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RESUME 

On définit, dans un contexte dynamique, les notions de fonctions de 

lien entre deux modèles,d'images, d'ensembles réfléchissants, d'identification 

indirecte, d'information indirecte et d' "englobement". On étudie les 

propriétés de la notion d'englobement en tenant compte du fait que la vraie 

loi n'appartient pas nécessairement à l'un des deux modèles considérés. Dans 

ce cadre, on propose diverses procédures permettant de tester l'hypothèse 

d'englobement. Certaines procédures de tests font appel à des simulations et 

certaines sont reliées à la notion d'estimation indirecte (en particulier les 

procédures GET et GET simulée). On obtient, comme sous-produit, une théorie 

asymptotique des tests non-emboîtés dans le cas dynamique. 
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ABSTRACT 

We define, in a dynamic framework, the notions of binding functions, 

images, reflecting sets, indirect identification, indirect information and 

encompassing. We study the properties of the notion of encompassing when the 

true distribution does not necessarily belong to one of the two competing 

models of interest. In this context we propose various test procedures of the 

encompassing hypothesis. Some of these procedures are based on simulations and 

some of them are linked with the notion of indirect estimation (in particular 

the GET and Simulated GET procedures). As a by-product, we get an asymptotic 

theory of the tests of non-nested hypotheses in the stationary dynamic case. 
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1) INTRODUCTION 

The comparison of different hypotheses, i.e. of competing models, is 

the basis of model specification. This may be performed along two main lines. 

The first one consists in associating with each modela loss function, such as 

the distance between the model and the true distribution, and to retain the 

specification implying the smallest (estimated) loss [see e.g. Akaike (1973)]: 

it is the so-called model choice approach. The second approach is hypothesis 

testing. As for model choice we have to select a decision rule explaining for 

which observations we prefer to retain a given hypothesis and, in the simplest 

case of two hypotheses H1 and H2 , it is equivalent to define the cri tical 

region, i.e. the set of observation for which we reject H1 ; this region is 

submitted to the constraint on the type I error. In practice the competing 

models are often non nested models and,during the last ten years, non-nested 

hypotheses testing theory has been developed along two different lines. On the 

one hand some authors introduced generalized versions of the usual test 

procedures such as Wald test or score test [Gouriéroux-Monfort-Trognon (1983), 

Mizon-Richard (1986)], or linearized version of the Cox likelihood ratio test 

[Davidson-McKinnon (1981)]. On the other hand, Mizon-Richard (1986) proposed a 

modelling strategy based on such tests : the encompassing principle [see e.g 

Mizon (1984), Hendry-Richard (1990), Florens-Hendry-Richard (1987), Hendry 

(1993), Hendry-Mizon (1993), see also Maravall-Mathis (1991)]. A bayesian 

approach of model selection has also been proposed by Phillips-Ploberger 

(1992), Phillips (1992a, 1992b). 

In this paper we study the modelling strategy derived from the 

encompassing principle and i ts links wi th non nested hypotheses testing. In 

section 2, we introduce the models and several notions linking the models : 

binding functions, image of a model in another one, reflecting sets, indirect 

identification and indirect information. We also recall the defini tian of 

encompassing and we take explicitly into account the fact the true 

distribution does not necessarily belong to one of the competing models. In 

this framework, section 3 carefully studies the properties of the encompassing 

notion. In particular properties which are often considered as obvious are 

shown not to be necessarily true : for instance a model including another one 

does not necessarily encompass this model, or if a mode! encompasses another 

model i t does not necessarily encompasses a submodel of this mode!... It is 

also shown that if a mode! encompasses another one, it is possible to simplify 
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the last one without loss of information.Following the spirit of the 

encompassing principle, tests of the encompassing condition should be 

performed without assuming that true p.d.f. necessarily belongs to one of the 

competing models ; such tests are described in section 4. We first show that 

the Cox likelihood ratio test (and its equivalent versions such as the J or 

P-test) cannot be used for such a purpose. It is also seen that extended 

versions of the Wald test and of the score test can be used, but after a 

modification of the variance-covariance matrix used in building the test 

statistic ; following Mizon-Richard (1986), these tests are called the WET 

test (Wald Encompassing Test) and the SET test (Score Encompassing Test).We 

also propose a Simulated Wald test which is more easily implemented than the 

previous ones. Finally, we introduce other tests which are easier to 

compute the GET test (Generalized Encompassing Test) directly based on the 

binding functions, the Simulated GET test and the Linearized Simulated GETtest 

and we show that these approaches are linked with the notion of indirect 

estimation [Gallant-Tauchen (1992), Gouriéroux-Monfort-Renault (1993), Smith 

(1993)]. All these tests are particularized to the case where, one of the two 

models is assumed to be correctly specified and this provides a theory of the 

tests of non-nested hypotheses in the stationary dynamic case. 

2) DEFINITIONS AND NOTATIONS 

2a) The models 

We consider a multivariate stationary process (yt,xt)', where yt is a 

G-dimensional vector and xt is a K-dimensional vector. We first introduce a 

set of minimal conditions conalledcerning the true distribution of the 

observations, the so-called data generation process (DGP). All the notations 

concerning the true distribution are indexed by O. We assume that the true 

conditional probability density function (p.d.f) of (yt,xt)' given Yt-l = 

(yt-l'Yt-z· .. ) and xt-l = (xt-l'xt-z· .. ) (with respect to some measure v) only 

depends on yt-l'" .. ,Yt-q and xt-i·· .. ,xt-q' for some q. This p.d.f. is denoted 

by f
0

(yt,xt/yt-l' xt_1). Moreover, we assume that yt does not cause xt in the 

Granger sense ; in other words we assume that f can be written: 
0 

fo(yt,xt/yt-l'xt-1) = foy(yt/yt-l'xt)fox(xt/xt-1) (2.1) 

where f and f are p. d. f. wi th respect to some measures v and v 
oy OX y X 

respectively. Note that, under the Sims version of Granger non-causality, f oy 
is equal to fo/yt/yt-1 'x)' where X = 

---
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( ... xt+2 ,xt+l'xt,xt-l'xt_2 , ... ), and, therefore, f
0

y defines the conditional 

distribution of the process {yt, tel},given the process {xt,tel}. Therefore 

the constraints on the DGP are essentially non parametric ones non 

causality, strong stationarity ... 

We are now interested in parameterized modelling for f More 
oy 

precisely we consider two models M1 
and M2

, i.e. two families of p.d.f. 

pi 
M. = {g. (yt/yt 1,xt;a.), a. e A. c R } 

1 1 - 1 1 1 
i=l,2 (2.2) 

However, throughout the paper, we do not necessarily assume that f belongs oy 
to M1 or to M2 . For notational convenience gi (y t/y t-l 'xt; ai) i=l, 2 will be 

or even g. (a.) 
1 1 

(because of 

assumption). Both models are assumed to be identified. 

the stationarity 

In summary we have introduced three models : a non parametric one 

associated wi th the DGP, which is assumed to be compatible wi th the true 

distribution, two semi-parametric competing models [M1-M2], which are used to 

approximate the true distribution, and do not necessarily contain it. 

This presentation differs from some previous ones appeared in the 

literature [see e.g. Hendry (1993) or Lu-Mizon (1993)] where the DGP is also 

parameterized. If such a practice has the advantage to develop a theory in a 

completely parameterized framework it is very sensitive to misspecifications 

on the parametric constraints imposed to the DGP. 

