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EQUILIBRIUM YITH PROFIT RATE MAXIMIZING PRODUCERS 

KIRILL BORISOV 

1. INTRODUCTION. 

Usually, in models of economic equilibrium, i t is assumed that 

producers maximize their profit. This derives from the static framework 

of analysis. From a dynamic point of view, it is more natural to suppose 

that producers maximize their profitability. 

In this paper, we consider a model of economic equilibrium wi th 

profit rate maximizing producers (model M
1

). A simple version of this 

model was proposed in BORISOV (1988). 

It should be noted that we consider 

dynamic model. 

stationary equilibria in a 

Technology sets in model M
1 

are cones as in models of MC KENZIE 

(1959, 1981), YANO (1984) and some other authors. However, in our model, 

both a different cri ter ion for producers and other relations between 

producers and consumers are assumed. This changes the properties of 

the equilibrium states. 

On the one hand, model M1 is more in the style of classical than 

neoclassical economic thought. In particular, no intertemporal utili ty 

function is assumed: the trade-off between investments and consumption 

is realized by means of the fractions of profit used for investments. As 

for these fractions, we (implicitly) assume that they are established in 

the process of the competition between producers. 

On the other hand, our model is not classical since rates of profit 

may differ. Moreover, there is a possibility of co-existence of 

inefficient producers with more efficient ones. If an inefficient 
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producer wants to survive in the competition with more efficient 

producers he should increase the fraction of his profit which is used 

for investments. 

Classical economists supposed that, in the long term, profit rates 

are equalized. (It is noteworthy that Leon Walras defined equilibrium by 

the following properties: i) all markets clear, ii) a uniform rate of 

return is established for each enterprise. But later his definition was 

restricted to the first property only.) 

However, if we implicitly assume that there is a security market, 

i t is possible simply to suppose that the equalization of rates of 

return takes place on this market. Indeed, it is natural to think that 

the share values of different firms with absolutely identical sets of 

disposal resources may differ, depending on their technologies 

(identical sets of resources in different firms are not identical). They 

may be, for example, proportional to the following ratio 

sum of dividends / value of the disposal capital. 

In Section 2 we propose sufficient conditions for the existence of 

stationary equilibria. 

Section 3 is devoted to the problem of technological (in)efficiency 

of equilibrium allocations. We show that if at least one active producer 

uses some fraction of profit for dividends, not investing all his 

profit, equilibrium allocations are not technologically efficient. In my 

opinion, it is especially interesting because there are no violations of 

conditions of perfect competition in the statement of the model. From a 

mathematical point of view, this fact is of the same nature as the 

well-known fact of the theory of economic growth which says that in the 

case of discounting the level of utility at the stationary optimal state 
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is less than in the case of no discounting. Moreover, if we considered 

the model with only one consumer, the equilibrium states would coïncide 

with the stationary optimal states of a growth model with discounting. 

In Section 4 we present an example with the Leontief technologies. 

In our model some fraction of profit is used for investments. In general 

position with respect to this fractions, only a small number of 

producers are active in the states of equilibrium (some kind of natural 

oligopoly). This phenomenon is well-known in models with the Leontief 

technologies as the non-substitut ion theorem (see, for example, ARROW 

and HAHN (1971)). Namely, if there is only one primary factor, the 

number of active technologies is small and does not depend on consumers, 

but it is determined only by technologies. In the case of the Leontief 

technologies this fact is also true in model M1 . 

If technologies are not of the Leontief type, equilibrium prices 

and the set of active technologies depend on consumers, but the number 

of active producers does not increase. There is no formal assertion on 

this tapie in the paper, but it could easily be formulated. 

The following question arises: does there exist an equilibrium with 

a large number of active producers? A variant of the positive answer is 

proposed in Section 6. 

In this section we consider a multi-regional version of model M
1 

supposing, for simplicity, that there is only one primary factor - labor 

force - and study the equilibrium existence problem from another point 

of view. Namely, we fix wage rates in regions and equalize labor demand 

and supply in every region, varying the fractions of profit used for 

investments. 

Equilibrium models with profit rate maximizing producers were 

considered usually in the case of no explicit restrictions on primary 
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factors. Such a mode! (mode! M
2

) is proposed in Section S. Equilibria 

which occur in mode! M
1 

are described as equilibria in a special case of 

mode! M
2

. 

Proofs of the assertions of the paper are presented in Section 7. 

We use the following conventional notations. For x,y e IRn 
+' 

i i i 1, ... ,n, X :S y ~ X :S y , = 

where i is the i-th coorinate of X X, 

i < i i 1, ... ,n, X « y ~ X y , = 

and by xy we denote the scalar product of X and y. 

2. MODEL M
1

. 

There are producible goods, primary factors (in 

particular, labor force), a fini te set J of consumers, and a 

fini te set R of producers. 

Producers. Producer r e R is described by his technology set 
n n n 

K e IR 1 
x IR 2 

x IR 1 

r + + + 
and a number ero e l o, 1 l 

profit which is used for investments. Elements of 

(z,h,y), where 
n 

Z E IR l 
+ 

is an input of goods, 
n 

showing the share of 

K r are of the form 
n 

h e !R 
2 

+ 
is an 

input of primary factors, and y E [R 1 
+ 

is an output. 

