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ABSTRACT : The assumption of individual "rationality" is widely used in 
economics. The lecture reviews recent studies challenging two aspects of 

this assumption. The first issue concerns the well known fact that 
aggregation over optimizing households yields almost anything at the 
macroeconomic level. By contrast heterogenei ty of individual 
characteristics alone (i.e. with only few individual rationality 
requirements) may generate strong macroeconomic regularities, with striking 
consequences for the prevalence in the aggregate of the weak axiom of 

revealed preference, of gross substi tutabil ity, and for uniqueness and 
stability of the Walrasian exchange equilibrium. In a partial equilibrium 
context, demand heterogenei ty genera tes concave revenue functions and a 
unique Cournot oligopoly equilibrium. The second part of the lecture 
questions the "rational expectations" hypothesis that is widely used in 
dynamical economic models. Taking into account learning often makes 

"rational expectations" locally unstable, especially in markets where 
expectations matter significantly. 
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AGGREGATION, APPRENTISSAGE ET RATIONALITE 

RESUME : L'hypothèse de "rationalité" individuelle joue un rôle important 
dans l'analyse économique. Cet te étude passe en revue quelques travaux 
récents remet tant en cause deux aspects de cet te hypothèse. Le premier 

problème concerne le fait bien connu que l'hypothèse suivant laquelle les 
ménages maximisent une fonction d'utilité n'engendre, par agrégation, que 
peu de restrictions macroéconomiques. Par contraste, l'hétérogénéité des 
caractéristiques individuelles seule (i.e. avec très peu d'hypothèses sur 

la "rationalité" individuelle) peut engendrer de fortes régularités 
macroéconomiques, avec des implications remarquables concernant la 
validité, au niveau agrégé, de l'axiome faible de la préférence révélée, de 

la substituabilité brute, sur l'unicité et la stabilité de l'équilibre 
Walrasien des échanges. Dans un contexte d'équilibre partiel, 
l'hétérogénéité de la demande conduit à des fonctions de revenu concaves et 

à l'unicité de l'équilibre d'oligopole de Cournot. La seconde partie de la 
conférence est consacrée à l'examen de l'hypothèse d'anticipations 

"rationnelles". La prise en compte de l'apprentissage rend souvent les 

anticipations "rationnelles" localement instables, en particulier sur les 
marchés où l'influence des anticipations est significative. 

Code JEL: C62, D10, D51, E10, E32, L13. 

Mots clés: Rationalité, agrégation, hétérogénéité, échelles d'équivalence, 
équilibre concurrentiel, équilibre d'oligopole, anticipations, 
apprentissage, fluctuations économiques. 
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AGGREGATION, LEARNING 

AND RATIONALITY 

Jean-Michel Grandmont* 

The assumption that individual economic units behave "rationally" is 

widely used in many areas of economic theorizing, be it in microeconomics 

or macroeconomics. The purpose of this lecture is to review briefly a few 

recent studies that tend to challenge two aspects of this assumption. 

The first issue concerns the pervasive idea that economic theory 

should start from "first principles" and portray individual economic units 

(in particular, households) as maximizing a well defined objective 

function. It has been known for a while, though, that the approach involves 

severe difficulties : if the distribution of individual characteristics is 

arbitrary, aggregation over optimizing households yields almost anything, 

hence nothing, at the macroeconomic level. In fact, postulates about 

individual rationality have to be used in practice jointly with additional, 

and often crucial, assumptions in order to get any meaningful result. For 

instance some macroeconomists make the extremely naive assumption that 

society as a whole behaves as a single optimizing individual. Imperfect 

competition or industrial organisation theorists often rely upon convenient 

but ra ther arbi trary assumptions about aggrega te demand, such as concave 

revenue functions or even linear demand schedules. The problem with such 

auxiliary assumptions is that they do not appear to be grounded upon sound 

theorizing. 

The first section of the paper reviews a few recent theoretical 

advances suggesting that aggregation over a large heterogenous population 

might provide a solution to these problems. The key point seems to be that 

heterogenei ty tends to make aggregate expenditures more independent of 

prices. In a market equilibrium context, this fact has strong implications 
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for the prevalence, in the aggregate, of the weak axiom of revealed 

preference, of gross substitutability, and for uniqueness and stability of 

a Walrasian exchange equilibrium. In (partial equilibrium) models of 

imperfect competition, demand heterogeneity leads to concave revenue 

functions and, for instance, to unicity of Cournot oligopoly equilibrium. 

One of the most intriguing features of the new approach is that, while it 

is compatible wi th the standard postula te that individual households are 

indeed optimizing, i t relies essentially upon distributional assumptions 

about heterogeneity and imposes very few "rationality" requirements on 

individual behavior. As heterogeneity of individual characteristics appears 

to be a plausible hypothesis, the new approach suggests accordingly that, 

by contrast wi th currently accepted views, attention in economic theory 

might advantagenously be shifted away from individual optimization and more 

focussed upon analyzing the consequences of heterogenous macroeconomic 

distributions. 

The second part of the lecture questions the "rational expectations" 

hypothesis that is so widely used in dynamic economic models (and for that 

matter, in game theory), or specifically, the hypothesis that an 

individual's expectations about the future are correct at any moment, given 

current information. A frequently heard defense of the hypothesis is that 

it should be the asymptotic outcome of a dynamic process in which 

individuals learn about the laws of motion of their environment. The second 

section of this paper is devoted to a brief review of recent studies 

suggesting that taking into account learning often generates dynamic local 

instability. These studies suggest further that the dynamics with learning 

may be highly nonlinear and generate complex trajectories, and moreover 

that forecasting mistakes may never vanish, even in the "long run". 