2.b) Pseudo-true values and binding functions 

Since f oy is not necessarily assumed to be long to M
1 

(or M2 ) it is 

useful to define the value of the parameter a 1 (or a2 ) providing the p.d.f. of 

M1 (or M
2

) which is the closest, in some sense, to f
0

y. Adopting the Kullback 

Leibler Information Criterion (KLIC) as a proximity criterion, we obtain the 

pseudo-true value a!
0 

of a. defined by 
--- 1 1 

fo/Yt1Yt-1'xt) 
---• Argmin E E Log (2.3) aiO = 

gi(yt/yt-l'xt;ai) 
, 

X 0 
a. 

1 ---

or • = Argmax E E Log g. (yt/yt 1,xt;a.) i=l,2 (2.4) : aiO X O 1 - 1 
a. -- -

1 

where E denotes the expectation with respect to the true conditional 
0 

distribution of the process {y t} given the process {xt} and ~ denotes the 

expectation with respect to the marginal distribution of the process {xt}. 

We also define the proximity between f and M. as : oy 1 
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i=l,2, (2.5) 

Using well-known properties of the KLIC we see that I (f ,M
1

) = 0 
oy 

[resp.I(f
0

y,M2 ) = 0] if, and only if, f
0

y belongs to M
1 

(resp.M
2

). In the same 

spirit, for any a 1 e A1 , we can define the value of a
2

, denoted by b
21 

(a
1

), 

providing the p.d.f. of M
2

, which is the closest to g
1

(a
1

) ; 

and, similarly, 

b12 ca2 ) = Argmax ~ ~
2

Log g
1

(a
1

). 

al 

(2.6) 

(2.7) 

The functions b
21 

(.) and b
12 

(.) will be called binding functions. 

Note that these notions of binding functions only involve the two competing 

models and not the true distribution. 

2.c) Images and reflecting sets 

Once the binding functions have been defined it is possible to give 

the definitions of various subsets of M1 and M2 which will be useful in the 

rest of the paper. 

Defini tion 1 : 

The image of M1 in M
2 

is the subset of M
2 

defined by 

Im(M
1

) = M
21 

= {g
2

[b
21

(a
1
)], a

1 
e A

1
} (2.8) 

Similarly the image of M2 in M1 is the subset of M1 defined by 

Im(M
2

) = M
12 

= {g
1 

[b
12

Ca
2

)], a
2 

e A
2

} (2.9) 

The reflecting sets are the subsets R
12 

and R
21 

of M1 and M
2 

respectively, corresponding to parameters which are pointwise invariant with 

respect to sequential applications of the binding functions b12ob
21 

and 

b
21

ob
12 

respectively, where ois the composition of functions: 

Definition i The reflecting sets are: 

R12 = {gl (al) 

R21 = {g2(a2) 

al= b12°b21 (al)= b12[b21(al)]}, 

a2 = b21°b12(a2) = b21 [b12(a2)]}. 
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As the binding functions, the images and the reflecting sets are 

defined as soon as the models are defined; in particular they do not depend 

on the true unknown distribution. 

As far as the reflecting sets are concerned it is worth noting that 

they may be empty and that they satisfy the following property. 

Proposition J 

Proof: see appendix 1 

Example 2.12: Nested models 

Let us assume that M1 is included, or nested, in M2 . In this case we 

have 

Ml= {g(a1),a1 e A1}, 

M
2 

= {g(a
2

),a
2 

e A
2

}, A
1 

c A
2

. 

It is easily seen that b21 is the identity function and that 

the images and the reflecting sets are all equal to M1. 

Example 2.13: Linear gaussian models 

Madel M1 is the conditional linèar model 

Yt = xital + ult' 
model M

2 
is the conditional linear model 

Yt = x2ta2 + u2t' 

where the processes {u1 t} and {u2t} are gaussian white noises wi th unit 

variance and are independent of Xt = (Xit•Xzt)' · 

It is easily seen that the binding functions are 

b21 (al)= [E(x2x2)]-1E(x2xi)al, 

b
12

Ca
2

) = [E(x1xi)l-1E(x1x2 )a2 . 

The images M
21 

and M
12 

are respectively the subsets of M
2 

and M
1 

associated with the parameters belonging to the images of the matrices 

[E(x
2

x
2

)]-1E(x
2
xi) and [E(x1xi)l-1E(x1x2 ). Also note that, for instance, 

x
2

b
21 

(a
1

) is the orthogonal projection of xi a
1 

( in the L2 space) on the 

subspace spanned by the components of x2 . 

The reflecting sets R12 and R21 are the subsets of M1 and M
2 

associated with the parameters belonging to the kernels of : 
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and Idp
2

-[E(x2
x2)]-1E(x2

xi)[E(x1
xi)l-1E(x

1
x2), 

(where Id denotes the (pxp) idently matrix). 
p 

Therefore R12 is the subset of M1 associated with the a
1 

such that 

aix1 belongs to the intersection of the subspaces of L
2 

spanned by x
1 

and x
2 

and similarly R21 is the subset of M2 associated with the a2 
such that a2x

2 
belongs to the same intersection. 

2.d) Encompassing 

Following Mizon-Richard (1986), Florens-Hendry-Richard (1987) or 

Hendry-Richard (1990) we can say that M
1 

encompasses M
2 

if: 

(2. 14) 

and, symmetrically, M2 encompasses M1 if 

aÎo = b12<a20). (2.15) 

If both (2.14) and (2.15) are satisfied we say that there is mutual 

encompassing. 

We could also say that, if M
1 

is included in M2 
and encompasses M

2
, 

M
1 

parsimoniously encompasses Mz· All these notions depend on the two models, 

but also on the true p. d. f f oy (for a given f ) . In particular M
1 

may 
ox 

encompass M
2 

We denote by 

for some true distributions 

f
0
ys.t. M1 c M2 , 

the fact that M1 encompasses M2 for f
0

. 

f and may not for some other ones. oy 

(2.16) 

2.e) Indirect identification and indirect information 

Models M1 
and M2 

are assumed to be identifiable and, therefore, 

locally identifiable. We also make an assumption implying the local 

identifiability, namely the invertibility of the Fisher information matrices: 

V. 
l 

[aLog 

6 

aa. 
l 

i=l,2 



= V. 
l [ 

1 T 
- I: 
vT t=l 

Blog gi(yt/.:!:.!., ~;ai)] 

aa. 
l 

(2.17) 

(V. stands for the variance-covariance matrix with respect to the distribution 
l 

of the process {xt,yt} derived from f
0
x and gi(yt/yt-l'xt;ai)). 

Another notion of identification will be useful the notion of 

indirect identification. A mode! M1 
is said indirectly identifiable from 

another mode! M2 
if the binding function b21 

is injective. If b
21 

is locally 

injective in a neighbourhood of a 1 , for any a 1 , M1 is said locally indirectly 

identifiable from M2 . 

If M1 is net indirectly identifiable from M2
, some functions a(a

1
) 

may be indirectly identifiable, i.e. such that: 

In particular a subvector a 11 of a 1 = (ai
1
,ai

2
)' is indirectly 

identifiable if: 

Example 2.18 : Linear models with heteroscedasticity 

Mode! M1 
is a conditionally heteroscedastic linear mode! 

yt = xitall + ~cxlt'a12)vlt' 

al= (ai1•ai2)'' 

and model M2 is a conditionally homoscedastic linear model 

yt = x2ta21 + va22 v2t 

a2 = (a21'a22)' ' 

where {v1
t} and {v2t} are white noises with zero mean and unit variance and 

independent of xt = (xit•Xzt)', and where E(x2 x1•) is of full column ranlc. 

