
JANUARY 1990 
REVISED NOVEMBER 1990 

N° 9109 

QUALITATIVE THRESHOLD 

ARCH MODELS 

C. GOURIEROUX*, A. MONFORT** 

(*) CREST-ENSAE et CEPREMAP 

(**) INSEE - Département de la Recherche 



QUALITATIVE TllRESHOLD 

ARCH MODELS 

ABSTRACT 

In this paper we consider a class of dynamic models in which both 

the conditional mean and the conditional variance are endogenous 

stepwise functions. We first consider the probabilistic properties of 

these models : stationarity conditions, leptokurtic effect, linear 

representation, optimal prediction; in this first part most results 

are based on Markov chains theory. Then we derive statistical 

properties of this class of models : pseudo-maximum likelihood 

estimators, conditional homoscedasticity tests, tests of weak or 

strong white noise, CAPM test, factors determination, ARCH-M effects. 

We also discuss the introduction of exogenous variables and the case 

of multiple lags. Finally, an application to the Paris Stock Index is 

proposed. 

MODELES ARCH A SEUILS QUALITATIFS 

RESUME 

Dans cet article nous considérons une classe de modèles 

dynamiques dans lesquels la moyenne et la variance conditionnelle sont 

des fonctions endogènes constantes par morceaux. On considère d'abord 

les propriétés probabilistes de ces modèles : conditions de 

stationarité, effet leptokurtique, représentation linéaire, prédiction 

optimale; dans cette première partie la plupart des résultats sont 

fondés sur la théorie des chaines de Markov. Ensuite on établit les 

propriétés statistiques de cette classe de modèles: estimateurs du 

pseudo-maximum de vraisemblance, tests d'homoscédasticité 

conditionnelle, tests de bruit blanc faible et fort, test du CAPM, 

détermination de facteurs, effet ARCH-M. on discute également 

l'introduction de variables exogènes et le cas de retards multiples. 

Finalement on propose une application à l'indice CAC. 

Keywords ARCH models - Financial Assets - Heteroscedasticity 

Mots Clés Modèles ARCH - Actifs financiers - Hétéroscédasticité. 
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I - INTRODUCTION 

The time series literature on the univariate or multivariate ARMA 

models provided new approaches of the dynamic econometric modelling. 

In particular, the VAR models are widely used either as an alternative 

of the structural models (Sims 1980) or as a framework in which a 

sequence of tests can be performed in order to select a structural 

model [Hendry-Mizon (1990), Monfort-Rabemananjara (1990)]. However, 

this literature is basically interested in the conditional mean (given 

the past), which is assumed to be linear, and makes the strong 

assumption that the conditional variance is fixed. This drawback has 

been stressed by Engle (1982) and his work initiated a stream of 

papers on ARCH on GARCH models (Bollerslev (1986)). In this literature 

the conditional variance is very often specified as a linear function 

of the squared values of past innovations, even if non parametric 

approaches have also been proposed (see Gregory (1989), 

Engle-Gonzalves-Rivera (1989)). 

The present paper deals with several issues. First we explore the 

possible trade-off between the flexibility of the conditional variance 

specification in terms of a given past value and the number of 

relevant lags. Secondly we adopt a symmetric teatment of the 

conditional mean and the conditional variance in order to discuss the 

possible cross effects of mispecifications. Thirdly, like in the VAR 

approach, we propose a general framework and statistical methods 

allowing for the tests of various restrictions; however contrary the 

VAR approach, these restrictions may concern both the conditional mean 

and the condition variance. Finally, since we do not wish to make 

parametric distributional assumptions, like conditional normality, we 

propose to use pseudo-likelihood techniques [Gourieroux-Monfort 

Trognon (1984)]. 

1 

Since we are interested in simple flexible parameterizations of 

the conditional mean and the conditional variance, there are two 

natural candidates for the classes of functional forms: the piecewise 

constant functions and the piecewise linear functions. In this paper 

we consider piecewise constant functions which have the advantage of 

being also available in the multivariate case; piecewise linear 

functions are used in Zakoian (1990). More precisely the basic model 

considered in this paper is, in the case of one lag: 



J J 
yt = ,L ~J~ (Yt-1> + ,L aJ~ (Yt-1)ut 

J=l AJ J=l AJ 

where Yt is the multivariate series of interest, {AJ, j=l, ••• ,J} is a 

partition of the set of values of Y, ~J is an unknown vector, aJ is an 

unknown symmetric positive definite matrix, ~ is the characteristic 
AJ 

function of A; and (ut) is a strong white noise. This kind of mode! 

can be seen as a generalization of the threshold models for the 

conditional mean [Tong-Lim (1980), Tong (1983), 

Chan-Petrucelli-Woolford (1985), Saikkonen-Luukkonen (1986), 

Melard-Roy (1987)]. 

In section 2, we derive the stochastic properties of the process 

J 
Y and of the innovation process ,LaJ~ (Yt_ 1)ut.This study 

J=l AJ 

is based on a preliminary study of the underlying qualitative process 

zt = (~ (Yt), ••• ,~ (Yt))', which is a regular Markov chain under 
A1 AJ 

weak conditions. We obtain the expressions of the mean and of the 

autocovariance function of Y, we examine the leptokurtic effect 

induced by the conditional heteroscedasticity. We also prove that the 

process Y has a linear ARMA(J-l,J-1) representation as well as (in the 

univariate case) Yf and the squared errer process vf, whith 

J 
vt =,L aJ~ (Yt_ 1 ).These properties allow to discuss the consequences 

J=l AJ 

of various specification errors. 

In 

properties 

section 

of 

3, 

the 

we give the expression and the asymptotic 

pseudo-maximum likelihood estimators of the 

aJ. Then we describe the tests procedures of a parameters ~J and 

number of hypotheses: hypotheses on the partition, homoscedasticity 

hypothesis, weak or strong white noise hypothesis, ARCH-M hypothesis, 

CAPM hypothesis, factors and efficiency hypotheses. All these 

hypotheses are easily tested by using the asymptotic least squares 

theory [Gourieroux-Monfort-Trognon (1985), Gourieroux-Monfort-Renault 

(1988), Gourieroux-Monfort (1989-b)] 

In section 4, we consider several generalizations in particular 

the introduction of exogenous variables, and the case of several lags. 

In section 5 we propose an application on the Paris Stock Index 

(indice CAC). 
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rr - DEFINITIONS AND PROBABILISTrc PROPERTIES 

rr.1 Definition of the model OTARCRC1) 

The process of interest {Yt, tel} is n-dimensional and satisfies 

J J 
(1) yt = ,L ~J~ (Yt-1) + ,L J3J~ (Yt-1>ut 

J=l AJ J=l AJ 

where {AJ, jeJ} is a partition of Rn, ~J' j=l, ••• ,J are n dimensional 

vectors, J3J,j=l, ••• ,J are positive definite matrices and {ut, tel} a 

sequence of i.i.d. unobservable random vectors whose mean and 

covariance matrix are respectively zero and idendity. This mode! where 

only one lag appears is called a QTARCH(l) modèl. 

It is also assumed that the probability distribution of any ut, 

denoted by Q, is absolutely continuous with respect to the Lebesgue 

measure on Rn and that its p.d.f, denoted by g, is strictly positive. 

An important particular case is the normal case (i.e. the case where 

ut-N(O,In) but this normality assumption will not be made except when 

explicitly mentioned. 