1. AGGREGATION AND RATIONALITY 

It is well known that standard economic theory (i.e. individual 

optimizing behavior) does not generate many restrictions on aggregate 

market phenomena. The nagging result here is the Sonnenschein-Mantel-Debreu 

indeterminacy theorem ( see Sonnensche in (1973, 197 4) and the survey by 

Shafer and Sonnenschein (1982)) if the distribution of microeconomic 

characteristics in the system is arbitrary, individual optimizing behavior 

does not place any restrictions on competitive market excess demand, on any 
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given compact set of prices, other then homogeneity and Walras's law. 

Indeterminacy of this sortis clearly bound to be a pervasive phenomenon. 

In particular, it should not be confined to competitive models. 

Underlying the resul t is the assumption that the distribution of 

microeconomic characteristics is arbitrary. The diagnosis hints accordingly 

at a possible way out that has been known for quite some time, namely to 

build our theories upon plausible restrictions on the distribution of 

individual characteristics. In particular, it has often been observed that 

there is apparently significant behavioral heterogenei ty among economic 

agents, and it has been accordingly suggested that taking into account such 

heterogeneity might be useful in this area. 

There has been some progress in recent times on this research front. 

Hildenbrand ( 1983) took indeed a decisive step by showing that 

heterogenei ty of the income distribution may make macroeconomic income 

effects just right in multimarkets consumer demand analysis, to leave us 

with "nice" aggregate substitution effects only - specifically, the 

Jacobian matrix of the price derivatives of market demand becomes negative 

quasi-definite for every price system (see also Grandmont (1987)). Another 

important idea was due to Jerison (1982, 1984, 1992) who showed that, 

roughly speaking, increasing dispersion of household Engel curves as income 

goes up leads to the weak axiom of revealed preference in the aggregate 

when the distribution of income is fixed (see also Freixas and Mas-Colell 

(1987)). By marrying the two lines of argument, variants of the above 

increasing dispersion hypothesis were further shown to imply negative 

quasi-definiteness of the Jacobian matrix of price derivatives of market 

demand, and have been confronted to empirical data with rather convincing 

results (Hardle, Hildenbrand and Jerison (1991), Hildenbrand (1989, 1992)). 

While this approach is an outstanding methodological achievement, it 

applies essentially to the case in which incomes or expenditures are 

independent of prices, and it is apparently difficult to extend it beyond 

this restrictive situation. When specialized to a market for a single good 

or service, it yields only a downward sloping demand schedule, which still 

falls short of what is needed in the study of imperfect competition models. 

Another approach, complementary to that of Hildenbrand and Jerison, 

has been recently implemented with fairly good success. It seeks to 
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introduce plausible heterogeneities in other dimensions of individual 

characteristics, namely in consumers' demand schedules. This line of attack 

has i t roots in, and generalizes the notion of, household equivalence 

scales, which has been much used in applied demand analysis (Prais and 

Houthakker (1955), Barten (1964), Jorgenson and Slesnick (1987)). 

Dispersion of demand schedules of this sort were introduced in general 

competitive equilibrium analysis some time ago by Mas-Colell and Neuefind 

(1977) and by E. Dierker, H. Dierker and W. Trockel (1984). A particular 

case was considered under the name of "replicas" in Jerison (1982, 1984). 

It has also been used by H. Dierker (1989) and E. Dierker (1991) to inquire 

whether demand heterogenei ty might help in ensuring existence of 

equilibrium in imperfect competition models. 

The recent discovery has been that demand heterogeneity of this sort 

makes aggregate expendi tures more independent of prices. In mul timarkets 

consumer demand analysis, wi th incomes or expendi tures independent of 

prices, this yields an aggregate Jacobian matrix of price derivatives with 

a negative dominant diagonal on a large set of prices. In a competi tive 

general equilibrium context, in which incomes are dependent on prices, this 

fact has strong consequences for the prevalence, in the aggregate, of the 

weak axiom of revealed preferences, of gross substitutability, and on 

uniqueness and stability of the Walrasian exchange equilibrium (Grandmont 

(1992a)). When specialized to a market for a single commodity, the approach 

implies that a relatively large heterogeneity in individual demand 

behaviors yields an aggregate demand that is not only downward sloping, but 

with an elasticity that is not too far from minus 1. Demand heterogeneity 

of this sort makes indeed easier the study of imperfect competi tion. In 

particular, it implies unicity of Cournot oligopoly equilibrium (Grandmont 

( 1992b)). 

An important feature of the approach is that, while it is compatible 

with the hypothesis that individual households do optimize, it is in fact 

much more general, for it relies upon very few "ratfonality" requirements 

on microeconomic behavior. The approach suggests accordingly that attention 

in economic theory might fruitfully be redirected away from the study of 

individual optimization toward the analysis of macroeconomic distributions 

of individual characteristics. 
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The whole analysis rests upon the estimation of bounds for the price 

elasticities of aggregate demand, that depend explicitly upon specific 

measures of heterogeneity. The derivation of these bounds is quite simple 

and we will present it in some detail here. We shall then explain 

heuristically how, on the basis of these bounds, heterogeneity generates 

strong macroeconomic regularities in general competitive exchange 

equilibrium and in models of imperfect competition. 