We suppose that K 
r 

is a convex closed cone such that 

(0,0,y) e K 9 y= 0; 
r 

(z,h,y) e K, 
r 

Given goods prices 

(z,O,y) e K 9 y :S z. 
r 

n 
1 

p e IR 
+ 

and primary factors prices w e 
n 

IR 2 
+ ' 

producer 

problem: 

r e R maximizes his profitability, solving the following 
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maximize 

S. t. 

El_:_ie~_!_~!:l 
pz+ wh 

(z,h,y) e K. 
r 

More precisely, let us consider the following problem: 

maximize py - (pz+ wh), 

S. t. (z,h,y) e Kr' pz + wh = 1. 

Denote by pr(p,w) the value of this problem (the maximal rate 

of profit) . We suppose tha t producer 

the technology activity from 

r chooses his vector of 

~ (p,w) = {(z,h,y) e K I py = (1 + p (p,w))(pz + wh)}. 
r r r 

By a (p,w) we denote the 'maximal rate of growth' of the 
r 

producer under prices (p,w), i.e. 

r-th 

The distribution of profit is defined by numbers e . 2:: o, j e J, 
rJ 

L e . = 1 - e 
0

. Here e . 
rJ 

is the share of consumer j. 
jeJ rJ r 

Consumers. Under given prices 
n 

p e IR 
1 

+ 

consumer j e J salves the following problem: 

S. t. 

The utility function 

maximize U. (x), 
J 

n 
x e IR 

1 
+ ' px :s o .. 

J 

U. 
J 

n 
IR 1 

+ 
---> 

and his incarne 

is supposed 

non-zero, continuous, concave and homogeneous of degree one. 

oj, 

( 2.1 ) 

to be 

Let us describe the formation of the total incarne for consumer j. 
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n 
He has at his disposa! some compact set Lj c IR/ of available 

primary factors. This set can be, for example, of one of the following 

forms: 
n n 

Lj ={le IR+
2 

1 1 ~ lj}' where 1 IR 
2 

j E + 

(if we mean different types of natural resources) or 
n 

2 
L. ={le IR I d.l ~ (3.}, 

J + J J 
where 

(if we mean different types of labor force). 

We suppose that int ( L L.) ~ 0. 

jeJ J 

(3j?; 0 

Given prices of primary factors, consumer j 

the following problem: 

maximize wl., 
J 

s.t. l.eL .. 
J J 

salves 

( 2.2 

The solution to this problem represents his supply of primary factors. 

We assume that there is some rate a > 1 of Harrod-neutral 

technical progress in this model. For simplicity, we present this 

progress in the following equivalent form: if, at some moment, consumer 

j has at his disposa! a set at the next moment he will have 

at his disposa! aL .. 
J 

the set a is the same for all je J. This 

assumption is rather restrictive but as we want to consider the states 

of balanced growth, this assumption is inevitable. 

We could consider the case a = 1, but it would require some 

modification of the assertions or the statement of the model. For 

example, we could suppose that a firm pay dividends in some proportion 

to the value of i ts output. This modification would not change the 

results. 

There are two sources of the total incarne for consumer j: 

payments for his primary factors and dividends. 

Given (z ,h ,y ) E K , 
r r r r 

r e R, j E J, prices 
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n 
p E IR 

1 

+ 
and 

n 
W E IR 

2 
+ • is defined by 

~J- = awl. + L a .(py - pzr - whr). 
J reR rJ r 

( 2.3) 

The first term has a coefficient since we suppose that at every 

moment a consumer receives his dividends for the previous period and his 

payments for primary factors for the following period ( he sells his 

primary factors in advance). 

Definition 2.1. A list P, w, (zr, hr,Yr\eR' (l j) jeJ' (xj) jeJ ) 

is called an equilibrium of model M1 if 

A.1) a (p,w) sa, 
r 

A.2) a (p,w) 
r 

< a 

V r e R; 

+ wh 
r 

= 0, 

A.3) (z ,h ,y ) e 1K (p,w), 
r r r r 

\;/ r e R; 

A. 4) x. is a solution to ( 2. 1 ) , where 
J 

2. 3 ) , \;/ j E J; 

A.5) l. is a solution to 
J 

A.6) a L z + L X. 

reR r jeJ J 

A.7) L h s L lj; 
reR r jeJ 

A.8) p L y > o. 
reR r 

Denote 

s L 
reR 

2. 2 ) , 

yr; 

p = (a-1)/a 
0

, 
r r 

\;/ j E J; 

r e R, 

\;/ r e R; 

i s def ined by 

and formulate one lemma which clarifies the definition and properties of 

equilibra of model M
1

. This lemma says that in Defini tian 2. 1 we may 

replace conditions A.1) - A.4) by the following conditions: 

B. 1) (z ,h ,y ) 
r r r r C n 

reR 
K 

r 
is a solution to the following problem: 
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maximize 1: ( 
pyr 

) ' ------ - pzr 
reR 1 + p 

r ( 

S. t. (z r'hr,yr ) E K r' r e R, w 1: h :s w 1: lj; 
reR r jeJ 

B.2) w 1: 1. = 1: (ï-~~~; - pzr ) ; 
jeJ J reR 

B.3) for all j E J, X. is a solution to ( 2.1 ) ' where 
J 

e .p 
o.= cx.wl. + 1: __ !:.L!:_ 

PYr· 1 + p J 

Lemma 2. 1. A 1 i s t ( p, 

equilibrium iff B.1 - B.3 

J reR r 

w, (zr,hr,Yr\eR' (1 j) jeJ' (xj) jeJ 

and A.5 - A.8 are satisfied. 

We can now formulate the existence theorem. 

Theorem 2.1. Assume that 

2.4 ) 

is an 

C. 1) for every j e J, at least one of the following relations 

is satisfied: 
n 

1. 1. int (L. n IR 2
) '* 0; 

J + 

1. 2. e rj > 0, V r ER; 

C.2) there is cz r'hr,yr ) reR C TT K such that 
reR r 

1: 
yr 

1: 1: h E L L .. ------ » z 
reR 1 + p 

reR 
r' 

reR r jeJ J r 

Then there is an equilibrium in model M1 . 
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3. TECHNOLOGICAL INEFFICIENCY. 