From {Vt, tel} it is possible to define the J-multivariate 

process zt 

(2) 

= (Z 1t,•••,Z,a)' with: 

ZJt = ~ (Yt> • 
AJ 

This process Z can be considered as a qualitative process with J 

possible states. Moreover Vt can be rewritten in the following way: 

( 3) y t = ~, Z t -1 + J3 , ( Z t -1 ®In) ut , 

where ~, = c~1 , ••• ,~J) and J3' = (J3 1 , ••• ,J3J). Note that, if e is 

J-vector whose entries are all equal to 1, we have e'Zt = 1. 

It is also worth stressing that the ~J's are not 

different and that the same is true for the J3J's: this 

necessarily 

implies that 

the relevant partitions for the mean and the variance can always been 

assumed to be identical since, if they are different, we obtain a 

model of type (1) by considering the intersection of these partitions. 

rr.2 stationarity 
It is easy to prove the following proposition showing that it is 

sufficient to study the stationarity of the qualitative process z. 

Proposition 1 

{Vt, tel} is strictly stationary if and only if {Zt, tel} is strictly 

stationary. 
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The qualitative process z is an homogeneous Markov chain of order 

one whose transition matrix is denoted by P. 

The (j, k) entry of this matrix is . . 
PJk = Pr(ZJt = l/Zk,t-1 = 1) 

= Pr(VteA,JZk, t-l = 1) 

= Pr(0<k+J3kuteAJ) , 
(4) PJk = Q[J3k 1 (AJ-e<J)] 

The assumptions made above imply that all the transition 

probabilities PJk are strictly positive and, therefore, the transtion 

matrix P is completely regular (see Gantmacher (1966) chapter 13). 

From Perron's theorem we deduce that 1 is a single eigenvalue of P 

and that a corresponding eigenvector TI can be chosen with all its 

entries strictly positive and with n'e = 1. TI is the invariant 

probability of the Markov chain. 

The other eigenvalues ÀJ, j=l, ••• ,J-1 have a modulus strictly 

smaller than one and P can be written using the spectral decomposition 

(see appendix 1) : 

(5) , 

with (using the notation aJ=TI, bJ=e). 

b~aJ = 1 j = l, ••• ,J, 

b,aJ = o ~ f k, k,j = l, ••• ,J ' 
and therefore, the matrices CJ = aJb~ are idempotent. 

The marginal probabillty Pt of Zt is given by: 

(6) Pt = ptpo • 

If Po is equal to TI, the same 

since the chain is completely regular, 

to infinity for any p 0 • This is also a 

J-1 

is true for any Pt : moreover, 

Pt converges to TI when t goes 

consequence of the equality: 

(7) pt= ne'+ ,L À~aJb~ , 
J=l 
J-1 

ptp0 =TI+ ,L À~aJb~p 0 converges to TI 
J=l 

since 

Using proposition 1 we immediately get: 

corollary 2 

If p 0 = TI,{Yt, tel} is strictly stationary: otherwise this process 

is asymptotically strictly stationary. 
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The invariant p.d.f. of Vt is: 

J n 
(8) j~l detJJ3J g(J3j1 (yt-ocJ)) 

(9) 

ZZZ.3 Unconditional moments. 

Under the stationarity assumption we have: 

E Vt = E(oc'Zt-t + J3' (Zt-t ®In)ut) 

= E(oc'Zt-t) , 
J 

E Vt = oc'n = ,L nJocJ. 
J=l 

The unconditional covariance matrix of Vt is: 

(10) 

V Yt = V E(Yt/Zt_ 1 ) + E V(Yt/Zt_ 1 ) 

= V(oc'Zt-t) + E(J3' (Zt-t Z{_ 1 ®In)J3) , 

V Y t = oc' ( diag n-mt') oc + J3' ( diag n ®In) J3. 

This matrix can also be written: 

J 2 = ,L nJ(ocJoc~+J3J) 
J=l 

J 
and it reduces to: ,L nJ(ocJoc~+aj), if the process Y is zero-mean. 

J=l 

It can also be shown that the autocovariance function of Yt is: 

(11) 
J-1 

Yy(h) = cov(Yt,Yt_h) = ,L À~- 1oc'aJb~C, h~l with C = E(ZtY{) 
J=l 

Let us now focus on the errer term of model (1) : 

J 
(12) vt = L J3J~ (Yt-1>ut ' 

j=l AJ 

and let us consider the univariate case. 

If we denote J3 = (J3 1 , ••• ,J3J)', we see that the process vis a second 

order (weak) white noise, whose variance is: 

E v{ = E(J3'Zt_ 1 ) 2 

= J3 ' ( diag n) J3 
J 

= .L ajnJ 
J=l 

The fourth order moment of vt is: 

E vt = E[(J3'Zt-1)iut] 

= E utE(J3'Zt-1)i 

J 

where µ4 is the 

Eu{=l, and Eut=O. 

= µ 4 .L .f3jTij , 
J=l 

fourth order moment of its kurtosis since 
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(13) 

The kurtosis of vt is 

k = 
E v-+ t 
(E vf)2 

measured by: 
J 
l: 13-+.n. 

j=l .J .J 

= µ4 J 2 ' 
( .l: a3nJ) 
J=l 

[ 
VnJ33 ] 

k = µ4 1 + ' 
(En133) 2 

where En and Vn denote the empirical mean and variance with respect to 

n. It is clear that k is greater than µ4 • In particular if ut is 

normal, vt is leptokurtic. From (13) it appears that the kurtosis of 

vt increases when that of ut increases but also when the relative 

variability of the conditional variances increases. So the kurtosis 

depends on a natural measure of the heterogeneity in the conditional 

variances ,aJ. 

It is also interesting to study the properties of the vf process, 

J 
whose mean is ,l: ajnJ. After some algebra the autocovariance function 

J=l 

of vf can be shown to be: 
J-1 

(14) cov(vt,vt-h) = Caf , ••• ,a~) j~
1

aJb1À~- 1d. 

with d = E[ZtC.af , ••• ,.a5)zt_ 1 ul] 

II.4. Optimal prediction 

The optimal prediction of Yt+hCh~l) given (Y~= {Yt, Yt_ 1 ,.~.} is 

the conditional expectation: 

(15) E(Yt+h/Yt) = E(~'Zt+h-1+J3'(Zt+h-l ®In)Ut+h/Yt) 

= E(~'Zt+h-1/Yt) 

= ~'E(Zt+h-1/Zt) 
= ~'ph-1zt, 

This optimal prediction is clearly a nonlinear function of Yt and it 

can also be written, using (7) : 

(16) 

When h goes to infinity E(Yt+hl~t) converges to ~'n = E Yt • 

Note that these optimal forecasts depend not only on the mean 

parameters ~, but also on the variance parameters .aJ. 
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Similarly the conditional covariance matrix can be written: 

V(Yt+h/Xt) = V[E(Yt+h/Xt+h-1)/Xtl + E[V(Yt+h/Yt+h-1)/Xtl 

= V[~'Zt+h-1/Yt] + E[.8'(Zt+h-1Zf+h-l ®In).8/Yt] 

The conditional mean and covariance matrix of Zt+h-l given Yt are 

respectively ph-tzt = µt,h-l (say) and diag(µt,h- 1 )-µt,h- 1µ{,h-1 • 

So we have: 

(17) V(Yt+h/X~) = ~'(diag µt,h-1-µt,h-1µ{,h-1>~ 

+ .B'(diag µt,h-1®In)J3. 

When h goes to infinity µt,h-l = ph-tzt converges to TI e'Zt = TI, 

and therefore V(Yt+h/Yt) converges to 

~' (diag TI-mt') ~+.13' (diag TI®In) .13=VYt. 

II.s. Linear representations and autocovariance function 

Let us consider the following zero-mean strictly and second order 

stationary process: 

where L is the lag operator and the ÀJ's the eigenvalues of the 

transition matrix different from one. 