Equivalence scales 

We consider an economic system in which t goods or services are 
t 

exchanged. A commodi ty bundle is then described by a vector x of IR . To 

focus ideas, we concentrate on households' consumption behavior. A demand 

function will be a continuous vector valued function x(p,b) > O. It 

represents the commodity bundle demanded when the price system is p in 

IntlRt and the household's income is b > O. We shall assume throughout that 
+ 

Walras' s law holds, i.e. p•x(p, b) = b. At this stage, we do not assume 

homogeneity of degree O of demand with respect to (p,w), as many 

intermediary results do not require this property. 

The core of the approach is that whenever a household having the 

demand function x(p,b) is present in the population, there is a continuum 

of individuals who have the same demand function, up to a rescaling of the 

units of measurement of each commodity h by a factor~ > O. To see what 
h 

should be the form of the "rescaled" demand function, consider a fictitious 

operation in which the unit of measurement of each commodity h is divided 

by ~h. If the price vector in the fictitious units is p, the price vector 

in the actual units is given by 

Thus demand, expressed in the ficti tious units, is ~®x(~®p,b) = 

[~
1
x

1
(~®p,b), ...• ~txt(~®p,b)]. By definition, the rescaled demand function 

corresponding to the vector ~. expressed in the actual unit system (which 

is in fact fixed throughout !) is equal to the above expression, i.e. to 

~®x(~®p,b). In the sequel, it will be much more convenient to work with the 

rescaling parameters « = Log~ , whi ch can take any positive or nega t ive 
h h 



value. With the convention ea 

is thus given by ea®x(ea®p,b). 

6 

al at 
=(e , ... ,e ), the rescaled demand function 

It should be noted tha t although we did not ( and shall not) impose 

demand functions to be the outcome of utili ty maximization, rescaling 

operations are quite compatible with that requirement. If for instance the 

original demand function x(p, b) is obtained by maximizing the utility 

function u(x) under the budget constraint p•x = b, then the rescaled demand 

maximizes the rescaled utility function u(e-a®x) under the budget 

constraint 

Market demand 

Whenever a household present in the population has the demand function 

x(p,b), there is a continuum of individuals who have the rescaled demand 

function ea®x(ea®p, b). These individuals are indexed by the vector a of 

rescaling parameters and they are assumed to be distributed according to 

the density function f(a). Aggregating demands over this subpopulation 

yields the conditional market demand 

(the word "conditional" appears here because aggregation is carried out, 

for the moment, for a single initial demand function x(p,b). This 

restriction will be relaxed shortly). We are now in a framework in which we 

can speak meaningfully of the "heterogenei ty" of this subpopulation by 

looking at the dispersion of the density f(a). We shall see that a large 

dispersion implies a well behaved conditional market demand, even if 

individual demands are not. 

Our strategy is to show that conditional market expenditures p X (p,b) 
h h 

have continuous first derivatives and to estimate bounds for these 

derivatives that depend explicitly on the dispersion of the density f(a). 

To this effect, it is convenient to introduce the notation 

w (p, b) = px (p, b). Then it follows from the definition of conditional 
h h h 

market demand that conditional market expenditures are given by 
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p X (p,b) = J w (ea®p,b) f(a) da. 
h h h 

If we use the short hand notation Logp = (Logp
1

, ... , Logpt), and make the 

change of variable r =a+ Logp, we obtain 

( 1. 1) p X (p,b) = J w (er,b) f(r - Logp) dr. 
h h h 

It is clear from this expression that if we assume that the density f(a) is 

continuously differentiable and its partial derivatives are uniformy 

integrable, i.e. Ji:~ (a)j da~ mk, then conditional market expenditure is 
k 

also continuously differentiable. Taking partial derivatives of (1.1) with 

respect to Logp and reverting to 
k 

a= r - Logp yields then 

( 1. 2) 
B[phXh(p,b)] 

BLogp 
k 

the original vector of variables 

It is now easy to find bounds for the price derivatives of market 

expenditure. Since the absolute value of the right hand side of (1.2) is 

bounded above by bm, we obtain indeed 
k 

(1.3) 
I 

B[phXh (p, b)] 1 
< bm. 

BLogp k 
k 

It should be noted that these bounds are valid for all densities f(a), even 

if they are rather concentrated. The coefficients m appearing in ( 1. 3) 
k 

measure in some sense the dispersion of the density. If they are small, the 

distribution of the rescaling parameters a should be spread out. In that 

case, the inequalities (1.3) tell us that conditional market expenditures 

do net vary much with prices. This is the simple but important fact around 

which the whole analysis is built. 

A nice feature of the inequalities (1.3) is that they are additive, in 

the sense that if we put together two subpopulations satisfying these 

inequalities, then the mixture will also satisfy them. Specifically, 

consider a set of "types" a in some set A (we assume to fix ideas that Ais 
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a separable me tric space). To each type a correspond a demand function 

x (p,b) and an income level b > 0 (We assume for the moment that income is 
a a 

independent of prices, but this assumption will be relaxed later on). The 

population is distributed over types according to the probability 

distribution µ. For each type a present in the population Ci. e. in the 

support ofµ), there is a continuum of individuals who have the same demand 

up to a vector a of rescaling parameters, and these individuals are assumed 

to be distributed according to the candi tional densi ty f(a I a). Then for 

each type present in the population, conditional market demand is defined 

as before by 

(1. 4) X (p,b) = J ea®x (ea®p,b) f(aia) da, 
a a 

while total market demand is obtained by aggregating over types 

( 1. 5) X(p) = J X (p,b) µ(da) 
A a a 

(We assume here enough regulari ty properties so that all these integrals 

are well defined). The important point is that if the conditional densities 

f(ala) have uniformly integrable partial derivatives with 

I Bf 
1 aa (a I a) 1 

k 

da < m , for every type a in the support of µ, 
k 

then each 

conditional market demand satisfies the inequali ties ( 1. 3), with b = b . 
a 

Then if per capita total income is finite, i.e. b = J b µ(d ) < + CIO , 
a a 

total market demand will also satisfy them, by integration over all types, 

that is 

( 1. 6) 

