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ABSTRACT 

OPTIMAL LEARNING BY EXPERIMENTATION 

This paper analyses the dynamic decision problem of an agent who is 
initially uncertain as to the true shape of his payoff function, but who 
obtains information aboutit over time by observing the outcome of his past 
decisions. In the long run, the action is a short run optimum given the 
beliefs, but may not be an optimum for the true payoff function. We derive 
conditions under which the limit action is optimal for the true payoff 
function and establish the robustness of the results. Finally we study the 
adjustment process in an example where such complete learning does not 
achieve in the long run. 

Journal of Economie Literature : 020 

Keywords Learning, Experimentation. 

RESUME 

APPRENTISSAGE PAR EXPERIMENTATION 

Le papier analyse le problème de choix dynamique d'un individu qui, 
initialement, ne connait pas sa fonction de gain, mais qui obtient de 
l'information au cours du temps en observant le résultat de ses décisions 
antérieures. Dans le long terme, l'action choisie est un optimum de court 
terme étant données les croyances, mais peut ne pas être optimale pour la 
vraie fonction de gain. Nous exhibons des conditions sous lesquelles 
l'action limite est un optimum pour la vraie fonction de gain et 
établissons la robustesse des résultats. Finalement, nous étudions le 
processus d'ajustement dans un exemple où l'apprentissage reste incomplet 
dans le long terme. 

Journal of Economie Literature : 020 

Mots clef: apprentissage, expérimentation 
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1 Introduction 

This paper analyses the dynamic decision problem of an agent who is initially 

uncertain as to the true shape of his payoff function, but who obtains information aboutit 

over time by observing the outcome of his past decisions. The agent must select an action 

every period from the same choice set over an infinite number of periods; his decision 

problem changes over time only to the extent that his information about his true payoff 

function improves. As long as the agent has not learnt all relevant aspects of his objective 

function he will be in pursuit of two con:flicting objectives: the maximisation of his 

expected short-run payoff, and the maximisation of the informational content of the 

current action.1 We are primarily interested in the limit outc:omes of this problem. Under 

what conditions will the agent's expected short-run payoff converge to his true optimum 

payoff? 

We believe that this question is of importance in many areas of economics. For 

example, the theory of imperfect competition generally assumes that individual firms know 

ail relevant aspects of the demand function. This assumption is often defended with the 

argument that if the true demand fonction is initially unknown, but remains fixed over 

time, firms eventually learn ail relevant aspects of demand from past experience. Thus, if 

one is primarily interested in the nature of long-run imperfect competition one can usefully 

simplify the analysis by supposing at the outset that firms know perfectly the demand 

fonction they face. A clear statement of this line of argument can already be found in 

Clower (1959): 

"So long as one deals with a fixed demand function, it is reasonably sensible to 
suppose that the profit and price calculations of the monopolist are made with 
reference to this situation in which, following various trial-and-error experiments 

1 This trade-off arises in many contexts. See Grossman, Kihlstrom and Mirman 
(1977) and Kihlstrom, Mirman and Postlewaite (1984) for example. 
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with different prices, the monopolist knows the precise character of market demand 
(at least within some relevant range of price and output quantities)." (Clower 
(1959) pp 707-708.) 

While it is fairly obvious that trial...:..and-error experiments improve a firm's 

knowledge about demand, it is much less clear that in the course of optimal 

experimentation the firm ends up knowing the exact shape of market demand. For 

experimentation is costly, and optimal learning may dictate that experimentation be 

stopped before all relevant aspects of demand are known. In fact there exist several 

examples in the literature demonstrating the possibility that optimal experimentation may 

not result in adequate learning, most notably Rothschild (1974), McLennan (1984), and 

Easley and Kiefer (1988). (Adequate learning occurs when, with probability one, the agent 

acquires enough information to allow ·hlm to obtain the true maximum payoff.) On the 

other hand, it is not too difficult to construct plausible examples where optimal 

experimentation does result in adequate learning. 

Our paper is a first attempt at characterising those situations where adequate 

learning obtains and those where it does not. We suggest a two-stage approach to the 

problem of determining under what conditions optimal experimentation leads to adequate 

learning: first understand the case where the agent's payoff function is deterministic, so 

that the agent's inference problem is not complicated by the presence of noise; then extend 

this understanding to take into account the additional issues that arise when noise is 

present. 

In this paper we concentrate primarily on the first step of this approach. On the 

positive side we show that adequate learning obtains if: 

(a) the payoff functior is analytic; 

(b) the payoff function is smooth and quasiconcave; 

( c) there is no discounting. 

It is worth painting out the intuition behind cases (a) and (b ): in each of these cases the 
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agent can learn how to obtain the true maximum payoff from information gathered by local 

experimentation. Such experimentation gives him an arbitrarily precise estimate of the 

slope of the true payoff function at any given point, in case (b ), so that he learns, roughly 

speaking, in which direction he should change his action in order to increase his short-run 

payoff. Eventually he converges to a point where the estimate of the slope is zero; at this 

point he obtains the true maximum payoff. Similarly, in case (a), local experimentation 

provides arbitrarily precise global information about the payoff function so that the agent 

eventually leams where the maximum payoff is located by incurring arbitrarily small 

experimentation costs. 

On the negative side, we give examples to show that inadequate learning may 

obtain when the payoff function is: 

(a) is smooth but net analytic; 

(b) smooth but net quasiconcave; 

(c) quasiconcave but net smooth. 