All the components of Y·· appearing in Wt have an index~ 

satisfying t-J+l~~~t. The conditional expectation E(WtlXt-h), h~, can 

be computed from (12) and we get: 

where the lag 

J-1 J-1 
E(Wt/Yt_h) = ,Il (1-ÀJL) I À~- 1~'a.b!Zt-h , 

J=l i=l I I 

operator 

(
J-1 

Lk I 
i=l 

i.e.: 

From the previous expression we conclude that E(WtlXt-h) = o, for any 

h~ or, equivalently, E(Wt/Wt_h) = o, for any h~. This implies, in 

particular, that the process Wt has a moving average representation 

of order J-1 and, consequently, that Yt has an ARMA(J-1, J-1) 

representation with a scalar autoregressive operator. 

J-1 det (I-PL) 
Moreover ,Il (1-ÀJL) is clearly equal to ------

J=l 1-L 
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Formula (14) shows that 

ARMA(J-1, J-1) representation 

It can also be shown that the 

in the univariate case v~ has also an 

with the same autoregressive operator. 

same is true for Y{. 

Proposition 3 

Under the stationarity assumption, {Yt, tel} 

ARMA(J-1, J-1) representation of the form: 

det(I-PL) J-1 
(Yt-E Yt) = €t + ,L 9J€t-J • 

has a linear 

1-L J=l 
In the univariate case the same is true for {v{, tel} and {Yî, tel}. 

The previous proposition has several 

specification. First, if {Yt, tel} is 

consequences in 

a QTARCH(l) and if 

terms of 

a linear 

specification is chosen, the number of relevant lags in a AR or MA 

specification may be large (infinite in theory), particularly if some 

eigen values ÀJ 

there exists a 

have a modulus close to 1. This clearly shows that 

tradeoff between the number of relevant lags and the 

degree of non linearity. Similarly, if vt is the errer process of a 

QTARCH and if it is specified as a GARCH(p,q) process and identified 

through the ARMA(max(p,q),p] representations of v{, the values chosen 

for p or q may be high. In particular if a IÀJI is near 1, an ARCH(q) 

with a large q may be selected although, by definition, only one lag 

is relevant for the conditional variance; an IGARCH mode! may also be 

selected. Finally. the previous .. proposition stresses the need of a 

simultaneous modelling of the non linearities appearing in the 

conditional mean and the conditional variance, in order to avoid cross 

effects of misspecifications ; for instance if the true process 

{Yt,tel} is a conditionnally homoscedastic process (a 1 = a 2 = .•• = aJ) 

and if it is specified as a ARCH model, identified through the ARMA 

representation of Y{, a strong ARCH effect could be found. 

Example 1 

Let us consider the univariate QTARCH(l) process defined by: 

(lS) Vt = - ~1~R+(Yt-1>-~2~R_(Yt-1) + [a1~R+(Yt-1) + a2~R_(Yt-1)Jut 

a 1 ,~2>0, ut - IID(O,l). 
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The transition matrix Pis: 

[
P[Yt>O/Yt_1>0] 

p = 
P[Yt<O/Yt_ 1>0] 

= [P[-~1+J31Ut>O] 
P[-~1+J31Ut<O] 

p [ y t >O /Y t -1 <0] J 
P[Yt<O/Yt_ 1<0] 

P[-~2+J32Ut>O]J 

P[-~2+J32Ut<O] 

= [l-G('11 ) l-G('12 )] , 

G("11) G("12) 

where Gis the cumulative distribution function of ut and 

The eigenvalues of P are 1 and G(y 2 )-G(y1), and the invariant 

probability (n1 ,n2 ) is given by: 

{
n = [l-G(y2 )]/[l-G(y2 )+G(y1)] , 

n: = G(y1 )/[l-G(y2 )+G(y1)]. 

The mean of Vt is: 

E Vt = ----------

The linear representation of Vis an ARMA(l,l) of the following 

form: 

Vt-[G(y2 )-G(y1 )]Yt-t = [l-G(y2 )+G(y 1 )]E Yt+ct+Sct-l 

= -~1 [l-G(y2)l-~2GCY1)+€t+ect-1 • 

The parameter 9 and the variance of €t can 

expressions of V Yt and Cov(Yt,Yt_1). If .13 1 = 
noise and a cancellation appears between 

polynomials. 

be determined using the 

.13 2 , Yt is a weak white 

the AR and the MA 

The linear representation of v{ and Y{ are similar. 

Example 2 

Let us consider the following QTARCH(l) model 

(19) 
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where ut is IIN{0,1) and the partitioning {AJ, j=l,10} is defined by 

the intervals whose boundary points are -4, -3, -2, -1, o, 1, 2, 3, 4. 

The conditional standard errors are assumed to be equal to one in the 

central intervals (-1,0] and (O,l], i.e. as= a 6 = 1; the other 

values of the a~s are parameterized by j=a 1 and k=a 10 , the other 

values being deduced by linear functions from a 1 to as and from S 6 to 

a 10 • Let us first assume that all the ~J are equal to zero. Figure 1 

shows the largest modulus of the eigenvalues of the transition matrix 

{once the eigenvalue 1 has been excluded) as a function of j and k. It 

is seen that this modulus 

of j and k. This suggests 

may be high, particularly for large values 

that, although the mode! is markovian of 

order one, an ARCH{q) specification, in which the conditional variance 

is a linear function of the squared past values, may necessitate a 

large number of lags. Figure 2 is similar to the previous one when 

~ 1 =~ 2 = ••• =~s=-1.5 and ~ 6 =~ 7 = ••• =~10 =1.5 and similar conclusions can be 

drawn in this case for small values of j and k (the horizontal axes 

are decreasing) ; note however that cancellations in the AR and MA 

polynomials may appear (in particular if j = k = 1). 

III. STATISTICAL PROPERTIES 

III.1. The pseudo-maximum likelihood estimators 

Let us assume that 

process u is IID{0,1) 

~J,aJ,j=l, ••• ,J can be 

we have observed Y0 , ••• ,Yr and that the 

,not necessarily normal. The parameters 

estimated by the pseudo-maximum likelihood 

method based on the normal distribution. The P.M.L. estimators are the 

solutions of: 
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(19) ~~j Lr = jil te~J {-; Log 2n-Log det.aJ - ~CYt-aJ)'a3 2 CYt-aJ>}· 

where BJ is the set defined by {t: l~t~T, yt-1eAJ}. 

If TJ is the cardinal of BJ, we get . . 
(20) Lr = -~ {-

nTJ 
Log 2n - TJ Log det aJ- ~ L CYt-aJ)'aj 2 (yt-aJ)} 

J=l 2 2 teBJ 

The maximisation of Lr 
(aJ,aJ), j=l, ••• ,J and we 

can be made separately with respect 

get the least squares estimators: 

to the 

1 

(21) 

= YJ = L yt I 

TJ teBJ 

1 -
= - L (Yt-YJ) (Yt-YJ)' . 

TJ teBJ 

These estimates are empirical mean and and variance, but the sets BJ, 

on which these empirical moments are computed, are endogenous. In the 

case of rate of returns, a usual way of determining expected returns 

and volatilities consists in averaging on H consecutive observations, 

i.e. in determining . . 

t 
1 t+H 

= - L y'( , 
H -r=t 

ai 
1 t+H 

(Y'(-ôct) (Y'(-ôct) ' = L . 
H -r=t 

"' It is clear that the previous estimators aj, can be interpreted in 

terms of conditional (or instantaneous) volatilities, whereas the 

usual estimators j3f are marginal (or historical) volatilities. 

