m, with E > O. 
From the Maximum Theorem, <I>(m, b, c) is a continuous fonction. Hence, 

there exist m' > 0 and a neighbourhood v C R2 of (0, 0) such that 

<I>(m, b, c) > <I>(O, 0, 0) - E 

if O :S m :S m' and ( b, c) E v. 
Furthermore, we have 

<I>(m, b, c) :S <I>(m, 0, 0) for all m ~ 0 and for all (b, c) E R! 

Assume m > m and (b, c) E v+ n R!. Then, for all m" E [O, m'], we have: 

<I>(m", b, c) > <I>(m, b, c) 

Hence, the optimal threshold m belongs to the interval [O, m) if (b, c) E v+. 
Assume m > m and (b,c) E v+ = vnR!. Then for O :Sm" :Sm', we have 

<I>(m", b, c) > <I>(m, b, c). We deduce that the optimal threshold m belongs to 
the interval [O, m) if (b, c) E v+. 

Assume x0 = x. We would then have 

q(x) = f(x)[À2bV'(a - b(x - m)) + À1(l - b) - U'(W - P - m)] :S 0 

Using (32) and (33), this may be written as 

b[ V'(a - b(x- m))[l - F(m)) _ l] < U'(W - P - m) - À1 

f:i+ V'(a - b(x - m))dF(x) - À1 
(37) 

Assume that V(.) and U(.) are CARA utility fonctions. Let r 1(m, b) and 
f2(m) be respectively the left-hand sicle and the right-hand sicle of (38), with 
8f i/8m < 0 and 8f2 /8m > O. Note that we use (31), t(x) = x - m for all x 
in [m, x] and the fact that U (.) is CARA to write r 2 as a fonction of m only. 
Likewise r 1 does not depend on a when V (.) is CARA. 

Assume (b,c) E v+. Then f 1(m,b) > f 1(m,b) and f 2 (m) < f 2 (m). Con
sequently, a sufficient condition for (37) not to hold is f 1(m, b) > f 2 (m), 
which gives x 0 < x in that case. Given m and b, this will be satisfi.ed when 
the auditor's (respect. policyholder's) absolute risk aversion is large (respect. 
low) enough. 
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Proof of Proposition 4 
Under infinite risk-aversion or under a limited liability constraint, the 

constraints 
a+ p(x) - bt(x) 2 v for all x E (m, x] 

(with v an exogenously given constant) should be substituted to (6). Since 
t(.) is nondecreasing and p(x) is nonincreasing, this is equivalent to 

a + p(x) - bt(x) 2 v and ro 2 ïJ 

(5) and (38) are equivalent to 

P 2 F(m)v + 1:+ [v - p(x) + bt(x) + p (x) + (1 - b)t(x) + c]dF(x) 

Noting that p (x) = p(x) = 0 is optimal, we obtain 

(38) 

P 2 v + [1 - F(m)]bt(x) + 1:+ [(1 - b)t(x) + c]dF(x) (39) 

At the optimum, t(.) : (m,x] --t R+, P and rr., 2 0 maximize EU given 
by (1) subject to (39), 0:::; dt/dx:::; 1, and t(m+) = O. 

Letting q(x) be the costate variable associated with t(x) and letting À de
note the Lagrange multiplier associated with (39), the Hamiltonian fonction 
1S 

We have 

H(t, µ, q, x) = U(W - x - P + t)f (x) + qµ 

->.[(1 - b)t + c]f(x) 

8H 
q(x) = -8t = - J(x)U'(W - x - P + t(x)) + >.(l - b)J(x) (40) 

q(x) + >.b[l - F(m)] = 0 (41) 

and (20), (21) and (22), which implies q(m+) 2 >.[c + bt(x)]J(m+) > O. 
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1. Let us establish that µ(x) = l ifx E (m,x0] and µ(x) = 0 ifx E (x0 ,x], 
with m < x0 < x. 

Let q(x) = g(x)f(x) for all x E (m, x] with 

g(x) = À(l - b) - U' (W - x - P + t(x)) 

Let ~o = {x E (m,x] s.t. q(x) > O} with m + E E ~o foré positive 

and small. For all x E ~ 0 , we have µ(x) = l. Consequently g(x) remains 

constant over ~o and we may note g(x) = g for all x in ~o- · 
The fonction q( x) is continuously differentiable over ( m, x] with q(x) = 