We should therefore expect total market demand to be well behaved when 

there is significant heterogeneity in the system, i.e. when the conditional 

densities f(aja) are spread out, since according to the inequalities (1.6), 

total market expenditures become relatively independent of prices when the 

coefficients m are small. In order to make the argument tight, however, we 
k 

have to ensure that total market demand does not vanish when heterogeneity 

grows. To this end, we suppose that aggregate budget shares are uniformly 

bounded away from 0, or more precisely that there exist ~ > 0 such that 
h 
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rh b < p X (p) for all p and all h. This assumption, together with (1.4), 
h h 

yields immediately 

Cl.7) 
l

8LogX (p) 

1 
BL h + o < b m /p X (p) < m Ir , 

ogp hk = k h h = k h 
k 

where o is the Kronecker symbol, i.e. o is equal to 1 when h = k and to 
hk hk 

0 otherwise. These evaluations of market demand price elasticities show 

that when heterogeneity grows (if the coefficients m become small), other 
k 

things being equal, the consumption sector behaves very well, since 

aggregate demand price elastici ties become asymptotically close to those 

arising from the maximization of a Cobb Douglas utility function. One has 

of course to be careful about the ceteris paribus clause and make sure that 

the parameters r appearing in 
h 

(1.7) are actually independent of the 

coefficients of heterogeneity m. One simple way to guarantee this outcome 
k 

is to assume that the conditional densities f(a!a) are actually independent 

of the type a, and that when aggregating the demands x (p, b ) over all 
a a 

types, one gets indeed 

r b < p J x (p, b ) µ(da), 
h=hAah a 

for all prices and all commodities h. The results we review here are all 

deri ved under this simplifying independence assumption. But it should be 

emphasized that any other specification ensuring that aggregate budget 

shares are uniformly bounded below by r > 0, independently of the 
h 

coefficients of heterogeneity mh, generates exactly the same picture. 

Inequali ties ( 1. 7) imply that the Jacobian matr ix of total market 

demand price derivatives has a negative dominant diagonal on a set of 

prices that is large when, other things being equal, the coefficients of 

heterogeneity m are small. To see this point, remark first that from 
. k 

(1.7), total market demand for commodity h is a decrêasing function of its 

own price when mh < rh. In that case, (1.7) implies 

Cr - m )/(p r) 
h h h h 
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while for k '* h 

Then i t follows immediately that the Jacobian matrix ~~(p) has a 
ax ax 

negative dominant diagonal, i.e. laph(p)I >k~hlaph(p)I on the set of prices 
h k 

defined by the inequali ties L(m /p ) < -r /p , for every commodi ty h. As k k k h h 
announced above, this set of prices is large when, other things being 
equal, the densities f(ala) are spread out, i.e. when the coefficients mk 

are small. 

Competitive exchange eguilibrium 

The methods we just presented yield sharp resul ts when applied to a 
general exchange equilibrium. To be specific, let us assume now that a type 
a defines not only a demand function x (p, b), but also an endowment of l a 
goods w in Int~. For each type a present in the population, conditional a + 

market demand X (p,b) is given by (1.4) as before. But income is now price a 
dependent since it is equal to the value p•w of the endowment. Conditional a 
market excess demand is thus equal to 2 (p) = X (p,p•w) - w, while total a a a a 
market excess demand is obtained by aggregation over all types 

Z(p) = J 2 (p) µ(da) 
A a 

(we suppose here that per capita total endowment, i.e. w = JA wa µ(da), is 
finite). An exchange equilibrium is accordingly a price vector p* such that 
total excess demand vanishes on each market, i.e. Z(p*) = O. 

It turns out that demand heterogeneity, or more precisely conditional 
densities f(aia) that are relatively spread out, has strong consequences 
for uniqueness and stability of equilibrium in a simple exchange economy of 
this sort. The method of analysis is, here as before, to evaluate bounds 
for price derivatives, that depend explici tly on the degree of 
heterogenei ty in the system, 

applied here to the excess 

i.e. on the coefficients m . The method is 
k 

demands 2 (p), so these price derivatives a 
involve not only the price derivatives of conditional market demand 
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X (p,b), but (since income is equal to p•w) the income derivatives of X 
a a a 

as well. One has therefore to suppose here the elementary demand functions 

x (p,b) to be homogenous of degree Oin prices and income, in order to keep 
a 

agregate income effects under control. Then application of the same type of 

argument leading to the inequalitites (1.6) or (1. 7) yields that total 
az 

h 
excess demand has the gross substitutability property, i.e. 8 (p) > 0 for 

pk 

h ~ k, on a set of prices that is large when the degree of heterogeneity in 

the system is significant, i.e. when the coefficients m are relatively 
k 

small, other things being equal. This implies uniqueness of the equilibrium 

price vector p* (up to multiplication by a scalar). One gets in addition 

that the weak axiom of revealed preferences holds in the aggregate, i.e. 

p*•Z(p) > 0, as between the equilibrium price system p* and any other price 

vector p that is not colinear top*. Finally, these results imply that the 

unique equilibrium price vector is stable in any standard tâtonnement 

process, its basin of attraction being large and filling eventually the 

entire price space when the degree of heterogeneity grows, i.e. when the 

coefficients m become small (for a precise analysis, see Grandmont 
k 

(1992a)). 