Let us consider the problem of the technological (in)efficiency of 

equilibrium allocations in model M
1 

in the class allocations 

such that 

1. E L ., j E J, 
J J 

(z r'hr,yr ) e K r' r e R, 

E h ;S E lj' 
reR r jeJ 

ex E z + E X. ;S E Yr' 
reR r jeJ J reR 

that is in the class of all attainable stationry allocations. 

It is evident that if 0 = 1 for all 
rO 

r e R, 

allocation is Pareto-optimal. At the same time, if 

any equilibrium 

for some r, 

erO < 1, that is, if some fraction of profit is used for dividends, an 

equilibrium allocation can be technologically inefficient and therefore, 

Pareto-dominated. 

In our model numbers substitutes, in some sense, a discount 

factor. In the case of one producer and one consumer, the equilibrium 

allocations of our model simply coïncide wi th the stationary optimal 

states of the corresponding model of economic growth with the 

discount rate 1/(1 + p ). Respectively, the technological inefficiency 
r 

arising in model M
1 

has the same mathematical nature as the 

technological inefficiency of the stationary optimal states in models 

with discounting. 

Present the technology sets in the following form: 
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n n n 
K {(z,h,y) [R 

1 
[R 

2 
IR 

1 
</> (z,h,y) ~ 0, = E X X 

r + + + r 

i 0, . I 1 hi 0, . I2 i 0, ieI3 }, z = lE , = lE , y = 
r r r 

where are convex continuous functions, I 1 I2 I3 
r' r' r are some 

subsets of the sets of indices, supposing that 

some (z,h,y) e K. 
r 

</> (z,h,y) < 0 
r 

for 

Let us consider an equilibrium 

(xj) jeJ ) of model M2 , 

producers: 

and let R 
a 

p, w, (zr,hr,Yr\eR' (1 j) jeJ' 

be the set of all active 

R = {r e R 1 (z ,h ,y ) '* 0}. 
a r r r 

Theorem 3.1. Suppose that, for all r e R , 
a 

are continuously differentiable at 

for some k
1

, 

(z , h , y ) . 
r r r 

Ak Ak
1 h 1 > 0, V r e R a' and w > 

r 

and, for some i 1, rl and r2' 

A i
1 > 0, 

A i
1 

> 0, 
A i

1 
> 0, 0 p z Yr r r 0 

1 2 2 

Then there are V > 1 and a feasible allocation 

such that 

I: (y - o:z la: 
reR r r 

V L (y 
reR r 

4. AN EXAMPLE: THE LEONTIEF TECHNOLOGY. 

- o:z ) . 
r 

the functions 

Suppose also that, 

0, 

< 1. 

( (z ,h ,y ) R' r r r re 

In this example we suppose that there is only one primary factor, 

namely, labor force (n
2 

= 1), and that each producer produces only one 
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product: 

n 
R=uR(i); 

i=l 

where R(i) is the set of the producers of i-th product. 

Technology cones are defined by 

n n 
Kr= {(z,h,y) e R+

1 
x R+ x R+

1 
1 yi ~ r fi!: R(i), 

i ~ (1 - i) i + F (z), Y µr z r r E R(i)}. 

n +1 
Here F 

r 
R 1 

--~ R 
+ + 

is a non-zero, continuous, concave and 

homogeneous of degree one production function, i [0,1] µr E are 

coefficients of depreciation.As usually in the case of one primary 

factor, in this model the equilibrium prices p are determined by the 

production technology alone (non-substitution theorem). 

Indeed, it follows from A.1) - A.3) that 

Ai 
p F (z ,h) + pB z = (l+p )(pz + wh ), 

r r r r r r r r 
VreR(i), 

and 

where 

Ai 
p F (z,h) + pB z ~ (l+p )(pz+ wh), 

r r r 

n+l 
V (z,h) e R+ , VreR(i), 

n 
B = diag (1-µ

1
, ... ,1-µ 1

), 
r r r 

r e R. 

i = 1, ... ,n, 

Let us define, for r e R, 

* F (p,w) = inf { p((l+p )I - B )z + w(l+p )h 
r r r r 

(z,h) e Rn+l F (z,h) ~ 1 } 
+ ' r 

and, for i = 1, ... ,n, 

11 
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*i * F (p,w) = min F (p,w). 
reR(i) r 

If we are sure that w > 0 and L F (z ,h) > 0, V i = 1, ... ,n, 
reR( i) r · r r 

we can fix w. Then p must be a solution to the following equation: 

* p = IF (p)' 

where the operator f . IRn ---> IRn 
. + + is defined by 

* *1 A *n A 

!F(p) = (F (p,w), ... ,F (p,w). 

Under some conditions p is the unique solution to this equation and 

where 

let 

where 

p = lim pt, 

t = 1, 2, ... , and Po» O. 

We can consider the case of the purely Leontief technology. Namely, 

IRI = n, R(i) = {i}, 

F (z) = min { 
r 

V i = 1, ... , n, B = 0, V r ER, 
r 

min 
i 

i i i -
(z /a), z /1 }, 

r r 

n 
i 

a ~ 0, V i,r = 1, ... ,n; 
r 

" ai L > 0, V r = 
i=l r 

1, ... ,n; 

1 > 0, V r = 1, ... ,n. 
r 

In this case we have 

where A is a n x n 

A = 
r 

matrix consisting of the columns 

1 
a 

r 

n 
a 

r 

r = 1, ... ,n, 

12 
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A= diag (l+p1 , ... ,l+pn)' 

Equilibrium prices defined by 

modification of prices of production. 