-Àb[l - F(m)] < O. Hence g < O. We deduce that ~o = (m, x0 ), with 

m < x0 < x. Let ~ 1 = {x E (m,x] s.t. q(x) < O}. For all x E ~ 1 we 

have µ(x) = 0 and g(x) = U"(W - x - P + t(x)) < O. Hence, q(x) has no 

local minimum in ~ 1 . Furthermore x0 + E E ~ 1 for é small enough (since 

q(x0 ) = g < 0 and q(x0 ) = 0). Using q(x) < 0, we deduce that ~ 1 = (x0 , x]. 
2. Let us find a sufficient condition for m > O. Integrating (40) and using 

(41) gives 

q(m+) = -[1 - F(m)] J(: U'(W - P - x)dF(x) } (
42

) 
+F(m) J!+ U'(W - P - x + t(x))dF(x) 

Furthermore, q(x0 ) = 0 g1ves 

-Àb[l-F(m)] = (x)-q(x0 ) = fx[À(l-b)-U'(W-x-P+x0 -m)]dF(x) 
lxo 

Using (22) and (43) gives 

rx U'(W - X - p + Xo - m)dF(x) 
lxo 
À[b(l - F(m)) + (1 - b)(l - F(x0 )] 

[b(l - F(m)) + (1 - b)(l - F(xo)][fom U'(W - x - P)dF(x) 

+(F(x0 ) - F(m))U'(W - P - m) 

+ rx U'(W - X - p + Xo - m)dF(x)] 
lxo 
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which yields 

Jt U'(W - x - p + Xo-'- m)dF(x) = b(l - F(m)) + (1 - b)(l - F(xo) x 
xo F(x0 ) - b[F(x0 ) - F(m)] 

[Jt U'(W - P - x)dF(x) + (F(xo) - F(m))U'(W - P - m)] 
(44) 

Then using (42) and (44) gives 

q(m+) = [F(xo) - F(m)][F(m)U'(W - P - m) - (1 - b) fom U'(W - P - x)dF(x)] 
F(x0 ) - b[F(x0 ) - F(m)] 

Assume m = 0 ; we would then have 

q(O+) = [F(xo) - f(O)]bf(O)U'(W - P) 
F(x0 ) - b[F(x0 ) - J(O)] 

Furthermore, m:ing (22) and ( 43) yields 

We deduce 

U'(W _ P) = .\[F(xo) - b(F(xo) - J(O))] 
F(xo) 

(
O ) = [F(xo) - J(O)]bf (0),\ 

q + F(xo) 

which contradicts q(O+) 2: .\[c+bt(x)]f(O+) = ,\(c+bx0 )J(O+) if c > bf(O)[l
J(O)]/ J(O+) or if J(.) is nonincreasing over (0, x]. • 
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APPENDIX 2 

This appendix provides sufficient conditions for m = () to be optimal when 

the audit cost may be manipulated by the policyholder and the auditor is 

infinitely risk-averse. Given proposition 4, the optimal insurance contract is 

characterized by P, m ~ 0 and x 0 < x, with 

EU= j~ ~(W - P - x)dF(x) + [F(x0 ) - F(m)]U(W - P - m) 

+ jx U(W - P - m - x + x0 )dF(x) 
xo 

Using (39), the non-negative profit constraint may be written as 

P ~ v + b[l - F(m)](xo - m) + jxo [(1 - b)(x - m)]dF(x) 
m+ 

+(1 - b)[l - F(x0 )](x0 - m) + c[l - F(m)] 

Let À denote the Lagrange multiplier associated with the constraint. Let 

us consider m as a given parameter. The first-order optimality conditions on 

Xo and P are respectively 

x 

j U'(W-P-m-x+x0 )dF(x)->.[(1-F(m))b+(l-F(x0 ))(1-b)] = 0 (45) 

xo 

1: U'(W - P - x)dF(x) + [F(x0 ) - F(m)]U'(W - P - m) 

+ jx U' (W - P - m - x + x0 )dF(x) + À = 0 
xo 

(46) 

Let cI>(m) be the optimal expected utility level, written as a fonction of 

m. The envelope theorem gives 

8m 
Bel> - -[F(x0 ) - F(m)]U'(W - P - m) - jx U'(W - P - m - x + x0 )dF(x) 

xo 
+>.[J(m+)(c + b(x0 - m)) + 1 - F(m)] 
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U sing ( 45) then yields 

&<I> 
&m = [F(xo) - F(m)l[,\(l - b) - U'(W - P- m)] + ,\f(m+)[c + b(x0 - m)] 

At m = 0, ( 46) gives 

,\ = F(x0 )U'(W - P) + /x U'(W - P - x + x0 )dx lxo 

and (45) implies 

U' (W - P)F(x0 ) = ,\[bf(O) + (1 - b)F(x0 )] if m = 0 

we deduce that : 