The same kind of comments applies to functions of the parameters 

a,a. For instance, we may consider a bidimensional model, where the 

first series is the cum-dividend return on a given security and the 

second one is the market return. The "beta" of this security is often 

evaluated through a regression of Y1 t on Y2 t, i.e. is estimated by 

the empirical regression coefficient associated with 

Cov(Y1 t,Y2 t)/V(Y 2 t) ; it is an "historical" beta. In fact a more 

useful definition of the beta is the regression coefficient 

conditional to the past Cov(Y1 t, Y2 tlYt_ 1 )/V(Y2 tlYt-i.>· In the QTARCH 

model the beta is a12 J/a 22 J, if teBJ, where a12 J and a 22 J are (1,2) 

and (2,2) entries of aJ. The betas vary with time in an endogenous 

way. 
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III.2. The asymptotic properties of the estimators 

These properties are summarized in the following proposition 

proved in appendix 2. 

Proposition 4 The P.M.L. estimators of the ~J's and aj's are asympto

tically normal;they are also asymptotically independent 

if Eu!= o. The asymptotic covariances matrices of 
"' jT(;J-~J> and jT[vec aj-vec aj] are such that: 

and: 
"' "' Cov [ ""(B -B ) lff'i(B -B ] 

as v• klj klj 'v• k*l' k*l' = C 
nJ klk*l*j ' 

1 

k' 1 k*' l* 
where C • •· = Cov(a. u u'a.,a. u u'a. ) 

klk 1 J J t t J J t t J 
and a~ is the column of matrix aJ. 

In the univariate case the asymptotic variance of 
"' /T(aj-aj) reduces to: 

1 
a1 (µ4 -1> , 

Tt . 
where µ4 is thê kurtosis of ut 

In practice the asymptotic variances can be easily estimated from 

their empirical counterparts. For instance since 

th 
C = Cov(v v v v /Y eA) where v is the k 
klk*1 •j kt lt' k*t 1 •t t-1 j ' kt 

component of the innovation, a consistent estimator is: 

X (~ 
. T.; 

"' "' ) t~B.;vk*tv1•t 

III.3. Estimation and test when the mean and variance partitions 

are different 

When the partitions for the mean,{AC, k=l, ••• ,KM}, and the 

variance,{A~, k=l, ••• ,Kv} are different, it is possible to use the 

previous model with the intersection of these partitions denoted by 

{AJ, j=l ••• J} and to estimate the ~~s and the a~s by the previous 

pseudo-maximum likelihood method. However this method does not take 

into acount the constraints on the ~J's and the a.;'s induced by the 
equalities . . 

t = ,u A.; k = 1, ••• , KM ' JeJ~ ' 
(22) 

Av = u A.; k = 1, ••. , Kv ' k jeJb ' 

that is to say the constraints: 



(23) 
I"" - °" . , \a3 : .e3' 

, ~J,J, e J~, k = 1, •.• ,KM, 

, ~J'J' e Jb, k = 1, ... ,Kv 
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The constrained estimators can be obtained by the asymptotic least 

squares method. In the univariate case, we get: 

(24) 
~-T. TJ 

°"k = ,l: k ....:!........: / l: ' 
k = 1, ••• , KM 

JeJM "'2 jeJ~ A 

J3 J .aj 

(25) :at = ,l: k 
TJ 

/ ,l: k 
TJ 

JeJv A JeJv A 

.aj J3j 

An asymptotically optimal test statistic of these constraints is the 

value at the optimum of the O.L.S. objective function, i.e. : 

(26) 

Under the null hypothesis, given in (23), S 1 is asymptotically 

distributed as a chi-square with 2J-KM-Kv degrees of freedom. 

In summary: 

Propositions 

The partitions {AC, k=l, ••• ,KM} and {A~, k=l, ••• ,Kv} are accepted at 

the asymptotic level €, if S 1 ~f-€(2J-KM-Kv) • 

Also note that, under H0
, the asymptotic distributions of 

(where ;k is the common values of the °"J for jeJ~) and 

(where i3f is the common value of the .aj for jeJb, are given 

(27) ./T - - nJ L [ ( )-1] (rxk-rxk) -->NO, . l:k 2 
T-ta:1 JeJM J3J 

and 

(28) 

All these variables are asymptotically independent. 

./T (ëxk -ôik) 

ft ( J3 f -j3f ) 
by: 

It is also worth noting that since the distribution of ut is generally 

non normal, the ALS estimator af is asymptotically more efficient than 

the constrained pseudo-maximum likelihood estimator (see Gourieroux

Monfort (1989-a, chapter X)]. 
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XXX.3. Test of conditional homoscedasticity (in the univariate 

case). 

Let us first assume that the partitions for the mean and the 

variance are identical. In this case the conditional homoscedasticity 

is characterized by: 

(29) 

From the 

estimator 
previous subsection, 

of the common value of 

(30) 
J TJ J 

j2 = L / ,L 
j=l A. J=l 

.a3 

The test statistic is: 

(31) 

it is clear that, 

the J33 ' denoted by a2 , 

TJ . 
A. 

J3j 

' 

whose asymptotic distribution under H0 is X2 (J-l). 

under Ho, the 

is . . 

If the partitions are different the homoscedasticity assumption is: 

.(32) H -,a2 - - -,a2 o : 1 -. • .- K 
V 

and the estimator of their common value is: 

Kv -2 T . J TJ 
(33) -2 . Lk ....:!. / ,L .a. = k~l .ak JeJv A. J=l A. 

and from (25) . J3j J3j . 
J TJ J TJ -2 = ,L / ,L .a. 

J=l A. J=l A. 

J35 J3j 

which, as expected, is the same estimator as the one obtained directly 

from the unconstrained estimator ~3 associated with the intersection 

of the two partitions. 

The test statistic is: 

(34) 

whose asymptotic distribution, under H0 , is X2 (Kv-l). 

In summary: 
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Proposition 6 

If the mean and variance partitions are the same, the conditional 

homoscedasticity assumption is rejected at the level € if 

S2 ~Xf-€(J-1), where S2 is given in (31). If the partitions are dif

ferent this assumption is rejected if S 3 ~X~-€CKv-1), where S 3 is given 

in (34). 

XXX.4. Test o~ weak and stronq white noise 

Let us first consider the case where the mean and variance 

partitions are identical. Moreover, in order to simplify the notations 

we consider the univariate case. 

If ~ 1 = ~2 = ... = ~J' the process Yt is a weak (or second order) 

white noise whose mean is the common value of the ~J's. Using the same 

approach as in the previous subsection an A.L.S. based test statistic 

for this null hypothesis is: 

(35) ' "' .aj 

where 
J TJ 

/ ,l: ' J=l "' .aj 

whose asymptotic distribution under the null is X2 (J-1). If the common 

value of the ~~sis zero, Yt is a zero-mean weak white noise and this 

hypothesis can be tested from the statistic: 

J T "'2 J~J 
(36) S 5 = l: 

j=l "' 
.aj 

whose distribution under the null is X2 (J) • 

If the mean and variance partitions are different, S4 and S5 are 

replaced, 

(37) 

and: 

(38) 

respectively, by: 

S 6 = !H (ëë -ëë) 2 
k=l. k 

TJ 
. l:k 
JeJ H A 

.aj 

KM TJ 
S 7 = l: ~ • l:k , 

k=l JeJ H "' 
.aj 

whose asymptotic distributions under the null are respectively 

X2 (KH-l) and X2 (KH). 
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The strong white noise property is characterized by the equality 

of the conditional means and the equality of the conditional 

variances: moreover in the zero-mean strong white noise case we assume 

that the common value of the conditional means is zero. 