Cournot oligopoly eguilibrium 

Demand heterogeneity has strong consequences for the study of Cournot 

oligopoly equilibrium as well (Grandmont (1992b)). To see this, let us 

specialize our previous formulation of market demand to a partial 

equilibrium analysis of what happens for a single commodity h, the 

conditions prevailing on other markets being fixed. The evaluation (1.7) of 

market demand's own price elasticity reads then 

( 1. 8) 
1

8LogX (p) 
h 

+ 1 < m / 
8Logph 1 = h rh, 

so we are sure that market demand is downward sloping whenever m < '1 . 
' h h 

This is not enough, however, if we wish to study Cournot competition among 

firms on that market. Indeed, the properties of market demand that are 

usually needed in configurations of this sort, such as concave revenue 

functions, require also that the second own price derivative of the market 

demand function be "well behaved". The important point about the approach 
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presented here is that heterogeneity allows us to keep under control not 

only the first price derivatives of market demand, but higher order price 

derivatives as well. The fact is most immediate if we go back to the 

identity (1.1), which was the starting point of the whole analysis. This 

identity gives the expression of conditional market expenditure, when one 

aggregates over "rescaled" demand functions that are distributed according 

to the density f(a). Now, if we assume that the density function is twice 

continuously differentiable and that 

respect to a is uniformly integrable, 
h 

argument that led to (1.3) shows, 

respect to Logp, 
h 

< b m 
h 

its second partial derivative with 

I 8
2

f 
with l-

2
(a)lda ~ m, then the same 

aa h 
h 

by differenciating ( 1. 1) twice wi th 

This inequality is also here additive, i.e. it is preserved when 

aggregating demand over different types. So the equivalent of (1.6) for the 

second derivative of total market demand becomes 

( 1. 8) 

2 
8 [p X (p)] 

h h 

2 (8Logp) 
h 

< b m. 
h 

It should be intuitively clear that the inequalities (1.6), (1.7) and 

(1.8) are bound to give us pretty good control of the first and second own 

price derivatives of market demand for commodi ty h when the degree of 

heterogeneity grows. As a matter of fact, when the coefficients m are 
h 

small, other things being equal, market demand, as well as its first and 

second price derivatives, behave approximately like a unit elastic demand. 

It turns out that this is sufficient to guarantee concave revenue 

functions, and even a unique Cournot oligopoly equilibrium, when firms 

(with constant marginal costs) compete in quantities in the market under 

consideration (Grandmont (1992b)). 

This brief review strongly suggests that equivalence scales give us 

very powerful tools to study aggregation over heterogenous economic agents. 

An important feature of the analysis is that heterogeneity alone is capable 
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of generating striking macroeconomic regularities, even when individual 

economic units are not necessarily "rational" in the traditional sense, 

i.e. even when they do not maximize a well defined objective function. This 

outcome is to be contrasted wi th the fact that, in tradi tional economic 

theory, the assumption of individual optimization generated very few 

macroeconomic predictions, owing to aggregation problems, as examplified by 

the Sonnenschein-Mantel-Debreu indeterminacy theorem. The studies we 

surveyed suggest accordingly that attention might fruitfully be redirected 

away from individual optimization toward the analysis of the consequences 

of heterogenous macroeconomic distributions. It remains to be seen whether 

this approach can be as successful as it has been in the research reviewed 

here, to analyze aggregation over productive units, temporary equilibrium, 

other models of imperfect competition or even welfare issues. 

2. LEARNING ARE RATIONAL EXPECTATIONS UNSTABLE? 

An essential feature of economic models is that expectations matter. 

Individual expectations about the future influence current decisions, hence 

observed market outcomes. On the other hand, observations about market 

outcomes determine individual expectations. In the absence of firmly 

established empirical facts about actual individual forecasting behavior, 

quite a few economic theorists have chosen to impose in their models some 

kind of consistency between expectations and realized market outcomes, on 

the ground that arbi trary assumptions about expectations would allow to 

explain almost everything - and thus nothing. A common modelling strategy 

is indeed to postulate "rational" expectations, i.e. that an individual's 

expectations about the future are correct at any moment, given current 

information. 

A frequently heard defense of the hypothesis is that it should be the 

asymptotic outcome of a dynamic process in which individuals learn about 

the laws of motion of their environment. It is by no means clear, however, 

that taking into account learning should lead to convergence to a dynamic 

state where the "rational" expectations hypothesis is satisfied. Economie 

"reality" is not independent of how individual players conceive it. 