It is easily seen that b21 
(a1

) is the vector: 

[

E(x2x2)-1E(xzxi )all l 
E{~2(xl,a12)+[xia11-x2E(x2x2)-lE(x2xi)all]2} 

This shows that, a 11 
is indirectly identifiable from M2 

and that, in 

general, a 12 
is net indirectly identifiable. However, if a 12 

is scalar it can 

also be indirectly identifiable ; i t is obviously the case if ~cx1 t, a 12
) = 

a12· 
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It is also possible to introduce a notion of indirect information on 
M

1 
based on M

2
. 

Defini tian 1 The indirect information on M
1 

based on M
2

, denoted by 
II 12 Ca1 ) is the asymptotic variance-covariance matrix of 
the vector obtained by the projection (in the l

2 
sense) 

T Blog glt (a1) 
of the components of .....!. r the space vf t=l Bal 

on 

by the components of 

1 T 
[ B log g2t [b21(al)]_ E 

B log g2t [b21 (al)]] 

IT t~l B a2 al B a2 

where E denotes the expectation with respect to the conditional distribution al 
of the process {yt} given the process {xt} which corresponds to g

1 (a
1). 

Note that, given the definition of b
21 (a1), we have 

= 0, 
Blog g2t[b21(al)] 

i.e. 
Ba2 

Blog g2t[b21 (a1)] 

is uncondi tionally zero 

mean, but, in general, E -------- *- 0. al Baz 
It explains why it is 

necessary to center the derivatives in the definition of the indirect 
information. This information is obviously smaller than the direct information 
I 

11 
(a

1
). Its expression and i ts link with the notion of 

identifiability are given in the following property. 
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Proposition~ 

= kio Covl [a 
= [I~l(al)]', 

00 

I: 
k=-00 

00 

= I: k =-00 

Cov 
X 

Log g2t[b21 (al)] 

aa2 

a Log g2t[b21(a1)J 

aa2 

a Log g2,t+k[b21 (al)]] 

aa2 

E a Log g2,t+k[b21 (al)]] 

al aa2 

b) If the rank of II 12
ca1) is p1 , M1 is locally indirectly identifiable by 

M2. 

Proof see appendix 1. 

3. PROPERTIES OF TIIE ENCOMPASSING RELATIONSHIP 

To evaluate the relevance of the notion of encompassing, it is useful 

to study the properties of the relationship c. Sorne of them are given and 

discussed below, the proofs are gathered in appendix 2. 

Proposition §. 

If f
0

y belongs to M1, then M1 encompasses any other model M2 . 

Proof 

Since f
0

y belongs to M1 we have aÎo = a 10 and 

= Ar§max ~ 5 Log g2t(a2 ) 
2 

= Ar§max E E Log g2t(a2) 
2 X alO 

= b21 (alO) 

= b21 Caio). D 

3.a) Encompassing and nested models 

Let us first consider the encompassing property for two nested models 
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Proposition I 

Let us assume that M1 c M2 . The following propositions are equivalent 

i) foys.t. Ml c M2; 

ii) f s.t. I [f , M
1

] = I[f ,M2] oy oy oy 

iii)f s.t. * = ex* oy cxlO 20 

iv) f s.t. I[f ,M
1

] = I[f ,Ml, 'v'M, M1 c Mc M2
. 

oy oy oy 

The previous property is easily interpreted in terms of mode! choice. Indeed 

it is possible to introduce an ordering on models, by saying that a mode! Mis 

preferable to another mode! M*, if and only if i t is cl oser to the true 

distribution (I[f ,M] !!: I[f ,M*) and if it has a "lower" dimension (the 
oy oy 

so-called parsimony principle). Proposition 7 says that if M
1 

is nested in M
2 

and encompasses M
2

, M
1 

and M2 are at the same distance of f
0

y and M
1 

is more 

parsimonious. 

Proposition~: 

A larger mode! M2
does not necessarily encompass a smaller one M

1
. 

Proof We have to give a counterexample. 

Let us consider the two static models, corresponding to a 

bidimensional endogenous variable y 

where A2 
is a cone included between two half lines and A1 

is one of these half 

lines. Assuming, for instance, that the true distribution is normal the 

determination of pseudo-true value reduces to orthogonal projections and it is 

clear that b12 Ccx20 ) may be different from cxÎo ; more precisely M2 c M1 if f
0 

belongs to the cone (C). 

Figure 

to be put here 
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Example 3.1 

The previous kind of example can clearly be extended to two 

competing linear models. Let us consider the models 

where the (xlt, x2t) are i. i. d. and u1 t, u2t are zero mean gaussian white 

noises. If the true p.d.f. corresponds to a nonlinear regression function m : 
2 * 

Yt = m(x1t,x2t)+wt, wt- IIN(0,~
0

), it is easily seen that a
10 

is the 

coordinate on x1t of the orthogonal projec;ion (in ;he L2 sense) of m(x1
t,x2

t) 

on the half-line a1
x1t a 1~o; similarly «210 and «220 are the coordinates 

on x1 t, x2t of the orthogonal projection of m(x1 t, x2t) on the cone 

defined by a21
xlt +a22x2t, «21~o, a22~o. Therefore the conclusions of the 

previous example hold. 

The previous proposition is surprising since it is counterintuitive 

and is contrary to what is often said in the literature. Mathematically a 

larger mode! will encompass a smaller one if we can apply a theorem of 

iterated projections. Therefore the intuitive implication is valid for 

gaussian linear models with linear constraints on the parameters. It is this 

example which is often presented in the literature. However the intuitive 

implication is generally invalid in nonlinear models, where the theorem of 

iterated projections does not hold. The counterexamples which have been 

discribed are of this kind. Proposition 9 shows that the usual terminology 

"encompassing" is a bit misleading. 

3.b) Encompassing in the general case 

Proposition 7 can be extended to the case of non-nested models. 

Proposition .2. 

If f
0
s.t. M

1 
c M

2
, then the following equivalent propositions are 

satisfied : 

i) f s.t M21 c M2; oy 

ii) f s.t I[foy'M21] = I[f oy'M2] oy 

iii) f s.t I[foy'M21] = I[f , Ml, VM M
21 

c Mc M2 . 
oy oy 

Moreover we have 

f s.t Ml c M21 oy 

11 



The fact that M1 encompasses M
2 

gives some information on the second 

model. Indeed M21 is at the same distance from f
0

y as M
2 

and is more 

parsimionious. Therefore it is possible to replace model M
2 

by the submodel 

M21 image of M1 , but not to completely forget M2 . In a sense, the study of the 

encompassing property allows for some reduction of the models which have been 

encompassed by some other ones. 

Considered together propositions 9 and 10 gives some insight on how 

to use the notion of encompassing in a modelling strategy. A well speficied 

model has of course to encompass any other model. But if we do not know (or 

assume) a priori that the true distribution belongs to M
1

, the encompassing 

relation is essentially a tool for deriving some reduction of the models which 

have been encompassed. 

3.c) Mutual encompassing 

The previous reduction may be more important in the case of mutual 

encompassing. 

Proposition 10 

If f
0
ys.t M

1 
e M2 and M2 e M1, then we have the following properties 

i) f
0
ys.t. R21 e M2

, 

ii) f
0
ys.t. R12 e M1 , 

iii) f
0
ys.t. R12 e R21 and R21 e R12 

Under mutual encompassing it is possible to replace the initial models M
1 

and 

M
2 

by R
12 

and R21 respectively, which are at the same distance from f
0

y as the 

initial models.The possible reduction is larger than in the one sided 

encompassing case, and it may be seen as a kind of fix point equilibrium. In a 

first step, we can replace M
1 

and M2 by their respective images M12 = Im(M2 ), 

M
21 

= Im(M
1

). But these images also satisfy mutual encompassing, and they may 

be replaced by Im M
21 

= Im(Im M
1

) and Im M12 = Im(Im M2 ), and so on. The 

reflecting sets can be seen as the limits of this sequence of reductions. 