4. 1 

S. A Von NEUMANN TYPE MODEL: MODEL M2. 

can be interpreted as a 

In this section, we describe a von Neumann type model M2 wi th 

consumers and show that an equilibrium in model M1 is also an 

equilibrium in a special case of model M
2

. 

This model is, in fact, a von Neumann-Gale type model with 

consumers. The notion of equilibrium in this model can be considered as 

a generalization of the notion of equilibrium in the von Neumann-Gale 

model with no consumers (see, for example, MAKAROV and RUBINOV (1977)). 

This model is very much in the spirit of models considered in MORISHIMA 

(1964) and DANA et al. (1989). 

There are no exogenously restricted primary factors in model M
2

, 

though these factors can be assumed implicitly. The rate of growth is 

endogenous in this model. However, in this case, there is a possibility 

of inequality between the equilibrium rate of growth and the exogenous 

'rate of growth' of the primary factors. 

To solve this problem MORISHIMA (1964) proposed to change some 

parameters of his model, namely, the normative rate of consumption of 

workers. 

In model M
1 

the primary factors are introduced explici tly and we 

show that in this model the definition of equilibrium can be considered 
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as a realization of Morishima's idea in relation to model M
2

. 

There are n producible goods, a finite set J of consumers, 

and a finite set R of producers in this model. There are no primary 

factors in this model. 

Producers. Producer r e R is described by his technology set 

K !Rn !Rn 
r E +X + and a number ero e l o, 1) showing the share of profit 

which is used for investments. Elements of K are of the form (z, y), 
r 

where !Rn is an input and 
n is output. It is supposed Z E y E IR+ an 

+ 

that K is a convex closed cone and 
r 

(0,y) E K ~ y = O· 
r ' 

(z,y) E K r' 0 ~ y ~ y ~ (z, y) E K r 

Given prices n producer maximizes his profit rate p E IR+, r 

solving the following problem: 

maximize s.t. (z,y) E K. 
r 

More precisely, let us consider the following problem: 

maximize py - pz, s.t. (z,y) E K, 
r 

pz = 1, 

and denote by p (p) 
r the value of this problem. We suppose that 

producer 

By 

r chooses his vector of the technology activity from 

1K (p) = 
r 

{(z,y) e K 
r 

1 py = (1 + p (p))pz}. 
r 

(X (p) 
r we denote the 'maximal rate of growth' of r-th firm 

under prices p: 

a (p) = 1 + 0 O p (p). r r r 

The distribution of profit is determined by numbers 

14 

0 . ~ 0, 
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j E J, such that 

consumer j. 

= 1 - [ 
jeJ 

0 .. 
rJ 

Here 0 . 
rJ 

Consumers. Under given prices p and given 

r e R, consumer je J salves the following problem: 

maximize 

where 

oj = [ 
reR 

S. t. !R
n 

X E +' 

8 . (py - pz ) . 
rJ r r 

Px~ o j' 

is the share of 

(z , y ) E K , 
r r r 

( 5. 1 ) 

( 5.2) 

The utility function 
n 

U • : IR ---+ IR+ 
J + 

is supposed to be 

non-zero, continuous, concave and homogeneous of degree one. 

Definition 5.1. A list 

an equilibrium of mode! M
2 

if 

i) Q'. (p) ~ <X, 
r 

V r e R; 

ii) Q'. (p) < Q'. 
r => pzr = pyr = 0, 

iii) (z r'yr ) e!K(p), V r ER; 
r 

iv) X. is a solution to 5. 1 ) , 
J 

v) a L z + L X. ~ L yr; 
reR r jeJ J reR 

vi) PL yr > o. 
reR 

Theorem 5.1. Assume that 

V r ER; 

where oj is 

D.1) there are (z ,y) E K, 
r r r r e R, such that 

D.2) (z ,y) E K, 
r r r 

[ e 
0

Cy -z ) » o; 
reR r r r 

V r ER, L 
reR 

D.3) 0 . > 0, 
rJ 

V r ER, V j E J. 
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Then there is an equilibrium in model M
2

. 

Let us describe the relation between equilibria in models M1 and 

M2 . It appears that an equilibrium in model M1 is also an equilibrium in 

a special case of model M
2

. 

For simplicity, we suppose that, in model M1 , 

and 

where 

J
1 

={je J I Lj * {0}}, J
2 

={je J 1 0 . > 0 for some r e R}. 
rJ 

Let us consider an equilibrium 

(1 j) jeJ ) of model M
2 

and construct a special case M2 of model M2 with 

n = n
1 

+ n
2 

producible goods, the set of consumers and the set 

of producers 

What were primary factors in M1 become producible goods in M2 . We 

simply suppose that we can change primary factors for utilities of 

ex-consumers Every ex-consumer becomes, in some 

sense, a producer and his utility function plays the role of a 

production function. 

For 

Let us describe model M
2 

using tildes for marking its elements. 