Changing beliefs about the economic system modify the laws of motion of 

that system. The second part of this lecture is devoted to a brief review 

of recent studies suggesting that, indeed, taking into account learning 
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often generates dynamic local instability (Champsaur (1983), Benassy and 

Blad (1989), Grandmont and Laroque (1991), Grandmont (1990)). Such results 

seem to agree with (admittedly casual) empirical observations. The economic 

time series that display most volatility are those for which it appears 

that expectations are important in shaping current decisions (investment in 

capital equipment, inventories, durable goods, financial and stock 

markets). As we shall see shortly, imposing "rational" expectations would 

lead to the exact opposite and counterfactual conclusion under the 

"rational expectations" hypothesis the more expectations matter, the more 

stable ( in the absence of exogenous shocks to the "fundamentals") the 

market should be. By contrast, the studies reviewed below suggest that 

local dynamic instability induced by learning is most likely to occur in 

markets where expectations matter significantly. They suggest further that 

in such markets, the dynamics wi th learning may be highly nonlinear and 

generate complex trajectories, and moreover that forecasting mistakes may 

never vanish, even in the "long run". 1 

Smooth foregasting rules 

To illustrate the point most simply, we consider a deterministic 

formulation (no random shocks) in which the state of system in period t is 

described by a single real number x. The state at t is determined by the 
t 

decisions made by the traders in the past, which we summarize by the 

immediately preceding state x , and by the traders' forecast about the 
t-1 

e 
future xt+l' through the temporary equilibrium relation 

(2.1) T(x 
t-1 

X 
t 

Xe ) = 0. 
t+l 

We assume that there is a large number of traders, each of whom has a 

negligible influence on the market as a whole, so strategic considerations 

are also negligible. In (2. 1), xe should be interpreted as an average 
t+l 

forecast (each individual's forecast being weighted by its relative 

influence on the dynamic evolution). The state varia~le can be viewed, say, 

as a price and (2.1) as a market clearing condition. The analysis will be 

local, i.e. near a steady state defined by T(x,x,x) = O. We shall assume 

throughout that T is smooth and denote by b b and a the partial 
0 1 

derivatives of T with respect to x , x and xe evaluated at the 
t t-1 t+l 

stationary state. The parameter a, which measures the local influence of 
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expectations in the market under consideration, is of course assumed to be 

different from 0, otherwise the issues we wish to analyze would disappear. 

The other ingredient of the mode! is a specification of how forecasts 

are made. The traders mental processes may be quite sophisticated : they 

may have "models" of the world depending upon a number of unknown 

parameters, reestimate these parameters at each date by using past data and 

use these estimates to forecast the future. It turns out we do not have, 

for the purpose of the present analysis, to specify in great details the 

traders' mental processes. In all cases, forecasts with depend on, and only 

on, past data. To simplify matters, we assume that the average forecast is 

a time-independent function of a finite (but possibly very large) array of 

2 
past states 

(2.2) xe =1/J(x,x , ... ,x ). 
t+l t t-1 t-L 

We shall assume throughout that when presented with a long constant 

sequence of states equal to x, then xe = x. We postula te ( in this 
t+l 

subsection) that learning is regular enough so that the forecasting rule 1/J 

is smooth, and we shall denote by c , ... , c its partial derivatives wi th 
0 L 

respect to x , ... ,x , evaluated again at the steady state. 
t t-L 

The dynamics with learning that will be actually observed is defined 

by putting (2.1) and (2.2) together 

(2.3) 

Clearly x = x 
t 

T(x ,x,1/J(x,x , ... ,x ))=O. 
t-1 t t t-1 t-L 

is a stationary solution of (2. 3). If we assume tha t the 

partial derivative of (2.3) with respect to x at the steady state differs 
t 

from 0, i.e. b + ac '* 0, the actual dynamics with learning is well 
0 0 

defined near the stationary solution x = x. The issue is to analyze its 
t 

stability. 

The usual procedure to evaluate local stabili ty is to linearize the 

equation near the steady state, look at the corresponding characteristic 

polynomial and to see whether the resul ting eigenvalues are stable (have 

modulus less than 1) or not. It is intuitively clear that all the 

information we need to proceed here is in fact embodied in the local 
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behavior of (2.1) and (2.2). Indeed, (2.3) is obtained by "coupling" the 
e dynamical systems (2. 1) and (2. 2) - in which the forecast x would be t+l 

replaced by the actual state x - in such a way that the t+l variable x 
t+l 

actually disappears. Stability or instability of the actual dynamics with 

learning will accordingly be a consequence of the interaction of the local 

eigenvalues of (2.1) and those of (2.2). 

The local eigenvalues of (2.1) are the two roots of the characteristic 

polynomial obtained by replacing 

steady state 

X
6 by X t+l t+l 

(2.4) Q (z) = b + b z + az2 = O. 
T O 1 

and linearizing near the 

The corresponding local eigenvalues À, À summarize the local behavior of 
1 2 

the economic system under the assumption of perfect foresight. One remarks 

that, as announced earlier, the hypothesis leads to the counterfactual 
conclusion that the more expectations matter (the larger the coefficient a 
is, given b and b ), the smaller the modulus of the two perfect foresight 0 1 

roots À , À and thus the more stable the local dynamics of the system 1 2 

should be. 

The same procedure applied to the forecasting rule yields the 
polynomial 

(2.5) Q,J,(z) = L+l z L-j z = o. 

Since the characteristic polynomial is obtained by linearizing (2.2), the 

corresponding L+l roots µ1, ... ,µL+l (the local eigenvalues of the 
forecasting rule) describe the set of regularities, i.e. the trends and 

frequencies, that traders are on average able to filter out of current and 
past deviations t:.x , t:.x , ... , t:.x from the stationary state. If people t t-1 t-L 
extrapolate constant sequences (t/J(X,X, ••• ,X) = X near X), then µ = 1 is 

solution of (2.5). If they extrapolate sequences that oscillate between two 
values (,J,(x,y,x,y, ... ) = y near x), then µ = 1 andµ= -1 are solutions of 

(2. 5). If people are able to recognize and willing to extrapolate the 
specific trend r from past deviations, then µ=ris a solution of (2.5). 