4. TESTING AND ENCOMPASSING 

4.a) The problem 

We consider the models M
1 

and M
2 

defined in section 2 and we want to 

test the null hypothesis H
0 

that M1 encompasses M
2

, i.e. 

{a20 = b21(aÎo)}, (4 .l) 
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without assuming that the true p.d.f. f
0
ybelongs to M

1 
or t12 . This null 

hypothesis will be identified with the set of all the true p.d.f. f 
* * oy 

satisfying the constraint a20 = b21 (a
10

) ; this null hypothesis contains M
1 

but is not identical to M
1

. Therefore we have a classical problem of test 

where the maintained hypothesis His the nonparametric model associated with 

the DGP, and the null hypothesis is the encompassing hypothesis. 

The problem of testing the encompassing hypothesis H is clearly 
0 

linked with the problem of testing the non-nested hypotheses H1 
= {f

0
y e M

1
} 

and H
2 

= {f
0

y e M
2

}, and we shall first examine if some classical tests of 

non-nested hypotheses can be extended to this encompassing context. 

However it is important to note that for a usual non nested 

hypotheses problem, the null and the maintained hypotheses are M
1 

and the 

union M
1 

U M
2 

respecti vely. Therefore the null and maintained hypotheses 

associated with this problem are contained in the nul! and maintained 

hypotheses associated with the encompassing problem. Even if we consider the 

same basis for building the test statistics, we have to be very careful 

concerning their asymptotic distributions, since bath the nul! and the 

alternative differ from the ones initially considered in the literature for 

non nested hypotheses [Gouriéroux-Monfort-Trognon (1983), Mizon-Richard 

(1986)]. 

In this section we assume that we have observed the processes {yt} 

and {xt} at time t = 1, ... ,T. We denote by aiT the pseudo-maximum likelihood 

(P.M.L) estimator of a. defined by: 
1 

a.T = Argmax 
1 a. 

1 

T 
i: Log git (ai), 

t=l 
i=l,2. (4.2) 

It will be also useful to consider three particular cases of the statistical 

framework introduced in 2.a. 

The first particular case is the time series ~ in which there is 

no exogenous variable in this case the p. d. f. f oy' g1 
and g2 reduce to 

al) and g2(yt/yt-l;a2). 

The second particular is the static case in which, conditionally to 

the process {xt}' the components of the process {yt} are independent ; in this 

case the p.d.f. f
0
y,gl and g2 are written f

0
y(yt/xt),g1 (yt/xt;a1 ) and 

8 2 (y t 1xt; a2) · 

i. i. d. 

The third case is the i.i.d. case in which the process {yt,xt}' is 

this case is obtained from the static case by adding the assumptions 

13 



that f
0
y(yt/xt),g1 (yt/xt;a1) and g2 (yt/xt;a2 ) only depend on xt and that the 

process {xt} is i.i.d. 

4.b) Cox approach 

Cox approach [Cox (1961), (1962)] for testing H
1 

against H
2 

is based 

on the following statistic [see also Pesaran-Pesaran (1989) for a simulated 

version of this test] 

1 T A 

5 1T = T r [Log glt(alT)-Log g2t(a2T)] 
t=l 

T 
.!_ r E 
T t=l 

alT 

A 

[Log glt(alT)-Log g2t(a2T)] 

(4.3) 

It is well known that if f
0

y belongs to M
1

, i.e. if H
1 

is satisfied (H
0 

is 

also automatically satisfied), then s1T converges to zero and vf s
1
T converges 

to a normal distribution. However if H is true but f does not belong to M
1

, 
o oy 

s1T converges to: 

~ §[Log gl (aÎo)-Log g2(a20)] 
(4.4) 

- ~ ~Îo[Log gl (aÎo)-Log g2(a20)] 

which is generally different from zero, since the two operators E and E* are 
o a

10 
different. This shows that the usual Cox approach is not appropriate for 

testing the encompassing hypothesis H. Obviously neither the replacement of 
A A 0 

a2T by b21 Ca1T) in the statistic SlT' which is sometimes advocated, nor the 

use of some equivalent procedures as the J or P-tests (Davidson-McKinnon 

(1981)) changes this conclusion. 

4.c) The Wald test 

This test has been proposed by Gourieroux-Monfort-Trognon (1983) and 

is based on the statistic: 

(4.5) 

This statistic originally constructed for testing H
1
={f

0
y e M

1
} 

against H
2 

= {f e M
2

}, obviously converges to zero for any p.d.f. f 
oy oy 

satisfying H
0 

= {f
0
ys.t. a20 = b

21
(aÎ0 )}, even if f

0
y does not belong to M

1
. 

Moreover the following property shows that vf WT is still asymptotically zero 

mean normal under the encompassing hypothesis H. 
0 

14 



Proposition 11: 
Under H

0
, v'T WT converges in distribution to N[O,°wl with: 

where: 

Jll - E E 
[a2Log g1/"'iol] 

= 
ao:1ao:i X 0 

[a2i..og g2t c«zoi l - * 122 = - E E 122 = 122 Co:10)' 
X 0 aa2aa2 

-N (I-P), N * 121 = = 121 Co:10), 12 

a Log glt Caio) 

~12] 1 
T aa' 

~11 
V r 1 

= -as v'T 
21 122 

t=l a Log g2tca.20) 

ao:2 

a Log gtt Co:io l a Log gl,t+k Caio) 
(X) aa' Bo:' 
i: Cov 1 1 

= 
k=-to 

x,o 
a Log g2t(o:20) a Log g2, t+k (a.20) 

aa.2 aa.2 

Proof see appendix 3. 

{

a Log glt(aiol} 
It should be stressed that the processes aal and 

{

a Log g2t(o:20)} 
aa.

2 
are not, in general, martingale differences, (conditionally 

to {xt}) although it is obviously true in the i.i.d. case ; this implies that 

infinite sums ap{pear in the.mat}rices îij' However if f
0

y belongs to M1 we 
a Log gl t (a.10) 

ai0 = a.10 and aa is a condi tional martingale difference. 

~ - -N - N 
implies that J 22

=J22
,I 11

=J 11 , and that I21 and I21 reduce to r21 
with: 

15 
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N 0 [8 Log 82tC«iol aLog &1,t+k C«1ol] 
I21 = r Cov 

k=-oox,o aa2 aal 

p 00 

Cov[
8 Log glt (alO) 8Log 82,t+kC«iol] 

I12 = r 
k=o 

x,o aa
1 aa2 

The last result holds because, for any k>O, 

Cov 
x,o [

a Log a Log gl(yt+k1Yt+k-l'~;a10)] 

aa
1 

= 0 (since the last expectation is zero) 

This implies the following result 

Corollary 12 If f belongs to M1, the asymptotic covariance matrix Q oy w 
reduces to 

If, moreover, we assume that we are in the static case (see section 4a), we 

N have 1
21 

= 

since, for any k * 0, we have the following equality: 

[

a 
E E 
X a

10 

= E[E a 
X a

10 

Log g2(yt/xt;a20) 

aa2 

Log g2(yt/xt;a20) 

aa2 

a Log gl(yt+k1 ~;alO)] 

aa' 
1 

a Log 

aa' 
1 

= O(since the last expectation is zero). 