When the partitions are the same, the strong white noise 

hypothesis and the zero-mean strong white noise hypothesis are 

respectively tested from the statistics S 2 +S4 and S 2 +S 5 , whose 

asymptotic distributions under the null are, respectively, X2 (2J-2) 

and X2 (2J-l). 

When the partitions are different, the relevant 

and S 3 +S 7 , whose asymptotic distributions 

respectively X2 (Kv+KM-2) and X2 (Kv+KM-l). In 

following proposition. 

statistics are S3 +S 6 

under the null are 

summary, we have the 

Proposition 7 

At the asymptotic level €, we have the following critical regions: 

• if the partitions are identical, 
weak white noise hypothesis 

zero-mean weak white noise 

strong white noise 

zero-mean strong white 

• if the partitions are different 
weak white noise 

zero-mean weak white noise 

strong white noise 

zero-mean strong white noise 
hypothesis 

III.5. Tests on ARCR-M effects 

. Ss~Xf-€(J) . 

. S 2 +S4 ~Xf-€(2J-2) . 

. S 2 +S 5 ~Xf-€(2J-1) . 

. S 6 ~Xf-€(KM-l) . 

. S7~Xt-€(KM) . 

. S 5 +S 6 ~Xt-€(Kv+KM-2) . 

. S 3 +S 7~Xf-€(Kv+KM-1) . 

Engle-Lilien-Robbins (1987) introduced the notion of ARCH-M mode! 

in which the conditional variance or the conditional standard error 

appears in the conditional mean. 

In our univariate mode! this kind of condition implies that the 

partitions for the mean and the variance are the same and that: 

3y: ~J = y~j j=l, ••• ,J (variance case) 

or 3y: ~J = y~J j=l, ••. ,J (standard error case) 

Let us first consider the variance case. The hypothesis 

{3y : ~J = y~j} is in a mixed form and is easily tested (see 

Gourieroux-Monfort (1989-b)), in the following way. 
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In a first stage we compute the OLS estimator of y, from the 

artificial regression: 

j =l, ... 'J , 

and we get: 

y=----
J A 

,L J31 
J=l 

Then we compute the asymptotic variances of jT(oè;-y~j) under the null, 

132 T~j 
i.e., _.d. (l+y2 J3j(µ 4 -l)), which is estimated by [l+i2 ~j(P4 -l)]. The 

n; TJ 

test statistic is T times the optimal value of the objective function 

in the previous artifial regression when the GLS is applied with the 

variances given above. We get the statistic: 

(39) 

with 
, 

whose asymptotic distribution under the null is X2 (J-l). 

In the standard errer case we use the result: 

A L [ J3
2
. J /T(J3;-J3J) -->NO,__::!. (µ 4 -1) , 

T-tco 4nJ 

and the statistic becomes: 

(40) ' 

with: 
J ocJTJ J 

y* = ,L / ,L TJ 
J=l A J=l 

J3J 
1 T 

,.. 
OC; 

= - ,L TJ, 
T J=l A 

J3 J 
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J A 

,l: QJ.e J ,., J=l 
and "'I = 

J A 

.l: 
J=l 

.aj 

The asymptotic distribution of 5 9 under the null is X2 (J-1). 

Pro:eosition 8 

The critical regions at the asymptotic level € are . . 
S8 ~Xf-€(J-l) for the ARCH-M effect in variance, 

S9 ~Xf -€ (J-1) for the ARCH-M effect in standard errer. 

III.6. Tests of the CAPM 

Let us now consider tests based on financial theories. 

The Capital Asset Pricing Madel is based on the assumptions that 

individual portfolios are determined in an optimal way and that there 

is a clearing condition assuring that the market portfolio is a convex 

combination of individuals' optimal portfolio. It follows immediately 

that the market portfolio is on the portfolio frontier [see Huang

Litzenberger (1988)]. This condition implies some restrictions on 

dynamic models describing the excess rates of return with respect to 

that of a riskless asset. 

a) First, 

),,= ( À 1 ' • • • 'À n ) , 

if (Y1 t,•••,Ynt>' are such 

is a vector whose entries 
net rates of return, if 

are the supplies in the 

different assets assumed ta be fixed (as mentioned by 

Engle-Ng-Rothschild (1989) it is a strong assumption), we have under 

the CAPM: 

where a is a constant coefficient measuring the risk aversion. 

Distinguishing the different regimes of our model, we get: 

3 a: ~J = a ,aj>,. j=l, ••• ,J. 

This kind of hypothesis might be tested along the following lines if 

the quantities),, are available and exogenous. 
A 

i) In the first stage, we regress by o.L.S. QJ on ,aj). for the 

different regimes, which gives an estimate of the measure of the risk 

aversion a, which is consistent under the null. 

ii) Then we estimate the asymptotic covariance matrix: 
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A 

rca,À,~J,aj) = VasC/T(@J-aajÀ)] , 

by using property 4 and replacing the unknown asymptotic variances of 
A 

jT(@J-~J>, jT(vec aj-vec aj) by their estimates and a by a; let us 
A 

denote by rJ the matrix thus obtained. 
A 

iii) In the second stage, we regress @J on ajÀ by G.L.S., using 

A 

rJ as covariance matrices, and we get a better estimate a of 

coefficient a. 
iv) The test is based on the statistic: 

(41) 

Using the results in Szroeter (1983) Gourieroux-Monfort-Renault (1988) 

and Gourieroux-Monfort (1989-b) we get : ,· 

Proposition 9 

The CAPM hypothesis is rejected, at the asymptotic level €, if 

S1 e~Xf -€ (nJ-1) • 

Note that if À is unknown it is be possible to implement the same 

kind of test since the constraints become 3À*:~J = ajÀ* and the 

degrees of freedom of the statistic obtained is.n(J-1). 

From a descriptive point of view, the residual plots, i.e. the values 
A 

of @J-âajÀ, may be informative. They may allow to detect some regions 

for which the CAPM is net satisfied, i.e. the j values for wich 

A 

Q .-a02.À is "far" from zero. J JJ J 

b) The CAPM is often tested from some of its consequences. For 

instance it is known that the CAPM also implies some restrictions in 

which À does net directly appear. If the net rates of return of the 

assets and of the market portfolio are both available, we may write a 

joint model on (Y 0 t,Yit···Ynt>, where ois the index for the market. 

In such a case the CAPM implies: 
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If we introduce the block decompositions: 

aj = (~o O j ~o j) , 
BjO Bj 

O(j = 

the condition gives the following implicit restrictions on the 

parameters 

(42) 

These restrictions can be tested in the usual way by Wald's procedure 

either regime by regime, i.e. separetely for the different j's, or 

globally for all the j's. 

rrr.&. Factors determination and efficiency 

It is interesting, in multivariate financial time series models, 

to look for directions, i.e. linear combinations (or portfolios) of 

the initial series with specific properties. The QTARCH models may be 

or factors. useful for an empirical determination of such directions 

Let us consider for example the determination of 

homoscedastic directions [ Diebold-Nerlove (1986), 

conditionally 

(1989), Engle 

(1987) Engle-Ng-Rothschild (1989), Nerlove-Diebold-Van Beek-Cheung 

(1988)]. Conditional homoscedasticity exists for a given portfolio 

associated with the weights µ iff: 

µ"' ajµ does-· not depend or j. 

This hypothesis may also be written under a mixed form: 

3µeR",µro 3veR•:µ'.13jµ=v, ~j 

or 

(43) 3µeR": µ'ajµ=l ~j (if the J33 are invertible) 

This hypothesis can be tested using a generalized Wald test [see 

Szroeter (1983), Gourieroux-Monfort (1989-b)], if J is greater than n. 