Producers. For r e R, is defined by 

n n n n 
K = {(z,h,y,O) e IR 1 x IR 2 x IR 1 x IR 2 

1 (z,h,y) e K }. 
r + + + + r 

r=jeJ1 , is defined by 

n n n n 
K = {( 0 0 ) IR 1 x IR 2 x IR 1 x IR 2 

1 g e a r Z, , ,g E + + + + 

Consumers. Consumer 

U (z) 
r -------A 

U (x) 
r r 

L }. 
r 

His utility function u. 
J 

IRn ---> IR 
+ + 

is the same as he was in model M1 . 

is given by 

16 



u.cx.~) == u.cx), 
j j 

where 

Asto numbers e ., 
rJ 

for r e R and je J
2

, they are the same 

as they were in M1 , and ero::: 1 for 

Proposition 5.1. The set 

(x.) . J ) , 
j JE 2 

g ::: 0 
r ' 

where 

is an equilibrium of mode! M
2

. 

h ::: 0, 
r 

6. A MULTI-REGIONAL VERSION OF MODEL M1. 

In this section we consider a version M1 of mode! M1 which gives us 

the opportunity to look at the equilibrium existence problem from 

another point of view. 

For simplicity, we suppose that there is only one primary factor, 

namely, labor force. In other words, and 

1 ~ l.}, 
j 

where 1. 2:: 0 
j 

is the labor force of consumer j. 

Let us suppose that our economy is multi-regional, and denote the 

set of regions by M, partitioning the sets of producers and consumers: 

R ==UR R n R ::: 0, if ml * m . m' m m 2' meM 1 2 

J ::: u J J m n Jm ::: 0, if ml * m2. m' 
meM 1 2 

Definition 6.1. A list p, (w ) M' (z ,h ,y ) R' (xJ.)J.eJ m me r r r re 

is called an equilibrium of model if 

17 



E.1) 

E.2) 

E.3) 

E.4) 

where rj 

E.5) 

E.6) 

E.7) 

a (p,w ) !:: a, V r E R m' V m E M· . r m 

a (p,w) < a =} pyr = pz + ph 
r m r 

(z r'hr,yr ) E 1K (p,w ), V r E r m 

for all j E J m' m E M, X. 
J 

is given by 

rj = O'.W 1. + L L 0 . (py 
m J rJ r meM reR m 

a L z + L x. !:: L yr; 
reR r jeJ J reR 

L 
reR 

m 

h = L I .. 
r jeJ J 

m 

PL 
reR 

y > o. 
r 

V me M; 

R 

= 0, V r E R 
r 

m' V me M; 

is a solution 

- pzr - w h ) · m r ' 

m' V me M; 

to ( 2.1 ) . 

In this defini tian, E. 6) means that labor demand and supply are 

equalized in every region. 

Formally, this definition can be easily reduced to Definition 1.1 

and, under some conditions, it is possible to prove that in this model 

an equilibrium exists. 

In the framework of this model we can fix wage rates in different 

regions and the proportions between numbers 0 . 
rJ 

for all r e R, 

and equalize labor supply and demand by means of varying numbers ero· 

Since we suppose that p e P, where 

n 
P = {p E IR 

1 

+ 

n 
1 . 

L P1 = 1 >, 
i=l 

the fixation of wage rates provides some minimal level of utility per 

one unit of labor force. 

More explicitely, let us fix w > 0, 
m 

m e M. 

numbers V • E [0,1), 
rJ 

j E J, r e R, such that L 
jeJ 

18 

Let us also fix 

V . 
rJ 

= 1, r e R. 



Given these numbers determine 

e . = (1 - e 
0

)v ., 
rJ r rJ 

Theorem 6.1. Assume that 

all 

je J, 

e . 
rJ 

by 

r e R. ( 6. 1 ) 

F.1) there is C > 0 such that, for any p e P, we can find 

(z ,h ,y) en 
r r r reR 

m 

K 
r 

such that 

E 
reR 

m 

+ c, E 
reR 

m 

h < E î' .; 
r jeJ J 

m 

F.2) for every je J, me M, at least one of the following 
m 

properties is true: 

2.1 l.>O; 
J 

2.2 there is 

Then there are ero > o, 

such that 

V . > 0, 
rJ 

r e R such that, for 

( 6.1 ), there is an equilibrium 

such that 

V me M. 

6. PROOFS. 

Proof of lemma 2.1. First,it should be noted that 

A. 1 

A.2 

19 

V r e R; 

= pz + wh = 0, 
r r 

defined by 

V r e R); 



A.3 ~ 0 = pyr - (1 + p (p,w))(pz + wh) ~ 
r r r 

A A ,.._ A 

~ py - (1 + p (p,w))(pz + wh), 
r 

V (z,h,y) e K, 
r 

V r e R. 

Therefore, A.1 - A.3 are equivalent to the following inequalities: 

0 = 1: 
reR 

~ 1: 
reR 

( 
pyr 

(pz + ~hr)) ------ -
1 + p r 

r 

( 
pyr 

(pz + ~hr)), ------ -
1 + p r 

r 

V (z ,h ,y) E TI Kr. 
r r r reR 

( 7.1 ) 

Let 

Show that 

be an equilibrium. 

I wh 
reR r = I 

jeJ 

Since the utility functions are monotone, 

wl .. 
J 

px.= awl. + L e .(py - pzr - wh ), 
J J reR rJ r r 

( 7.2) 

V j E J. 

Summing and recalling that I 
jeJ 

0 . 
rJ = 1 - erO' V r e R, we obtain 

1: 
jeJ 

px. 
J 

By A. 1), 

Therefore, by A.6), 

= (a - l)(pz + wh ), 
r r 

20 

V r e R. 



I: 
reR 

That is 

pyr -

IX L 
jeJ 

0 :S I: pyr - ( I: px. + IX I: pz ) = 
reR jeJ J reR r 

IX L wl. I: (1 0 0) (py - pzr - wh ) 
J r r r 

jeJ reR 

I: pyr - IX I: wl. - I: (pyr - pzr - wh) 
reR jeJ J reR 

r 

wl. 
J 

L 
reR 

(a - 1) (pz 
r 

+ wh )- a L pz = 
r reR r 

:S IX I: 
reR 

- a L wl. + a L wh 
· J J reR r JE 

wh 
r 

On the other hand, by A.7), IX L 
jeJ 

wl. 
J 

?; a I: 
reR 

wh 
r 

is true. This means, in particular, that B.2) holds. 