In this case °w becomes: 

16 



Finally in the i.i.d. case, and if f
0

y still belongs to M1, I22 reduces to 

and °w becomes: 

[

a Log g2 (a20 ) a Log g2 (a20 )] 
I = E E 22 x a

10 
aa

2 
aa2 

-1 -1 -1 
~•• = 122[I22-I211 11 112 1122' 

This formula has already been obtained in Gourieroux-Monfort-Trognon (1983). 

It has also been used in a dynamic framework by Mizon-Richard (1986), but the 

previous discussion shows that, in this case, the correct expression of °w is 

more complicated. 

In any case, proposition 11 has an obvious corollary. 

Corollary 13 : 

If~ is a consistent estimator under H
0 

of a generalized inverse Q+ of 

matrix Qw' the statistic ç~ = TWT~ WT, is asymptotically distribut:d 

under H
0 

as x2 (d), where dis the rank of °w· A test of the encompassing 

hypothesis, with the asymptotic level r, is the test whose critical 

region is: {ç~ ~ Xî_1(d)}. 

Consistent estimators of 1
22

, îij(i = 1,2,j = 1,2) can be obtained by 

replacing the operator E E by an empirical mean and the parameters by the PML 
X 0 

estimators and by truncating the infinite sums [see also the procedure 

suggested by Newey-West (1987)). Consistent estimators of 1
22 

and I21 may be 

derived by simulation techniques. 

This kind of test has been called the WET test [Wald encompassing 

test] by Mizon-Richard (1986), but, it has been used with an asymptotic 

variance-covariance matrix which is only valid if f e M1 and if the mode! is oy 
i.i.d. 

4.d) The score test 

The score test is based on: 

T 
r 

t=l 
(4.6) 

Following Gourieroux-Monfort-Trognon (1983), it can be shown that, under H, 
A 0 

v'T ÀT is asymptotically equivalent to: J 22v'T WT. 
A 

Therefore the asymptotic variance-covariance matrix of v'ÏÀT is 
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- - --1- - - --1-N -1 -
QS = I22-I21Il1I12 + (I21Ill-J22122I211 ll)Ill 

(4.7) 
--1- -1-P --1 

(IllI12-JllI12122J22) 

and a test of asymptotic level 7 is the test whose critical region is 

This test is called the Score Encompassing Test (SET). 

4.e) The simulated WET test 

An important drawback of the WEI test is that the binding function 

b
21 

is often unknown. In fact, when exogenous variables are present, it cannot 

be known since i t depends on the unknown distribution of the exogenous 

process. A possibility could be to follow Gourieroux-Monfort-Trognon ( 1983) 
T 

and to replace b
21 

by the finite sample pseudo-true value b
21 

defined as: 

(4.8) 

T In theory, b
21 

(a
1

) can be computed but, in general, i t does not possess 

aclosed form ; therefore i t is worth considering the situation in which 
T b
21 

(a
1

) is, in turn, replaced by 

1 H h 
H r a2T(al), 

h=l 

h where a
2
T(a

1
) is the PML estimator of a2 obtained by maximizing 

(4.9a) 

(4. 10) 

(h) 
where yt (a

1
), t = 1, ... ,Tisa simulated path of the process {yt} obtained 

by using the observed values of xt, t = 1, ... ,T and the conditional density 

functions g
1 

t (a
1

), t = 1, ... , T. Moreover, the simulated paths are drawn 

independently, conditionally to the xt's, t = 1, ... ,T. 

Another possible approximation of b~1 (a1 ) is 

TH 
a2TH(al) = Arg m&x2 r Log g2[yt(al)/yt-1 (al), xt;a2] 

t=l 
where xt+hT = xt, h = 1, ... ,H-1, t = 1, ... ,T. 

(4.9b) 

These two approximations (4.9) of the binding function are the basis 

of indirect inference estimation methods [Gallant-Tauchen (1992), 

Gouriéroux-Monfort-Renault (1993), Smith (1993)]. 
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1 H h 
The obvious advantage of a2TH(a1), compared to H r a2T(a1

), is that 
h=l 

it necessitates only one maximization ; moreover it will be shown that both 

approximations provide asymptotically equivalent procedures. 

Let us now consider the simulated WET tests based either on 

(4. lla) 

or on: (4.llb) 

Proposition 14 

Under H
0

, v'T WTH and v'T WTH converge in distribution when T goes to infinity 

and His fixed to N(O, °wifl with: 

{ ~ ;22•(tijif22• ï~11;i K12• K211;; ï~2} 

where the matrices 1 11 , 122 , 122 , Ïij' 112 are defined in proposition 11 and 

where 

00 a Log glt (aÎ0 ) a Log g2,t+k(a2ol] - = i<· K12 = r E[E E* 
k=-oo X 0 Ba

1 alO Ba' 21 
2 

00 [ a Log g2t("z0 l a Log !lz,t+k(a2ol]· 
K22 = r E E B E* 

k=-oo x o a
2 

a 10 
Ba' 2 

00 [ a Log g2t(az0 i a Log g2,t+k(a2ol], 
K22 = r E E* E* 

k=-oo X a
10 

Ba
2 alO Ba' 

2 

see appendix 3 

As in the previous section the form °wif may be simplified if the true 

distribution belongs to M1 
and/or if we have no dynamic. 

i) If we adopt the non-nested hypotheses approach, i.e. 

assumed to belong to M1
, we have: 

19 
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= 0, 

and 

In this case ~H becomes 

~ = ~ = 1;~ (~ ï 22 + (1 - ~) K22) 1;~. 
or : (4.12) 

with Î* = 
22 122-K22 

CX) [a Log g2t(a.20) a Log g2t(a.20) 
= ~ Cov - E 

k=-oo x,o acx.2 0 aa.2 

ii) If, moreover, we assume, that we are in the static case 

N _ -. _ * _ [a Log g2t(cx.20) _ a Log g2t(cx.20)] 
I21 - I21 and I22 - I22 - x~o aa.

2 
~ aa.

2 
8 Log g2t(cx.zo) a Log g2t(cx.zo) 

since ------- -E------- is a conditional martingale difference; acx.
2 

o acx.
2 

therefore ~H becomes 

n: = 1;;[(1 + ~)I22-I211;iI12] 1;~. 

When H goes to infinity we find the expression 1;~[I22-I211~iI 12]1;~ already 

obtained in Gouriéroux-Monfort-Trognon (1983) for the asymptotic 

variance-covariance matrix of v'T[;2T-b;1 (;1T)] in the static case. 
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iii) It is also worth noting that, in the time series case and 

~ ~ 

without assuming that f
0

y belongs to M
1

, K
12

, K
22 

and K
22 

are all equal to 

zero since, under H 
0 

a Log g2tCazo) 

aa2 

a Log g2t[b21 Caio)] 

aa2 
= 0 

Corollary 15 In the pure time series case and under the encompassing 

hypothesis 

Therefore in this case, the covariance matrix is just corrected by a term of 

order ~ in the number of replications. In particular if His large, we canuse 

°w itself. 

The test procedure in directly deduced from proposition 14. 

Corollary 16 
A+ 

If °w-H is a consistent 

w A+ 
çTH = TWTH°w-HWTH and 

estimator of~ 

W* -
çTH = TWTifwHWTH 

under H, the statistics 
0 

converge in distribution under 

H, when T goes to infinity and His fixed, to a chi-square whose number of 
0 

degrees of freedom is the rank of °w-H' and a test procedure follows. 