More generally, the fact that µ = re 19 is a local eigenvalue of the 
forecasting rule means that people are able to recognize the trend rand 
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the frequency associated to 8 in past deviations from the stationary state. 

Of course, a smooth forecasting rule essentially acts locally as a linear 

fil ter and can extract only a finite set of regulari ties from a fini te 

amount of data. When the memory L is large, and if the traders are 

relatively sophisticated, one should expect the set of local eigenvalues 

µ , ... ,µ of the forecasting rule to be somewhat spread out in the 
1 L+l 

complex plane. It turns out that this configuration leads to local 

instability of the actual learning dynamics, especially when expectations 

matter significantly, i.e. when the coefficient ais large. 

Specifically, let µ* < µ* be the smallest and largest real local 
1 2 

eigenvalues of the forecasting rule. Consider the situation where the two 

perfect foresight roots À, À are either both complex or where, if they 
1 2 

are real, they be long to the open interval (µ*, µ*). Then i t is easy to 
1 2 

show that the characteristic polynomial associated to the actual learning 

dynamics (2.3) has a real root p that lies outside the interval [µ*,µ*]. If 
1 2 

we make the mild assumption that people are willing to extrapolate long 

sequences that oscilla te between two arbi trary values x and y near the 

steady state, then as noted earlier, µ = 1 andµ= -1 are local eigenvalues 

of the forecasting rule. In that caseµ;~ -1 andµ;~ 1, and the actual 

learning dynamics is bound to be locally unstable. This configuration, and 

thus local instability, is most likely to occur when expectations matter 

significantly, i.e. when the coefficient a measuring the local influence of 

forecasts on the evolution of the system is relatively large, for then the 

modulus of the two perfect foresight roots À, À is small. 
1 2 

Discontinuous forecasting rules 

A smooth forecasting rule (locally, essentially a linear filter) can 

only extract a fini te set of trends and of frequencies from a fini te 

sequence of past deviations from the steady state. It is not difficult to 

think of learning rules, e. g. through least squares regressions on such 

past deviations, that would allow to recognize and ~xtrapolate, say, any 

real trend present in past data. Of course, one is then bound to lose 

smoothness and even continuity of the associated forecasting rule. Yet one 

would like to inquire whether the previous instability results carry over 

to such learning processes. We are going to show that this is indeed the 

case. 
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To simplify matters, we set x = 0 (so x stands now for a deviation 
t 

from the steady state) and linearize (2.1) 

(2.6) b X 
1 t-1 

+ b X 
0 t 

e 
+ a X 

t+l 
= 0 

with a* 0 (expectations matter) and b * 0 so that we can actually salve 
0 

(2.6) for the current state x. As for expectations, we assume that people 
t 

believe, say, that the law of motion of the system is 

(2.7) x =(3x +c 
n n-1 n 

or X = ((3 + C ) 
n n 

X 
n-1 

where (3 is an unknown coefficient and c is white noise. Forecasts are 
n 

generated as follows. At the outset of period t, traders form an estimate 

of the unknown coefficient (3 by looking at past states 

(2.8) (3t = g ( X , ... , X ) , 
t-1 t-L 

and they formulate a forecast by iterating twice the relation (2.7) 

(2.9) 

The relations (2.8) and (2.9) together define a forecasting rule 

xe = 1/J(x , ... , x ) exactly as before. One possible interpretation 
t+l t-1 t-L 

of this learning procedure is that people know where the steady state lies, 

but try to improve their performances by forecasting growth rates. We may, 

however, lose continuity if we wish, as here, that people be able to filter 

a continuum of trends out of past deviations from the steady state. For 

instance, if people estimate the models (2.7) through least squares, they 

will get 

X X + ... + X X 

(3 t 
t-1 t-2 t-L+l t-L 

= 
2 2 

X + ... + X 
t-2 t-L 

or 

1 [ 
X X 

] (3t 
t-1 t-L+l 

= L-1 + + 
X 

... 
X • 

t-2 t-L 
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which are only defined out of the steady state and in fact highly 

discontinuous there. The nice feature of the above least squares learning 

schemes is that the estimates ~ are averages of past ratios x /x 
t t-j+l t-j 

As a result, the forecasting rule generated by (2. 8) and (2. 9) has the 

property that for every real number r, 

L-1 L+l 
1/J(r x, ... ,rx,x) - r x. 

People can extract any real trend from past deviations from the stationary 

state, or in other words, any real number is a "local eigenvalue" of the 

forecasting rule. The price to pay for this nice feature is the loss of 

continui ty. 

The actual learning dynamics is obtained as before by putting together 

(2.6) with the forecasting rule defined by (2.8) and (2.9), which yields 

(2.10) 

~t given by (2.8). 

X 
t-1 

The relation (2.8) defining the actual learning dynamics involves a map 0 

(introduced in the literature on the subject by Marcet and Sargent (1989)) 

that has a remarkably simple interpretation. Indeed it describes the link 

that exists between the beliefs people have at the outset of period t about 

the dynamics of the growth rates x /x , as summarized by the estimate ~, 
n n-1 t 

and the actual ratio x /x that will be observed in that period. It is 
t t-1 

easy to verify that the fixed points of O coincide wi th the perfect 

foresight roots À, À when these are real, and that O has no fixed points 
1 2 

when À, À are complex (the equation O(~) = ~ is in fact identical to 
1 2 

(2.5) with z = ~). 