We have 

I: wh r reR 
= I: 

reR 

IX L pz = r 
reR 

+ 

Thus, ( 7. 2 ) 

I: wh r 
(z ,h ,y ) e K , 

r r r r 'v r ER. 
reR 

By ( 7.2 ) these relations mean that 

2.4 ), that is, B.1) also holds. 

(zr' hr'yr)reR 

Taking into account A.1), we note that, for all 

That is 

21 

1 + p 
r 

is a solution to 

r e R, 



awl. + I: e . (py 
J reR rJ r 

e .p 
awl. + L -1-~J-~_ pyr, 

J reR + Pr 

This means that B.3) holds tao. 

pz - wh) = 
r r 

't/ j E J. 

Let now P, w, (zr,hr,Yr\eR' (lj)jeJ' (x}jeJ) 

B.l) - B.3) and A.5) - A.8). 

( 7.3) 

satisfies 

Since (zr,hr,yr)reR is a solution ta 2. 4 ) , by the 

Kuhn-Tucker theorem (see, for example, Rockafellar(1970), Corollary 28.3), 

there exists À :::: 0 such that 

I: 
reR 

( ------1 + p 
r 

- ~zr) - À L 
reR 

wh, 
r 

V (z ,h ,y) e K, r r r r 'v r e R. 

If the value of ( 2.4 ) is strictly positive, then 

by B. 2), À = 1. 

If the value of ( 2.4 ) is equal ta zero, then w I: 
jeJ 

assumed tha t int ( L L. ) *- 0. 

jeJ J 
At the same time 

solution of ( 2.2 ). Therefore w = O. 

À > 0 and 

1. = o. We 
J 

1. is a 
J 

In any case 7. 1 holds. Therefore, A. 1) - A. 3) are 

satisfied. It remains ta note that ( 7.3) is also true. This means that 

A.4) also holds.o 

Before proving Theorem 2.1 we prove 

22 



nl 
Lemma 7.1. The set { y e ~+ 1 there exists (z ,h ,y ) e K , 

r r r r 

r e R, such that L hr e L Lj, 
reR jeJ 

Y = L y ~ a L z > 
reR r reR r 

is bounded. 

Proof. Let us suppose that this is not true. Then there exists a 

sequence 
(X) 

((z (k),h (k),y (k)) R)k l r r r re = 
of elements of n Kr such that, 

reR 

for all k = 1,2, ... , 

L h (k) e L L., 
reR r jeJ J 

L y Ckl ~ a L z Ckl, 
reR r reR r 

t\(k) = Il L yr(k) Il ---+ CXI. 

reR k-+CXJ 

We have 

(z (k)/t\(k),h (k)/t\(k),y (k)/t\(k)) e K, 
r r r r 

'v r e R, 'vk=l,2, ... , 

L y Ckl/t\Ckl ~ a L z Ckl/t\Ckl, 
reR r reR r 

'vk=l,2, ... , 

h (k)/t\(k) ---+ 0 r ' 
k-+CXJ 

'v r e R. 

Moreover, there is a subsequence such that, for all 

r e R, 

(z (k.)/t\(k.)).CXJ
1 

and 
r 1 1 1= 

(y (k.)/t\(k. )).(X)l 
r 1 1 1= 

converge. Denote 

z = lim z ( k . ) /À ( k. ) , Yr = lim yr (k. )/i\(k. ). 
r 1 1 r i -+(X) i -+(X) 1 

Thus, we have Il L yr Il = 1 and 
reR 

cz r,O,yr) e K , 'v r e R, L yr ~ r 
reR 

contradicting to the following assumption about K: 
r 

(z,O,y) e K, 
r 

9 y~ Z. D 

l 

a L z r' 
reR 

Proof of Theorem 2.1. To prove this theorem we use the well-known 
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idea (see, for example, AUBIN (1979)) of reducing our model to a 

constrained non-cooperative game. 

Let be a closed ball such that 

(z ,h ,y ) C n K ' L h EL L., L y 2:: a L z 
r r r reR r reR r jeJ J reR r reR r 

(This ball exists by Lemma 7.1.) 

Denote 

v. = min erJ·Pr' je J, 
J r 

n n 
(1, ... ,1) 

1 
(1, ... '1) E IR 

2 

el = E IR ' e = 2 

and take À> 0, À. > 0, 
J 

1 E 

E 
reR 

j E J, 

L L. 
jeJ J 

( --~!: __ 
1 + p 

r 

{3 

=} 

> 0 such that 

1 « Àez, 

We can now describe the required game. There are 

players in this game. 

2111 + 3 

The first player is responsible for goods prices p. He salves the 

following problem: 

maximize p( a E z + LX. - E Y ) ' S. t. p E P, 
reR r jeJ J reR r 

n 
where p = {p E IR 1 

1 pel = 1}. 
+ 

n 
The second player establishes relative prices q E IR 2 of 

+ 

primary factors. His problem is as follows: 

24 



where 

maximize 

n 

qC L 
reR 

h - L r jeJ 

Q = {q E R+
2 

1 qe2 = 1}. 

1. ) ' 
J 

S. t. q E Q, 

The third player is connected with producers. Under given p, q, 

1., je J, his problem is as follows: 
J 

where 

maximize L 
reR 

q L h 
reR r 

n 

~ q L 1., 
jeJ J 

r e R, 

B
2 

= { h ER 
2 

1 -Àe2 
~ h ~ Àe

2
}. 