The consistent estimation of matrices I and J appearing in °w-H has 

already been discussed. The estimation of the K matrices is only useful when 

we are not in a pure time series framework. The estimation of K
22 

can be 

based, after truncation of the series, on simulations, 

4.f) The GET test 

The previous Wald and score tests may be difficult to implement for 

various reasons and, in particular, because the variance-covariance matrices 

appearing in the test statistics are, in general, not invertible this 

implies that a generalized inverse must be used and that the rank must be 

estimated. Therefore it is worth looking for simpler tests even if the price 

to pay is to enlarge the implicit null hypothesis. In the previous test the 

null hypothesis H
0

={f
0
ys.t.a20=b21 Cai0)} has an intersection with M

2 
which is 

equal to: {a
2

:a
2 

= b
21

[b
12

Ca2 )]}, that is the reflecting set R21 .The tests 

that are proposed in this section and the following ones have an implicit null 
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hypothesis whose intersection with M
2 

is equal to the image M
21 

of M
1 

on M
2

. 

This implies that, when M1 is indirectly identifiable from M
2

, these tests 

will be effective only if p2 is greater than p
1 

; if M
1 

is not indirectly 

identifiable from M2
, some aspects of M

1
, i.e. some identifiable functions of 

a 1 , may be submitted to an encompassing test. It could also be interesting to 

implement several encompassing tests of M
1 

with different models M
2 

in order 

to evaluate various aspects of M
1

. 

A first possibility is to use a generalized Wald test based on the 

statistic: 

A-1 A 
T Mà~[a2T-b21(al)]'LT [a2T-b21(al)], (4.13) 

where: L = 
-1- -1 

J 22 I 22J 22 is the asymptotic variance-covariance matrix 

A 

of v'f(a
2
T-a20 ) and LT is a consistent estimator of L. Since only the operator 

~ ~ appears in the definition of J22 and I22 , a consistent estimator of these 

matrices is easily obtained by replacing this operator by an empirical mean 

and a20 by a2T. 

When T goes to infinity a
2

T-b
21 

(a
1

) converges to a20-b
21

(a
1

) ; if M
1 

is indirectly identifiable from M2 and if H
0 

is satisfied, the Asymptotic 

Least Squares estimator alT' obtained from the minimizatio~ (4.13), converges 

to the unique solution of a20-b21 (a1) = 0, namely aÎo· and a
2

T could be called 

the indirect estimator of aÎo based on M2 . 

As mentioned above, the implicit null hypothesis of a test based on 

~~ is {f
0
y/3a1:a20 = b21 (a1)} and it contains M21 and H

0
; however a rejection 

of the implicit null is informative since it implies the rejection of H. The 
0 

test procedure is based on the following result which can be derived from the 

general theory of asymptotic least squares (Gourieroux-Monfort (1989)). 
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Proposition 17 

8b21 
If M1 is indirectly identifiable.if the rank of Ba' is p

1
, and if the null 

1 

hypothesis H
0 

is satisfied, the statistic çT is asymptotically distributed as 

2 x (p
2
-p

1
) ; the critical region of the test, with the asymptotic level r, 

is {ç~ ~ xf_
1

Cp
2
-p1

)}. This test is called the Generalized Encompassing Test 

(G.E. T). 

It is clear that under M
1 

and under the assumptions of the previous 

proposition a
1
T converges to the true value a 10 of a 1 ; moreover the asymptotic 

properties of a 1T are then given by the following corollary: 

Corollary 18 

Under M1 
and under the assumptions of proposition 17, the asymptotic distri-

- P --1 N -1 -
bution of vf(a

1
T-a10 )is N[O, (I 12 I22 I 21 ) ],where a 1Tis the indirect estimato 

Proof see appendix 3 

Note that the previous asymptotic variance-covariance matrix is 

greater than the inverse of the indirect information matrix II~~. since the 

difference ï
22

-ï;
2 

is positive. Therefore the previous estimator does not 
-1 

reach the asymptotic "indirect Cramer-Rao" bound II 12 . 

We have seen above that, in some cases, a
1 

is not indirectly 

identifiable but a subvector a 11 of a
1 

= (ai
1
,ai

2
)' is identifiable ; in such 

a situation the previous results remain valid if M1 is replaced by the model 

obtained by giving an arbitrary value to a
12

, which implies in particular that 

p
1 

is replaced by the size of a 11 . 

It is also interesting to note that corollary 18 provides an 

estimator of a
10

, which is less efficient than the M.L. estimator, but which, 

in theory, could be useful if the likelihood function of M
1 

is untractable and 

that of M
2 

is simple. However this estimation procedure, as well as the test 

procedure, necessitates the knowledge of the binding function b
21

(.) and we 

know that it is impossible when exogenous variables are present and difficult 

in the pure time series context. Soit is necessary to treat this problem and 

this will be done by using simulations. Moreover we shall see that this method 
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is asymptotically attractive since the" indirect Cramer-Rao bound" can be 

approached as closely as we like, whereas it is not the case in the previous 

method. 

4.g) The Simulated CET test 

As seen in section 4.e., if exogenous variables are present, it is in 

fact only possible to approximate by simulations the finite sample pseudo-true 

values; so even in the limit case where the number of simulations would be 

infini te, we would not get the statistic ç~ but the statistic obtained by 

replacing b21 (.) by b~1 (.) in ç~. 

As above we denote by a~1 (a
1),h=l, ... ,H the PML estimator of a2 based 

on simulated paths y~h)(a
1

) h = 1, ... ,H. As already mentioned these paths are 

independent conditionally to the xts; moreover it is important to stress that 

when a
1 

varies, 

simulations are 

the drawings of the basic variables which appear in the 

statistic 

with 

kept fixed. The test procedure is based on the following 

-1- -1 1 --1- --1 
= 122 122122+ H 122122122 

+ (1 - ~) 1;~R221;~-1;~K221;~-1;~K221;~ 

(4. 14a) 

and QH is a consistent estimator of QH. 

As already mentioned, in order to obtain such an estimator of QH' 

theoperator E E can be replaced by empirical mean, whereas E E* 
x o x alO 

necessitatessimulations based on glt(alî) ; if a
11 

is not easily computable it 

could be replaced by a first step estimator based on the minimization in 
A-1 

(4.14) where QH is replaced by an arbitrary matrix (for instance the identity 

matrix), since under H
0 

such an estimator converges t~ aÎo· 
For the same reasons as in section 4.e, çTH has an asymptotically 

equivalent form, namely: 

(4. 14b) 

24 



This form necessitates only one maximization of the pseudo­

likelihood function based on M
2 

for each value of a 1 
used in the iterative 

procedure leading to the minimization in a 1
. 

Proposition 19 

s s• 
Under the same assumptions as in proposition 17, çTH and çTH converge 

2 
in distribution, when T goes to infinity and His fixed, to x (p

2
-p

1
) 

S 2 
and the test procedure is based on the critical region {CTH > v (p -p )} .,, - "'1-;r 2 1 . 

Proof : see appendix 3. 

If f belongs to M1, that is in the non-nested hypotheses theory, we 
oy 

have K22 = K22 c7 K~t-say2i ] 22 = J 22_and î~2 = î 22 . This implies that 

equal to (1 + ïï)J2~I 22J 22 , where I22 = I22-K22 ; so, in this case, 

simply equal to (l+H) times the relevant matrix when b~1
(.) is known. 

QH is 

QH is 

In the 

time series case, and for a~y foy' K22 
and K22 

are equal 

1 --1- --1 
to L + H J22I22J22 

to zero and QH 

-1- -1 1 --1- --1 
reduces to J22I22J22 + H J22I22J22' i.e. ; if, moreover, 

f
0

y belongs to M1, QH reduces to (1 + ~)L. 
The previous approach can also be useful for the estimation of a

1
, 

when it is assumed that f
0

y belongs to M1. The estimator ~~T of a 10 obtained 

from the minimization in (4.14) has the following asymptotic properties. 