The smallest and largest real "eigenvalues" of the forecasting rule 

are -oo and +co whenever the estimate (2.8) is an average of past ratios 

x /X j = 2, ... ,L. By analogy with the smooth case discussed 
t- j+l t-j 

earlier, we should expect that the actual learning dynamics is locally 

unstable in the present case as well, and this for all configurations of 

the two perfect foresight roots À and À • It can be shown that this 
1 2 

conjecture is indeed true under qui te general conditions (Grandmont and 

Laroque (1991)). When the perfect foresight roots À , À are complex, 
1 2 
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local instabili ty occurs for all initial conditions. Suppose now that 

they are real, with IÀ
1
1 < IÀ

2
j. Then local instability occurs for an open 

set of initial conditions, i.e. when the initial ratios x lx etc 
t-1 t-2 

have all the same sign as \ and a modulus larger than I À
2 

j. Were the 

forecasting rule smooth, getting local unstabili ty for an open set of 

initial conditions would imply instability for almost every departure from 

the steady state. This may not be true here as the forecasting rule is 

discontinuous. If the map Q is contracting at the perfect foresight root of 

smallest modulus, i.e. IQ' (À
1

)1 < 1, and if that root is stable, i.e. 

1\1 < l, then one will get local stability whenever all initial growth 

rates x lx , etc ... are close enough to À. Of course if IQ'(À )j > 1, 
t-1 t-2 1 1 

the phenomenon disappears. Be it as it may, the size of the open set for 

which local instability occurs becomes larger as the coefficient a 

measuring the relative influence of expectations goes up (the modulus of 

the two perfect foresight roots goes down). Thus we reach the same 

qualitative conclusion as in the smooth case the more expectations 

matter, the more probable learning induced local instability becomes, and 

the more volatile market outcomes should be. 

To illustrate these points, we consider the particular situation where 

the estima te f3 is x lx . One gets then even sharper resul ts that can 
t t-1 t-2 

be visualized through simple diagrams. In view of (2.10) the actual 

dynamics with learning is in that case described by the recurrence equation 

x lx = Q(x lx ) . The curve representing Q (a parabola) is pictured 
t t-1 t-1 t-2 

in Fig. 1.a,b in the case where the sum of the two perfect foresight roots, 

i.e. \ + À
2 

= -b/a, is positive (the reader will verify that one gets 

identical results in the opposite case, with the asymptotic branches of the 

parabola going down). The two roots À, À are complex in Fig. 1.a, and one 
1 2 

gets local instability for all initial conditions. The two perfect 

foresight roots are real in Fig. 1.b. There local instability occurs 

whenever the modulus of 

ratios x lx converge to 
t t-1 

stability if IÀ
1

l < 1. 

the 

À 
1 

The 

initial ratio X lx exceeds 
t-1 t-2 

whenever lx lx 1 < À, and one 
t-1 t-2 1 

size of the region ,for which 

1 À
2

1. The 

gets local 

one gets 

instability grows as IÀ
2
1 goes down, i.e. when the coefficient a measuring 

the influence of expectations becomes large. 
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The foregoing analysis suggests strongly that learning is most likely 

to generate local instability in markets where expectations matter 

significantly. Another interesting feature is that although the world may 

be simple and close to linear (see (2.1) or (2.6)), the mental processes 

employed by economic agents when trying to learn the laws of motion of the 

system may be highly nonlinear. Then these nonlinearities will also show up 

in the actual observed dynamics : here, (2.10) involves the map Q which 

describes a parabola. That feature suggests that the actual learning 

dynamics may generate non only local instabili ty but also qui te complex, 

even chaotic, nonexplosive expectations-driven fluctuations. The point is 

illustrated in Fig. 2, in the simple case where the estimate ~ is equal to 
t 

x lx . There, the map Q is expanding at both perfect foresight roots. 
t-1 l-2 

The actual ratios x lx cannot converge to ei ther of them but they may 
t t-1 

follow chaotic trajectories that are trapped in some invariant interval 
3 [-c,c]. 

All this opens promising and largely unexplored avenues in business cycles 

theory. Although the "fundamentals" of the economic system may display only 

small nonlinearities and may not vary much over time, the traders' learning 

schemes are presumably highly nonlinear and this may lead to complicated 

expectations-driven nonexplosive fluctuations along which forecasting 

mistakes may never vanish, even in the "long run". This cannot, however, be 

the end of the story. For such a situation to be robust, of course, one 

should require some degree of consistency between the actual dynamics and 

private beliefs, so that traders have no incentive to change their views 

about how the world works. One might envision for instance a situation in 

which traders attribute their forecasting mistakes to "noise", although the 

observed dynamics are actually deterministic but chaotic, as in Fig. 2. As 

I said, this is largely unknown terri tory and should be the subject of 

further research. 
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1 In the seque 1 , we follow the presentation of Grandmont and Laroque 

(1991). 

2 Expectations may also depend on past forecasts, so as to allow people to 

learn from their past mistakes by comparing past forecasts wi th actual 

realizations. The results would be qualitatively the same (Grandmont 

( 1990)). 

3 Examples of cycles and chaos generated by learning have been provided for 

instance by C. Hommes (1991, 1992), G. Negroni (1992). 