( 7.4) 

Every consumer is represented by two players. The first one salves 

problem ( 2.2 ). 

Here 

where 

The second salves the following problem: 

maximize U. (x.) 
J J 

S. t. 
n 

1 
x j E R + n Bl, 

px. ~ r .. 
J J 

rj = a/ p, q, (zr,hr,Yr\eR' (lj) jeJ is given by 

1 2 3 
rj = max { rj + rj' rj } > o, 

2 
o. = ex.À .(3/À, 

J J 

25 
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1 + p 
r 

) 
e .p 

- pzr + L --~J-~- PYr· 
reR 1 + Pr 

It is noteworthy that by C.1, 

correspondence 

o. > 0, 
J 

'v j E J. Therefore the 

n 
( p, q, (zr,hr,yr)reR' (lj) jeJ ) ---+ { xj e IR/ n Bl I pxj ~ oj } 

is continuous. 

A 

There is a Nash equilibrium in this game p, q, (zr,hr,yr)reR' 

(lj)jeJ' (xj) jeJ ) (see, for example, AUBIN (1979), Section 9.3.2). All 

we need to prove the theorem is to show that the list ( p, W, 

~ = ( 

is an equilibrium of our model. 

Since 1. 
J 

choice of À., 
J 

is, for all 

E 

j E J, 

> L 
jeJ 

q}j 
jeJ 

At the same time, 

under p = p, w = w, 

since (z r'hr,yr 

1. = 1.' j E 
J J 

L 
reR 

( ------1 + p 
r 

Hence, for every j E J, 

ql. 

( 
pyr 

a 
____ ,l__ 

L ------ - pz AA 1 + p 
E qlk reR r r 

keJ 

26 

) 

) 

a solution to ( 2.2 ), by the 

À .. 
J 

reR 

J, 

2: a 

is a solution to ( 7.4) 

by the choice of ~. 

-~j~~~- 2 
~ = 0 j' Àqe

2 



L 
reR 

V. L ( 
J reR 1 + p 

r 

-------- ~ 
1 + p 

r 

These inequalities yield that, for all 

to ( 7.5 ), where 

j E J, is a solution 

ql. 

( 
pyr ) 

0 .p 

oj = oj = ex 
____ J ___ 

L ------ - pz + L __ !:J_!: _ 

and 

PL 
jeJ 

We have 

AA 

L qlk reR 
keJ 

x.:S Lo· 
J jeJ J 

= L 
reR 

1 + p r 

Hence, 

ex ------
1 + p r 

( 1-0 O )p 
r r 

+ ---------1 + p 
r 

r 

= 1 

and, therefore, 

p L x. + exp L 
jeJ J reR 

z :$ P L 
r reR 

reR 

y . 
r 

1 + Pr 

Remind that p is a solution to the following problem: 

maximize pC L 
jeJ 

x. + ex L 
J reR 

s.t, p E P. 

z - L yr l, 
r reR 

Thus, ( 7.6 ) yields the following inequality: 

A 

L x. + ex L z :S L y. 
jeJ J reR r reR r 

This inequality means, in particular, that 

"If r ER, 

and 

"1/ j E J. 

27 

pyr, 

( 7.6) 



Hence, the constraints 

r e R, 

and 

in problems 7.4) and ( 7.5 ), respectively, are not essential. 

It remains ta refer ta Lemma 2.1. o 

Proof of Theorem 3.1. We know that, for 

is a solution ta the following problem: 

S. t. (z 

i z = 0, 
r 

maximize 

n 
r'hr,yr ) E !R 

+ 

i E 

Therefore, for some i\ > 0, 
r 

8</> 

pyr 
------- - pz -

1 + p r r 

n n 
1 

!R 
2 

!R 
1 

X X 
+ ' + 

i E I2 
r' 

~ 

wh r' 

</>r (z r'hr,Yr ) 

i y = 0, i E 

A i
1 p 

::5 

A A 

(z ,h ,y ) 
r r r 

0, 

--~~( ) z ,h ,yr i\ 
r r r 

_Ï_+_p __ 
' 

ay i 2 2 2 2 r 

Remind that 

~ 

r ,hr ,yr 
1 1 

r ,hr ,yr 
2 2 

a < 1 + Pr ' 
2 

take 

28 

- i\ r 
1 

and 

2 

such that 



and define vectors 
n 

b.e!R1 and by 

b. i 
i 

0, i i 1' b. 
1 1, = * = 

b.k 
k 

o1. 0, k kl' b.1 
1 = * = 1 

b.k 
k 

02. 0, k * kl' b.2 
1 

= = 2 

We have 

grad ~r ( ~r ,hr ,Yr ) x ( b./a, -D.1 , 0) < 0, 
1 1 1 1 

Therefore, for some µ > 0 and for 

we derive 

Moreover, 

and 

Thus, 

z = z + µb./a, 
r r 

1 1 

z = z h 
r r r 

2 2 2 

(~ ~r ,h 
r r 

what is important, 

-

= h 

~ 

h = h 
r r 

1 1 

+ µb.2, r 
2 

,yr ) < 0, 

-z + z 
r 

1 
r 

2 

r 

yr = yr 
2 

= rl,r2. 