In a first stage, we first determine a consistent estimator 

µofµ by minimizing: 

J A 

.l: (µ 'ajµ-1) 2 • 
J=l 

A 

Then we determine the asymptotic variance of jT(µ'.13jµ-l) 

which is a fonction ofµ and of the asymptotic covariance 

A 

matrix of vec aj. This asymptotic variance can be consisten-
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tly estimated by replacing µ by µ and Vas/T(vec a3-vec aj) 

by the estimate based in property 5. We denote 9; this 

estimated variance. 

Finally the generalized Wald statistic is defined by 

, J l A 

S11 = TMin .~ :;::- [µ'ajµ-1] 2 • 

µ J=l '1; 
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Using the results established in szroeter and Gourieroux-Monfort, we 

get the following result. 

Proposition 10: If we know that there exists at most one vector µe~n 

such that µ'ajµ =land if J>n, the generalized 

Wald statistic S11 is asymptotically 

distributed under the null hypothesis as a chi-square 

distribution with J-n degrees of freedom. 

A given set of K portfolios is defined by the (Kxn) matrix of its 

weights, denoted by B. It is readily seen that, if the process Yt of 

the net rates of returns, is a QTARCH process the efficiency condition 

of the set of portfolios Bis: 

(44) 3 v;EIRK : ca3)- 1 0<; = B'v; , v-j 

This hypothesis has a bilinear mixed form can be easily tested by 

using a method ··similar to that· proposed above for the CAPM [see 

Gourieroux-Monfort-Renault (1988)] : this method leads to a statistic 

asymptotically distributed as a X2 [(n-K)J] under H0 • 

If we want to test that there exists an efficient set of K(<J) 

portfolios (this set being no longer given) the assumption can be 

written in the same way except that B is unknown : moreover, for 

identifiability reasons, B depends on (n-K)xK independent parameters 

and therefore the test procedure for bilinear mixed assumptions leads 

to a statistic whose asymptotic distribution under H0 is 

X2 [(n-K) (J-K)]. An equivalent way of writing this assumption is: 

(45) 3c: cca5>- 1 0( 4 = o v-j 

where C is a (n-K)xn matrix depending on (n-K)K parameters. 
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IV. EXTENSIONS 

IV.1. Exoqenous variables 

Let us now assume that an exogenous vector appears in the right 
hand side of equation (1). More precisely let us assume that the model 
is univariate, for notational simplicity, and defined by: 

J 
( 46) Yt = ,L c~j+xtaJ) ~ (Yt_ 1 ) + 

J=l AJ 

where xt is 

parameters. We 

process {ut}. 

row vector of size L and aJ a column vector of L 
assume that the process {xt} is independent from the 

If {xt} is stationary, {Yt} is stationary 
stationary. The qualitative process {Zt} is 
transition matrix P* is defined by: 

p;k = Pr[YteAJ/Zk,t-t = l] 

= Pr[~k+xtakeAJ] 

= E 0(AJ-~k-xak) 
X J3k 

as soon as 

a Markov chain whose 

and we get the same kind of results as in section II if Pis replaced 
by P*. 

(47) 

with 

The pseudo-log likelihood function is: 

r; = .~ L [- ~ Log(2TIJ3~) -
J=l teBJ 2 J 

T 
= ~ lt 

t=l 

1 1 J - Log(2nJ33)- --2 (Yt-~J-xtaJ) 2 
2 2J3j 

It is always possible to center the xt vectors within each class of 
index BJ ; in other words, if XJ denotes the TJxL matrix whose rows 
are xt, teBj, we assume that the sum of the elements of any column is 
zero. In this case, it is easily seen that the pseudo-maximum 
likelihood estimators of the ~j's are the same as in III.l, and those 
of the aJ's are: 

(48) aj = (XJXJ)- 1 XJYCJ) 
where YcJ) is the vector whose components are Yt, teBJ (in the same 
order as the rows of XJ). The pseudo M.L. estimator of .133 becomes: 

A 1 -
(49) J33 = L (Yt-YJ-xtaJ) 2 

TJ teBJ 
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and,if Eui 

These results imply that the variables jT(êxJ-oc), jT(.95-.95), jT(aJ-aJ) 

j=l, ••• ,J are asymptotically independent. 

Moreover: 

jT (êxJ-oc) 
L 

N(o, .85) (50) --> ' T-tm TIJ 

"' L N[ O, (Exx') -1 .85] (51) jT(a -a.)-> ' J " T-tm TIJ 

"' L [ .9i ] 
(52) /T(.eJ-.e3) --> N O, 2 (µ4 -1) . 

T-tm TIJ 

The various tests on the ocJ's,.eJ's proposed in the previous section 

remain valid. 

An additional test would be a test of linearity with respect to 

xt, i.e. the test of the null hypothesis : a 1 =a2 ••• =aJ. The common 

value a of the aJ's can be estimated from the A.L.S. mode!: 

/81 = a + W1 

\aJ = ! + WJ 
"' T.95 

with V(wJ) = (X'X)- 1 , where X'= (X[, .•• ,X~) 
TJ 

We obtain . . 

[~ 
J T ]- 1 1 -~ TJ 

8 = X'X ,L 2 - X'X aJ 
J=l "' T J=l "' .85 .85 

J TJ J TJ 
(53) 8 = ,L 8J / ,L 

J=l "' J=l "' .85 .85 

The asymptotic covariance matrix of jT(a-a) is [.~ nJ Ex'x]-
1

, 
]=l A 

.85 

whi'ch · t' t d b (
1 ~ TJ x'x]- 1 

1.s es 1.ma e y - .~ :-
T2 J=l " 

.85 



The test statistic is: 

1 J TJ 
s 1 2 = .~ caJ-a)'x'xcaJ-a) 

T J=l A 

J33 

(54) 

Proposition 11 

The asymptotic critical region, for testing the non linearity in x at 

the asymptotic level €, is S12 ~Xf_€[L(J-1)]. 

IV.2. Multiple laqs 
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The statistical methods proposed above can be extended to 

multiple lags. The more general model in this case is: 

J J 
(55) Yt = .~ ocJ-1 (Yt-11•••,Yt_P)ut + -~ J3J~ (Yt-1,•••,Yt-P>ut 

J=l AJ J=l AJ 
where {AJ, j=l, ••• ,J} is a partition of RP. 
The main problem which is likely to arise in this case is the large 

number of parameters. In order to reduce the number of parameters, it 

is possible to assume first that the partition {AJ,j=l, ••• ,J} is the 

product of a partition in R {Af, i=l, ••• ,I} ; in tbis case model can 

be written: 

(56) 

In this kind of specification it is possible to adopt an approach 

which is similar to the analysis of variance. In particular a 

significant reduction of the number of parameters will be obtained by 

assuming an additive model, or a model without time interactions. For 

instance, in the univariate case such a model can be written: 

(57) 

with the positivity constraints, J3 0 >0 and J3 0 + J3, + ••• + J3. >O 
l.1 , 1 l.P ,P 

for any (i1 , ••• ,ip)• Within this framework, it would be also possible 

to test a more restrictive model, defined in the same spirit as the 

GARCH model and called generalized QTARCH or G-QTARCH: 

(58) (::: (j 2 -
t - S 1 >0 
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V - AN APPLICATION 

Let us now illustrate the previous results by investigating the 

conditional variance of the daily relative change of the Paris stock 

index (indice CAC), from January 86 to April 90. As a first insight in 

the data, let us consider a QTARCH(2) model where the space 

(Yt-i ,Yt_ 2 ) is partitioned into 36 sets obtained from the product of 

the univariate partition whose bounds are -0.8%, -0.4%, 0%, 0.4%, 

0.8%. This model can be written: 

(59) Yt = [i!l j!l J3, J/IA1 (Yt-1 )'1AJ (Yt-2) ]ut 

The (pseudo) maximum likelihood estimators of the J3 1J are all 

significant, using a one-sided 5% ratio test based either on the ML 

standard errors or on the PML standard errors. The estimation of the 

fourth moment of 

leptokurtic effect 

ut based on this model is 

and justifying the use of a 

4.1, suggesting a 

PML approach. A few 

conditional means computed with the same partition are marginally 

significant but, in the sequel, we concentrate on the conditional 

variances and the conditional means are taken equal to zero. 