&<I> / = _, bf(O)[F(xo) - J(O)] 'f(O )( b ) 
&m m=O A F(xo) + A + c + x 0 

&<I> 
and &m lm=O < 0 if 

c f (O)[F(xo) - f (0)] - < ------ - Xo 
b F(xo)f(O+) 

(47) 

where Xo E (0, x) corresponds to the optimal solution when m = O. When 
(47) holds, there exists m E (O,x) such that <I>(m) < <I>(O) for all min 
[O, m]. Furthermore, an argument developed in appendix 1 (after the proof 
of proposition 3) shows that the optimal threshold m belongs to [O, ml, when 
(b, c) E v+ = v n R!, where vis neighbourhood of (0, 0). Hence (47) and 
(b, c) E v+ are suffi.cient conditions for m = 0 to be optimal. 
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APPENDIX 3 

In section 3, we have restricted attention to implementation schemes in 
which the policyholder does not manipulate the audit cost at equilibrium. A 
more general definition of implementation is as follows. 

Let 8 = {t(.), M, P} be an admissible contract and let w(.) : [O, x] ---+ 
R. Consider the three-stage game presented in section 3, characterized by 
T(.) : [O,x] U {cp} ---+Rand R(.) : [O,x] U {cp} ---+ R but where daims are 
audited if x E M' C [O, x]. The set M' may differ from M. Let e(x) E R+, 
x(x) E [O, x], x(x) E [ü, x] U {cp} be strategies played at a perfect equilibrium 
of this game. 

Definition 1 {T(.),R(.)} implements {8,w(.)} with cost manipulation if: 
(i) For all x E [ü, x], t(.c) = T[x(x)], w(x) = R(x(x)) - be(x) if x(x) =I x(x) 
and w(x) = R(x(x)) if x(x) = x(x) 
(ii) x(x) E [O, x] -i.e. x(x) E M' - if x E M and x(x) = cp -i.e. x(x) E (Mf
if XE Mc. 

Thus, if {T(.), R(.)} implements { 8, w(.)}with cost manipulation, then 
the payment from the in::;urer to the policyholder is t(x) and the equilibrium 
net gain of the policyholder is t(x) - e(x). The net p1yment from the insurer 
to the auditor (after deduction of the standard audit cost ca) is w(x) + be(x). 
Furthermore, the daim is audited if and only if x E M. 

Without loss of generality, we assume that, at equilibrium, the daim is 
always accepted by the auditor, i.e. x(x) = x(x) for all x E M 18 . Assume 
that (T(.), R(.)} implements {8,w (.;} with cost manipulation. For simplic
ity's sake, assume that t(.) is increasing over M. Let w(x) _ R(x(x)). We 
have w(x) 2: w(x) for all x and w(x) = R(cp) if x E Mc. Let us show that 
{ 8,w(.)} can be implemented without cost manipulation at equilibrium (and 
thus with a higher net gain both for the policyholder and for the auditor). 

18Manipulating the audit cost (by choosing e > 0) in such a way that nevertheless the 
claim is rejected, is obviously a suboptimal strategy of the policyholder. 
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Given the reaction function of the auditor, a policyholder who suffers a 
. . . . R(x) - R(x) 

loss x has to mcur a mampulat10n cost at least equal to Sup{O, b } 
for the daim x to be accepted by the auditor. 

Let XE M. Then x(x) = x(x) gives 

x(x) E A:gMMax {T(x) - Sup{O, R(x) ~ R(x)}} 
XE I 

Since x(x') E M' for all x' E M, -from (ii) and x(x') = x(x')- we deduce 

ArgMax{T(-( ')) _ -. { R(x) - R(x(x')) }} x E M x x Sup 0, b x'E 

and (i) gives 

ArgMax{ (' ') _ '-"" {O R(x) - w(x') }} .f, M 
X E M f X 0Up 1 b l X E x' E 

We deduce that bt(x) + w(x) is locally constant if w(x) < R(x) and that 
bt(x) +w(x) is locally nonincreasing if w(x) = R(x). These conditions should 
hold for all x E M. Hence bt ( x) + w ( x) is locally nonincreasing over M. 

The proof of lemma 3 shows that in such a case, {t(.), w(.)} can be 
implemented without cost manipulation by {T(.), R(.)} such that T(x) -
t(x), R(x) = w(x) if x E M, T(x) :S T(</J) = t0 , R(x) 2: R(m+) if x E Mc 
and R( </J) = R( </J). Hence, in this model, allowing for cost manipulation at 
equilibrium is a weakly dominated strategy for the insurer. 
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