Corollary 20 

-H 
Under M

1 
and under the assumption of proposition 11, \IT(a1

T-a10 ) converges in 

distribution to N[o, (1 + ft) II~~]. where II 12 is the indirect information 

on M
1 

based on M
2

[see (2.19)]. 

Proof: see appendix 3 
The "indirect 

variance-covariance matrix 

-1 
Cramer-Rao bound" CI I 12

) 

of \IT(~1T-a10 ) that would be 

is the asymptotic 
T 

obtained if b21 
(.) was 

known; therefore the relative efficiency obtained by the estimation based on 

simulations is l+!/H = l~H (50% if H=l,90% if H=9).In the pure time series 

context I22 is replaced by î 22 and the asymptotic variance-covariance matrix 

of fl(~~T-a10 ) is (1+½) II~~= (1 + ½)cii2r;~I~1)-
1 
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( 
1) [a b21 --1 a b21]-

1 

= 1 + H aa;:-122I22122 ~ 

a result which has been first shown by Smith (1990) [see also Gallent-Tauchen 

(1992), Smith (1993), Gouriéroux-Monfort-Renault (1993)). The previous 

estimation method could be particularly useful if the likelihood function of 

M
1 is untractable, whereas that of M

2 is simpler, since we only have to 

simula te model M1. The same remarks as in section 4. f apply when cx
1 is not 

indirectly identifiable. It is also worth noting that the estimation of I
22 

appearing in QH= ( l+i) J;~ï22J;~ necessitates simulations based on glt (alT), 

where a
1 T is some consistent estimator of cx

10 
; such an estimator can be 

obtained in a first step estimation in which Q~1 is replaced by an arbitrary 

positive definite matrix, for instance the identity matrix. 

4.h) The Linearized Simulated GET test 

In some cases it may be interesting to simplify 
s Simulated GET test. A possibility is to replace çTH 

obtained by linearizing the functions cx~T(cx1), or 

the computation the 
S* 

or çTH by a statistic 

cx2TH(cx1 ) around some 

consistent estimator a1T of cxÎo• since the following result can be shown. 

Proposition 21 

If under H
0 

cx1T is a consistent estimator of cxÎo• the statistic: 

s is asymptotically equivalent to çTH under H
0 

can be 

Proof: see appendix 3 

L L* The computation of çTH or çTH reduces to a usual GLS procedure if a 

8bT 
consistent estimator ëi1T is availab~e and if the derivatives acxil (a1T) can be 

evaluated. If the PML estimator cxlT of cxÎo is computable it provides a 

convenient estimator ; otherwise we need a first step estimator based on the 
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A-1 
minimization in (4.14) where QH is replaced by some arbitrary positive 

T 
8b21 

definite matrix. As far as the computation of aa' (a1
T) is concerned it could 

1 
be done numerically ; more precisely the /~ column of this matrix can be 

. 1 - -
approx1mated by ~[a2T5

(a1T+oe.)-a2T5 (a1T)], where eJ. is the vector whose 
J th 

components are equal to O except the j - one which is equal ta 1 and ois a 

small number. The number of simulations S, which is necessary to get a correct 

approximation, may be high but the computation of 

necessitate any iteration; sa the choice between ç~H 
L* 

çTH) is an empirical problem. 

5) CONCLUSION 

L L* 
çTH (or çTH) does not 

S* 
(or çTH) 

L 
and çTH (or 

We have studied various tests in the general dynamic case and without 

assuming that the true p.d.f. belongs ta one of the two models. Moreover, if 

this assumption is made, we obtained a theory of the tests of non-nested 

hypotheses in the general dynamic case. This study naturally led ta simulation 

based methods and to the notion of indirect inference. Clearly this notion 

could be generalized in various directions and its applicability seems 

promising. This will be explored in a future research. 
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Appendix 1 

Proofs of propositions 3 and S 

Proof of proposition 3 

Let us consider a
2 

such that g2 (a2 )eR21 , we have: 

b12 Ca2 ) = b12ob21 ob12 Ca2 ) and b12 Ca2 ) is invariant with respect to b12ob21 . 

we deduce that : 

R12 ~ Im(R21)={gl [b12(a2)], g2(a2) E R21} 

Conversely Im(R
21

)~ R12 since any a 1 such that a 1 = b12ob
21

(a
1

) satisfies 

a
1
=b

12
ca

2
), with a

2
=b21 (a1) verifying b21 ob12 Ca2 )=b21ob12ob21 (a

1
)= a

2
, i.e. 

belonging to R21 . 

Proof of proposition S 

5.a) 

Under M
1

, the asymptotic variance-covariance matrix of 

Cl 

Since the covariances are taken with respect to the distribution of the {xt} 

process and a conditional distribution of the {yt} process based on M1, the 

process 
{

8Log glt (a1 ) } 

aa
1 

is a martingale difference conditionally to {xt}, 

a Log glt (a1) 
---=---- = 0, and this implies aa

1 

[

8Log g1 t (a1 )] 

aa ' 
1 
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with 

Moreover we have: 

Therefore 

8Log g2,t+k[b21 (al)] 

aa
2 

Therefore the indirect information of M
1 

based on M
2 

is 

5.b) 
8b21 (al) 

Let us compute the matrix --=--,-­aa• 
1 
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or 

8Log g2t[b21 (cxl)] 

acx2 

t-1 
k~O glt-k(cxl).go(cxl) 

t+q-1 
II dyt-k = 0, 

k=O 

where g
0

(cx1 ) is the p.d.f. of (y
0

, ... ,Y_q+l). Differentiating with respect to 

cx1 we get : 

2 
g2t[b21 (cxl)] a Log 

E E 
X cx1 acx

2
aa2 

8b21 (cxl) CX) 

+ :E 8a' 
k=O 1 

+ lim E E 
t-¾:l X CXl 

8Log 
E E 
X cx1 

g2t[b21(cxl)] aLog glt,t-k(cxl) 
aa2 

8Log g
0

(cx
1

) 

8a' 
1 

acx' 
1 

= 0 

The last limit is zero under usual mixing assumptions and, therefore 

-1 N 
= 122(cxl) 121(cxl)' 

with 

2 a Log g2t[b21(cxl)] 

N If the rank of rr
12

(cx
1

) is p1 for any cx1 , the same is true for r21 Ccx1 ) and, 
8o21(cxl) 

therefore, for The result follows from the implicit functions 

theorem. 
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Appendix 2 

Properties of the encompassing relationship 

Proof of proposition 7 

If M
1 

c M
2

, we know that b21 is the identity function, therefore the 

encompassing condition i) is equivalent to 

iii). 

ex* = 20 

Moreover we always have I[f ,M1] 2: I[f ,M2 ], and the equality is oy oy 
satisfied if and only if the minimum distance is reached for a point of M1 , 

i.e. if and only if (Xia= (Xzo· 

Finally the equivalence of statement iv) with the other ones cornes 

from the inequality I[f ,M
1

] 2: I[f ,Ml 2: I[f ,M2 ], which implies that oy oy oy 

I[f ,M
1] = I[f ,M] if I[f ,M1] = I[f ,M2 J. oy oy oy oy 

Proof of proposition 9 

If M1 encompasses M2 , we know by definition that cx20 = b
21 

(a:i
0

). 

Therefore the minimal value I [f ,M
2

] is reached for a distribution of M , oy 21 
associated with the parameter b21 (a:•10 ). We deduce that I[f ,M

2
] = I[f ,M ] oy oy 21 

and the other equivalences are consequences of proposition 7. 