A 

The estimates J3 1 J of the J3 1 J are shown in figure 3 (note that the 

coordinates of the horizontal axes are the centers of the intervals A1 

and AJ in decreasing order). This figure seems to show that the 

conditional standard errors J3;J are increasing functions of the 

absolute values of the interval centers corresponding to Yt-i and 

Yt_ 2 ; however it seems that the responses are not symmetrical for the 

negative and for the positive values of Yt-i and Yt_ 2 • In particular, 

A 

figure 4 shows the values of the 13 11 (i=l, ••• ,6) and indicates that the 

conditional standard errors are larger for the negative values of Yt-i 

or Yt_ 2 than for the positive values. 

~ .................. __..__.__.__.__._..,__~"'-'"-,J'--"_l,_...__,_...._.....1...-.........J 

· o -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0 

Figure 3 
Figure 4 



26 

In order ta study a possible influence of more than two lags and in 
order ta keep a reasonable number of parameters, we now consider the 
following additive model for the conditional variance G~ : 

(60) 
3 4 

a2t = b 0 + 't" l: b. .'1 (Yt . ) .~ • 'J A. -J 1=1 ]=1 1 

where the Ai, i=1, ••• ,4 are the intervals defined by the boundary 
points -0,5%, o, 0,5%. Note that the identifiability of the model is 
reached by imposing that the differential impact the fourth interval 
A4 = [0,5%, +a,], is zero at all lags. The P.M.L estimates of the 
parameters are given in table 1, as well as the t-ratios based on the 
M.L. formulae (i.e. using the hessian of the Log-likelihood for 
computing the variances) and on the PML formulae. 

b 
0 

bll 

b21 

b31 

bl2 

b22 

b32 

b13 

b23 

b33 

bu 

b2 .. 

b3 .. 

Estimates tratios 
X 10-S (PML) 

11. 9 7.2 

S. 1 2.0 

- 3. 3 - 2. 0 

- 2 .o - 1. .. 

6 ... 2.0 

- 1. 6 - 1. 1 

- 2.3 - 1,3 

6.6 2.3 

0.2 0.1 

- 0. 7 - o.s 

6 ... 2.2 

- 1.7 - 1.0 

- 3. 2 - 2.s 

Table 1 

<Additive modeil 

t rat los 

(ML) 

.... 
2,6 

- 2.7 

- 1.6 

3.1 

- 1. .. 

- 1.7 

3.3 

0.2 

- 0.7 

2.9 

1.3 

- 3.0 

Cl) 
0 
g ,--.,.....-,---,---,-,........,.....-,---,..--,.-,........,.....-,--,---,.--,__, 
0 
ci 

~ 
0 
0 
0 
0 
ci 

0 
0 

g 
0 
ci 
1 

~ 
0 
0 

\ --- lag 1 

'\, --- lag 2 

\, 
\\ 

\ ', 
\ ', 

\ \ 

- -- lag 3 
-·-·-· lag 4 

\ ',_ 
\ ------- ---7 ----------- ,,,,. 

\ 9' / 
:,,, . 

/ 

· â ._ .... __ 0 ....... 0 .... 0_6...__._ ........ __ 0 ..... 0_0 ...... 2-------0-.0 ... 0_2...._0 ....... 0_04 ........ 0-..... 00_6 ........ 0--'.008 
1 

Figure 5 

(Additive model) 

As expected, the M.L. t-ratios are always tao optimistic compared to 
the PML t-ratios. Note however that, according ta bath ML and PML 
t-ratios, the differential impacts of the first class A1 = [-œ, 0.5%] 

"' "' "' with respect ta the reference class A4 = [0,5%, m], i.e. b 11 , b 12 , b 13 

"' b 14 , are significantly different from zero and positive for all lags. 
This is a strong confirmation of the non symmetrical effects of the 
past values of Yt on the conditional variance. 
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Moreover figure 5 shows that the profiles of the reaction 

functions at different lags are similar. Following the previous remark 

it is natural to test, within the previous model, the restrictions 

implied by a G-QTARCH specification i.e. : 

(61) i = 1,2,3 

j = 2,3,4 

A test, asymptotically equivalent to the (pseudo) Wald test, is 

easily implemented by using the A.L.S. theory. In a first step we get 

,., 
the OLS estimates À of À in the linear model: 

A A 

(62) b 1 J = À b 1 ,J_ 1 +u 1 J i = 1,2,3 

j = 2,3,4 

In a second step we apply the GLS method to the same linear model by 

A A 

using the covariance matrix of the u 1 J's:Vas(b 1 J-Àb 1 ,J-i) ,., • The 
À=À 

test statistics based on the PML and on the ML approaches are 

respectively: 

(PML = 2 •8, (ML= 5.8 

Compared to the quantiles of the X2 (8) distribution at any reasonable 

level, these statistics are not significant and the G-QTARCH 

specification is accepted. 

Therefore we now estimate a G-QTARCH model; since this kind of 

specification is parsimonious for the parameters 

differences between the profiles at different lags, we 

parameters to a precise description of the within one 

these profiles. More precisely we consider the model : 

12 
(63) cr{= 80 û{_ 1 + ,L 8 1 ~ (Yt_ 1 ) 

i=l A. 
1 

describing the 

can affect more 

lag feature of 

where the A1 , i=l,2, ••• ,12 are the intervals defined by the boundary 

points: -1.7%, -1.1%, -o.7%, -0.4%, -0.2%, 0%, 0.2%, 0.4%, 0.7%, 

1.1%, 1.7%. 

The results of the PML estimation are given in table 2 and the 

profiles of the 8 1 , i=l, ••• ,12 are shown in figure 6. 
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t rat los 

(ML) 

. 
25.8 

"4.5 

2.9 

2.3 

2."4 

0.3 

0.03 

0.07 

0."4 

c:o 
N 

8r---.--.----.---r-.,.....-.--.....---,,----..----.----, 
C! 
0 

st" 
N 
0 
0 
C! 
0 

0 
N 
0 
0 
0 
ci 

c.o 

0 
0 
0 
0 

N 

0 

' 

Generallzed QTARCH mode! 
Imp 11 ed GARCH 

/ 
/ 

/ 

-

28 

a9 1.51 1. 8 2."4 

8...._~--~o~.0~2=--"-_~o.~0-1 ....... _o.~o-o___,__o~.o-1__.._0 __ 0~2-.._-.1 
0 

0.03 

a,o 

all 

al2 

1.51 1.5 

1.31 1.2 

"4.38 2.2 

Table 2 

(Geaerallzed QTARCH mode!) 