+ y 
r 

2 

+ 
2 

fi + fi :s h + h 
r r r r 

1 2 1 2 

( 
Ak Ak 

) ( 
k k 

) h 1 h 1 h 1 
~ 1 

> o. (ï = + - + h 
r r r r 

1 2 1 2 

µb., 

if we define h for r E R ' r -:t: r
1
,r

2
, 

r a 
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we shall derive 

It remains 

we have 

~k Ak 
h = h ' r r 

~ cz ,h ,y)< o, 
r r r r 

L - a L z = L 

v' r E R , 
a 

- a L z 
reR 

yr 
reR r reR 

yr 
reR 

r' 
a 

ta note 

Z = ÀZ , 
r r 

a 

L h :s r 
reR r reR 

a 

that, for some 

h = h ' r r 

~ (z ,h ,y) :s 0, 
r r r r 

a a 

a 

À 

h r 

> 1 and for 

r e R , 
a 

v' r e R . o 
a 

Proof of Theorem 5.1 is similar to the proof of Theorem 2.1.o 

Proof of Proposition 5.1. It follows from the definitions. 

Proof of Theorem 6.1. As in Theorem 2.1, we construct a 

non-cooperative game. 

It follows from F.1) that, for every 

such that, for any p e P, there is 

that 
-

p( 

0 

L 
m ------------ yr - z - r reR a - 1 + 0 

m m 

L h < L 
reR r jeJ 

m m 

Denote 

-
ë ) ' 0 = V . ( 1 r E R rj rJ m m' 

m - 1) // -
µj = min 0 • ( (X 0 

reR rJ / m' 
m 

30 

me M, we can find 

) L > w 
m jeJ 

m 

1.. 
J 

m E M, j 

m E M, j 

E n 
reR 

m 

1.' J 

E J, 

E J 

K 
r 

-
0 < 1 

m 

such 



(note that 
m 

maxµ.> 0, 
meM J 

V j E J). 

We can now describe the mentioned game. 

The first player is responsible for goods prices 

the same as in the proof of Theorem 2.1. 

p E P. He is 

Two players are connected with every m e M. The first of them 

solves (uder given p and e e [0,1]) the following problem: 
m 

where 

maximize I: 
reR 

m 

s.t. 

e 
( 

______ !!! ____ _ 
ex. - 1 + e 

m 
pyr - pzr ). 

I: 
reR 

m 

h r I: I., 
jeJ J 

m 

(z ,h ,y) e K ~ B1 x [0,Lm+c] x B1 , 
r r r r 

r e R , 
m 

is the same as in the proof of Theorem 2.1, L = L 1 .. 
m jeJ J 

m 

The second player is responsible for e 
m 

His problem is as follows: 

maximize em [ ~m L 1. - P ( 
jeJ J r~R 

Every consumer 

problem 

given by 

Here, for 

( 7.5 ) 

j E J ' 
m 

m m 

s.t. e e [0,1]. 
m 

j E J is represented by a player. 

where 

1 2 
oj = max { oj + oj' 

1 
1.' oj = cx.w m J 

2 
I: m - I: oj = µj w 

meM 
m keJ 

31 

m 

3 
oj }. 

lk, 

He solves 

is 



3 o = a 
j 

l. ____ ,l __ _ 

E lk 
keJ 

m 

E 
reR 

m 

Note that oj > o, V j e J , 
m 

( p, (z ,h ,y ) R' (0 ) M r r r re m me 

is continuous. 

e . (a - 1) 

) 
+ ~ --~J _______ PY · 

L e + a - 1 r reR rO 

V me M. Therefore the correspondences 

n 
--~ { xj e R+

1 n B1 1 pxj ~ oj} 

There is a Nash equilibrium in this game ( p, (zr,hr,yr)reR, 
m 

(x.) . J 
J JE 

(see, for example, AUBIN (1979), Section 

9.3.2), and all we need is to show that, under 

8 ro = 8 m' r e R , 
m 

m E M, 

the set p, (~) M' (z ,h ,y) R' (x.). 1 ) m me r r r re J JE 
is an equilibrium of 

our model. 

Let us show that, for all 

w E m 
jeJ 

m 

me M, 

e 
m 

a - 1 + 0 
m 

pyr - pzr )· ( 7.7) 

Indeed, if the right-hand-side were bigger than the left-hand-side, 

we would have e = O 
m 

(see the problem of the player who establish 

0 ), which is impossible. If the left-hand-side were bigger than the m 

right-hand-side, we would have 0 = 1, which is impossible too. Note 
m 

that 
-e < e , m m 

Denote 

1. a ____ ,l_ __ 

1. 

I: 
keJ 

m 

a ____ ,l_ __ 
I: 

I: 1k 
keJ 

m 

reR 
m 

V me M. 

I: 
reR 

m 

1)/erO' 

( --------
1 + p 

r 

r e R, 

32 

and prove that, for j E J , 
m 

) + I: 
reR 

-~~j-~~- = 1 + p pyr 
r 

e . (a - 1) I: __ rJ_______ ~ 

erü + a - 1 pyr reR 



First, note that ( 7.7 

Let us 

We have, for 

Therefore, 

1. 
0:: 

____ J ___ 

L 
keJ m 

show that 

r e R , 
m 

lk 
L 

reR m 

1 2 
2:: oj + oj· 

yields 

( 
pyr 

--------
1 + p 

r 
- pz 

2 r .. 
J 

) = r 

2:: e . (o:: - 1)/8 
rJ m 

1 r .. 
J 

m 
= µ .. 

J 

-------- 2:: 
1 + p 

r 

L 
reR 

m 

( -------- -1 + p 
r 

pz 
r ) = 

m -L µJ. w E 
meM m keJ 

m 

( 7.8 ) 

( 7.9) 

Adding up ( 7. 8 

inequality. 

and ( 7. 9 ) we derive the required 

We can now repeat the argument used in the proof of Theorem 2.1. a 
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