The fact that M1 encompasses M
21 

is obvious since the condition for 

encompassing is cx210 = b21 (cxi0 ) [where a:21a is the pseudo-true value for mode! 

M
21

] and it is automatically satisfied since a:210= a:20 . 

Proof of proposition 10 

If M
1 

encompasses M2 and M2 encompasses M1, we have 

a:za = b21Ca:ia) and cxia = b12(cxza) 

We deduce that a:2a = b21 [b12 (a:2a)] (resp a:ia = b12 [b21 (cxia)]) and the 

minimal value I [f ,M2 ] (resp I [f ,M1]) is obtained for a distribution of oy oy 
R

21 
(resp R

12
). The rest of the proof is similar to that of proposition 9. 
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Appendix 3 

Proof of Proposition·11 

i) Asymptotic expansion of WT 

We have the following first order expansions 

a
2

Log g1tC«i0 l]-1 1 T a Log glt(aÎo) 
./f (alT-aÎo) # [- E E aa1aai - :E aa

1 X 0 ,/f t=l 

A 

# [-
a2r..og g2tc«zoi]-1 1 T a Log g2t(a2.0) 

./f(a2T-a20) E E :E 
X 0 aa

2
aa2 ,/f t=l 

aa
2 

where the symbol # means that the difference between both sides strongly 

converges to zero. 

A -1 1 T a Log glt(aÎo) 
./f(alT-aÎo) # Jll - L 

,/f t=l aa
1 

A -1 1 T a Log g2t(a2.0) 
./f(a2T-a20) # J - L 

22 ,/f t=l aa
2 

This implies that the asymptotic variance-covariance of 

is equal to 

As shown in the proof of proposition 6 we also have 

and, therefore: 

,/f WT = ,/f[;2T-b21(;1T)] 

= ,/f{;2T-a20-[b21 (;1T)-b21(aÎo)J} under Ho 

A 8b21(aio) A 

# ./f(a2T-a2.0)- 8a' ./f(alT-aÎo) 
1 
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ii) Explicit expression of the asymptotic covariance matrix of H .................................................................................................................................. _ .................................................................................................................................................................... I 

The asymptotic variance-covariance matrix of v'T WT is: 

Q = [-];;r~l' Id]A[-];;r~l' Id]' 

-1- -1 --1-N -1- -1 
= 1zz 1zz1zz-Jzz121111 11z1zz 

-1- -1-P --1 --1-N -1- -1-P --1 
- 1zz 1z1111 1121zz+Jzz121111 111111 1121zz· 
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Proof of proposition 14 

i) Asymptotic expansion of v'I HrH 
Under H, we have: 

0 

h 
8a2T 

(since, for any h, Ba' (ai
0

) converges 
1 

and 

T a L (h)(. • ) 
--1 1 og 82t a10'a20 

# J22 - r a ( say) 
v'T t=l (X2 

T 
r 

t=l 

a Log glt Caio) 

aal 

ii) Explicit expression of the asymptotic covariance matrix of HrH 
A direct computation provides 
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iii) Asymptotic distribution of HTH 

Let us now consider·vf WÎH· 

A A 

yf WIB = YT[a2T-a2TH(a1T)], 

TH 
with L Log2[yt(al)/yt-l(al);xt;a2] 

t=l -- -

and xt+hT = xt, h=l, ... ,H-1, t = 1, ... ,T 

A 

We have YT[a2TH(a1T)-b21(aÎo)] 

and (since (a20 ) = b
21

(aÎ
0

)) : 

[ 

TH 82Log g2[yt(aÎo)/yt-l(aÎo),xt;a20)]-l 

v'î[a2THCaiol-azo1# - T! L --a--a----,-,-----------
t=l a2 a2 

TH Blog g2[yt(aÎo)]/yt-1 (aÎo),xt;a20] 
1 L 

YÏH t=l aa2 

--1 1 
# 122 

YÏH 

(h) 
Using the notation, g2 t+hT = g2t t=l, ... ,T,h=l, ... H-1, 

' 
T H a L (h) ( * * ) 1 og2t a10'a20 
L H L 

t=l h=l 

Formally we obtain the third term of YT WTH and the two first terms of YT WTH 

and vf WÏH are identical ; moreover the previous expression and the third term 

of vf WTH are asymptotically equivalent since, conditionally to the xts, 
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a Log 
(h) 

a Log g2t+Th a Log 
( t) 

a Log g2s+Tt g2t g2s 
thecovariance between and = = a«2 a«2 a«2 
$ t) converges to zero when T tends to infini ty, for any t and s. 

Proof of Corollary 18 

From Gourieroux-Monfort-Trognon 

variance-covariance matrix of vî(~lî-«10 ) 

a b21 -1 N 
the result follows since W- - 122121 and L = 

1 

Proof of proposition 19 and corollary 20 

Let us denote the estimator of obtained 

minimization of: 
1 H h , A-1 A 1 H h 

[a2T - H t «2T(«1)] QH [a2T- H r a2T(al)]. 
h=l h=l 

The first order condition gives: 

or, 

Denoting by 

we have: 

1 H 
H r 

h=l 

a«2 

from 

(h 

the 

We can derive the asymptotic variance-covariance matrix of U if we note that : 

36 

T 
t 

t=l 

a Log g2t(«zo) 

aa
2 



and 

Using the same techniques as in the proof of proposition 9, we find 

V U as 

+ (1 - ~)1;~R221;~-1;~R221;~-J;~R221;~ 
= QH 

Therefore: 

= u - a b21 [a b21 
Bex.' Bex. 

1 1 

= -1 a b211-1 _a_b_2_1_ QH-112] QH-112u z 
QH ~ Bex. 

1 1 Id 

Since the asymptotic distribution of o;112u is N(O,Id) and since the 

operator applied to Q~112u is an orthogonal projector on a space of dimension 

p2
-p1 

the asymptotic distribution of ç~H is x2 Cp2-p1 ). 

-H The expression of v'f(cx.1T-cx.Î0 ) given above also shows that its 

asymptotic distribution is zero mean normal with a variance-covariance matrix 

equal to 
[

a b21Ccx.iol -1 a b21Ccx.iol]-1 

acx.
1 

QH acx.i 

-P --1 -1--1-N -1 
= (I12122QH 1zzI21) . 

In the particular case where f
0
y belong to M1, QH is equal to 

( 
1) -1- -1 - -P P 1 + H J 22 I22J 22 

and J22 = J 22 , I21 = I21 ; therefore the previous asymptotic 

variance-covariance matrix becomes: 
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Proof of proposition 21 

The first order conditions of 

H h - a T -
A 1 b21 (alT) - • A-1 

M!~[a:2T H r a:2T(a:1T) - aa· (al -alT) l QH 
h=l 1 

H h -
T -

A 1 a b21 (alT) 
[a:2T - H L a:2T(a:1T) - aa· c«1-a:1TJ J 

h=l 1 

are 

-H where a 1T is a notation for the estimator thus obtained. 

Therefore 

-H -H 
This implies that v'f(a:1T-a:Ï0 ) is asymptotically equivalent ta v'f(a:1T-a:Ï0 ). 

Moreover 

H T -
L 

llv'f (;2T-a:20) 
1 v'f h -

a b21 (alT) 
v'fc~~T-alTJ IIA-1 çTH = - - L T[a:2T(a:1T)-a:20)-

H h=l aa· 1 QH 

# Il v'f ( ;2T-(X20) 
1 H h 

a b21C«iol 
v'f (~~ T-a:20) Il -1 - - L v'f[a:2T(aiol-azo 1-

H h=l aa· 1 QH 

# 
s 

çTH 
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