2.1 

1."4 

2.8 

2
Flgure 6 

Graph of O"t as a functlon of 

Y CO"z 
t-l t-l equal to the marginal 

v arlance) 

From table 2 it is seen that the autoregressive coefficient S0 is 

highly significant and that the S1 corresponding to large values of 

IYt-l I are also significantly different from zero; on the contrary 

the Si corresponding to small values of IYt-i I are not significantly 

different from zero. Moreover, the non symmetrical feature already 

mentioned is still particularly clear (see also figure 6). 

It is now possible to test the restrictions implied by a GARCH 

formulation, i.e. : 

(64) 3 À,µ: si =À+µ a, i = 1, ••. ,12 

where .a 1 is the center of the interval Ai 

The A.L.S. approach provides the Wald tests based the PML and ML 

methods: 

(PML = 24.8 (ML= 41.5 

If We Compare (PML and (ML to the quantiles Of the X2 (10) 

distribution, the GARCH specification is rejected at all reasonable 

levels, since X~, 95 (10} = 18.3 and X~, 99 (10} = 23.2. More precisely, 

figure 6 shows that the GARCH formulation could imply a serious 

distorsion of the parameter shape. 
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In order to smooth the shape of the response function to Yt-i we 

have used the following non parametric technique. We first simulate û~ 

using model (63) (with û~ equal to the marginal variance 15.3 10- 5 ) 

then we apply a kernel regression technique (with a gaussian kernel) 

A A 

of GÎ on GÎ-i and Yt-l. The shape of the curve obtained is given in 

figures 7 and 8 (û~_ 1 is equal to the marginal variance 15.3 10- 5 ). On 

figure 7 Yt-i varies between -2.5% and 2.5%; on figure 8, we have 

extended the range of Yt-i between -4% and 4%, however the shape for 

large values of IYt-i I becomes less precise because of the small 

number of observations (for instance 11 smaller than -3.5% and 5 

greater than 3.5%). On these figures is also shown (dotted line) the 

parabola associated with the GARCH(l,1) mode!: 

(65) GÎ = 0.792 û{_ 1 + 
PML t ratios: (13.2) 

ML t ratios: (19.8) 

0.159 YÎ-i 
(3. 0) 

(5. 0) 

+ 1.1.10- 6 

(2. 3) 

(3.2) 
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Figure 8 

The curves of figures 7 and 8 again illustrate the non symmetry 

issue. 
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Such an analysis could obviously be pursued in various 

directions: specifications of parametric functional forms 

crf=f(af_ 1 ,Yt-i>, test of stability for different subperiods, specific 

effects of some days in the week, impact of outliers ••• For all these 

problems the statistical methods proposed in this paper are likely to 

be useful. 

VI - CONCLUDING REMARKS 

In this paper we have studied a class of conditionnally 

heteroscedastic models, called the QTARCH models, both in their 

probabilistic and their statistical aspects. This kind of models is 

easily implemented and seems to provide a flexible tool for a deep 

investigation of the conditional means and variances. These models can 

be used in a purely descriptive way or they can be used as a framework 

for testing successive restrictions based on statistical or economic 

considerations. Moreover, as shown in the application, our approach 

could be combined with non parametric techniques and it could be also 

useful for suggesting relevant parametric models. 

Appendix 1 

spectral Decomposition 

Let us consider the case of a stochastic matrix P which admits a 

diagonal representation. Since Pis completely regular, 1 is a single 

eigenvalue and the other eigenvalues ÀJ j=l, ••• ,J-1 have a modulus 

strictly smaller than one. Therefore we have: 

(*) 

where Mis a complex matrix whose columns are eigenvectors of P. The 

first columns may be chosen as TI and the other ones are denoted by 

a 1 , ••• aJ_ 1 • In a similar way (M- 1 )' is a matrix whose columns are 

eigenvectors of P'. The first column may be chosen as e (since TI'e=l) 

and the other ones are denoted by b 1 , ••• ,bJ-t. 

With these choices and notations, equation (*) becomes: 

J-1 
P = TI e' + .~ ÀJaJb1 , 

J=l 
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and the relationship MM- 1 = I gives the conditions 

Appendix 2 

Asymptotic Properties of the P.M.L. estimators 

The asymptotic normality of the P.M.L. estimators and the 

asymptotic independence of the QJ's, ~J's are classical results and we 

shall only focus on the derivation of the asymptotic covariance 

matrices. 

i) Asymptotic covariance matrix of jT(QJ-~J) 

From the stationarity properties, we deduce: 

v .. [JT [!: Yt"1 (Yt-1) - E Y,~A, (Y,_ 1 )]] 
AJ 

"1 (Yt-1) - E 11 (Yt_1 ) 
AJ AJ 

r r -~,::] l . - l: Vt'1 (Yt-1) 
Tt AJ 

= Vas /T 
1 l: '1 (Y t -1 ) 
Tt AJ 

= 
[

V(Yt '1 (Yt-1)) 
AJ 

Cov(11 (Yt-1>, Yt"1 (Yt-1>> 
AJ AJ 

= [~J~~nJ(1-nJ) + ~jnJ 
~~nJ(l-nJ) 

Then we deduce the asymptotic covariance matrix of jT(QJ-~J) 

l: yt '1 (Yt-1) 
,.. t AJ 

where: ~J = --------
l: '1 (Yt-1) 
t AJ 

We get: 



1 
= c~J~'~TIJ(l-TIJ) + ajTIJ) 

TI2. 

= 

J 

2 ~J~~TIJ(l-TIJ) 

Tij 

A 

ii) Asymptotic covariance matrix of jT[vec aj-vec aj] 

A 
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The asymptotic covariance matrix of jT(vec aj-vec aj) can be 

derived assuming ~J=O, ~j without loss of generality. In such a case 

the estimator is: 

where: 

y Y' -t t -

A A 

Let us denote by BkeJ the (k,1) entry of aj, we have: 

Lt vktvet ~ (vt-1> 
AJ 

A 

The asymptotic covariance·matrix ·of the BkeJ's, k~l may be derived 

from the properties of the variables: 

AkeJ = vktvet ~A. (vt-1> 
J 

a) We have: 

E[vtvt ~ (vt_ 1 )] = E[aJutu{aJ ~ (vt_ 1 )] = ajTIJ. 
AJ AJ 

We deduce that E(AkeJ> = BkeJTIJ. 

b) Let us now compute the variances and covariances. We have: 

Cov(Aklj' Ak*l*j) 

= Cov[E(Aklj/vt_ 1), E(Ak*l*j/vt_1 )] 

+ E[Cov(Aklj' Ak*l*j/vt-1>] 



where a~ is the k th column 

matrix, we see that a~'aS is 

Therefore we get: 
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of aJ. Noting that aJ is a symmetric 

the (k,l) element of aj, i.e. BkeJ· 

Cov(Aklj' Ak•1•j> 

k* l* 
+ nJ Cov(a~'utufaS, aJ ,utufaJ ) 

= B B n. (1-n .)+n c (say) 
klj k•1•j J J J klk•1• 

Similarly, we get: 

Cov(A ., ~ (vt_ 1 )) 
klJ AJ 

= Cov(B .~ (vt_ 1 ), ~ (vt_ 1 )) + O 
klJ AJ AJ 

= Bklj nJ(l-nJ) • 

c) Now, we may apply the s method to derive the 

asymptotic covariance: 

1 
= n2. J 

1 
= n2. J 

{B B w w n.(1-n.) + n.c • • klj k~l~j J J J klk 1 

- 2BkljBk•i•jnJ(l-ne) + BkljBk•i•jnJ(l-nJ)} 

1 
= 

iii) Expression of C in the univariate case 
klk•1• 

We get: 

C· = C = V(a2J.u2t) 
klk•1• 

= aj(Eut-(Euî) 2 ] 

= a1 (µ4 -1> . 
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