(Inadequate learning occurs when, with probability one, the agent fails to acquire enough 

information to allow him to obtain the true maximum payoff.) Inadequate learning may 

obtain because local experimentation either does not provide a11 relevant information ( cases 

(a) and (b)) or does not provide enough information to compensate for the costs involved 

(case (c)). As Alchian (1950) puts it, case (b) can be understood with the help of the 

following analogy: 

"A nearsighted grasshopper on a mound of rocks can crawl to the top of a particular 
rock. But there is no assurance that he can also get to the top of the mound, for he 
might have to descend for a while or hop to new rocks." (Alchian (1950) p. 31.) 

The possibility of both adequate and inadequate learning leads to the question of 

which is more likely. One way of posing the question more precisely at the theoretical level 

is to ask what the generic outcome is. We argue that, in the deterministic problem, 
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genericity is most naturally formulated in terms of the agent's priors. We further argue 

that, when genericity is formulated in this way, both adequate and inadequate learning are 

non-generic. 

When adequate learning does not obtain one cannot understand the long-run 

outcome independently of the priors or the adjustment process by which it was reached. 

An entirely new kind of analysis is called for in these cases: in order to determine the 

nature of the long-run behaviour of the agent, one needs to characterise the optimal 

learning strategy. Unfortunately this is possible analytically only in very simple learning 

problems. Section 6 illustrates the kind of issues arising and the kind of analysis needed, 

when inadequate learning obtains, in a simple learning problem. 2 

A few general results concerning the long-run behaviour of our problem are central 
. 

to our analysis. Easley and Kiefer derive such results, but their analysis, unfortunately, 

specifically excludes the deterministic case. We therefore need to generalize their work by 

providing a unified framework covering bath the deterministic and stochastic case. 

The deterministic case does, however, have two potentially troubling features. 

First, existence may fail. Secondly, by making a smaller and smaller experiment one can 

simultaneously reduce costs and improve information; whereas in the stochastic case one 

would, on the contrary, expect the informational content of an experiment to be smaller, 

the smaller the deviation from the status quo. However, we show that the introduction of 

even small amounts of noise eliminates the existence problem. Moreover our 

adequate-learning results are robust to the existençe of such noise. These findings suggest 

that both features stem from a single cause, namely a minor closure problem. 

2 The possibility of progress here derives, in part, from the fact that the payoff 
function is deterministic. The advantages of such payoff fonctions have been exploited 
fruitfully in other contexts by Alpern and Snower (1987a, 1987b, 1988), Reyniers (1989a, 
1989b) and Rob (1988). They also underline the relevance of our asymptotic analysis of 
the deterministic case. 
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The paper is organised as follows: Section 2 sets out the mode! and formulates the 

learning problem in such a way that there is a clear separation between the 

information-gathering and payoff-accumulation aspects of the agent's decision in each 

period. This formulation highlights the fundamental trade-off between the confl.icting 

objectives oflearning and obtaining high current payoffs. 3 It also tUins out to be more 

natUial mathematically, leading to a streamlined set of regularity conditions, the role of 

which in the analysis is, we hope, transparent. All of the general results about the 

long-run behavioUI of OUI problem are stated in this section. Section 3 contains ail the 

adequate learning results. Section 4 addresses the issues of existence and robustness. Aside 

from the obvious requirements that the set of actions available to the agent be compact, 

and that his payoff function be continuous in an appropriate sense, there is only one 

condition required for existence: the agent 's observations must be ( at least slightly) noisy. 

(Mathematically, this can be expressed by saying that the distribution of the agent's 

observations varies norm continuously with his action and the unknown parameter.) In 

particular, the familiar common-support assumption is not needed. Section 5 provides an 

example where adequate learning does net obtain when the payoff function is smooth but 

net quasiconcave. · Section 6 examines an exa.mple of inadequate learning. This example 

shows, among other things, that experimentation may cease altogether after a finite 

number of periods, even though adequate information has net been acquired; and that 

experimentation may continue forever, yet adequate information may net be acquired, net 

even asymptotically. Section 7 provides concluding comments. 

3 In OUI framework, both the payoff obtained in a given period and the signal 
observed depend on the action taken, the underlying parameter of interest, and a shock. So 
the optimising agent faces a simple trade-off between choosing his action to maximise his 
payoff, and choosing it to obtain the best possible signal. In Easley and Kiefer's 
framework, the signal depends on the action, the parameter, and a shock, but the payoff 
depends on the action and the signal. So the agent must consider the direct effect of his 
action on his signal, its direct effect on his payoff, and its indirect effect (via the signal) on 
his payoff. 
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2 The Model 

The general decision problem can be described as follows. At the outset Nature 

chooses e e 9 , a parameter describing the environment of the decision-making agent. 

This choice is not observed by the agent. In each subsequent period t ( t = 1,2, ... ), the 

agent chooses an action xt e X . A shock zt e Z is then realized This leads to a signal 

Yt = a(xt 18,zt) e Y and a payoff 1rt = b(xt1 8,zt). The agent observes Yt but not 71"t. 

(Note that this formulation does not by any means rule out the possibility that the agent 

observes his payoff. Indeed, he will observe his payoff whenever it is included in the vector 

of signais Yt .) The agent's overall objective is to maximise the expected net present value 

E[(l - o)1'7=0 f 7rt] , where O 5 o < 1 is the discount factor. Thus, the agent's problern is 

to choose a sequence of strategies s = (s1, ... ,st, .. ) to maximise this expectation, where the 

strategy in period t + 1 specifies the action xt+l as a function of the past observations 

up to t + 1: xt+l = st+/Yl'"··,Yt). 

We make the following assumptions on the data of our model, which will rernain .in 

force throughout this section: 

(Al) X, Y, Z and 9 are complete separable metric spaces; 

(A2) a is Borel measurable, and continuous in (x,8) ; 

(A3) b is bounded, Borel measurable, and continuous in (x,8) . 

It will be seen at once that (Al), and the requirement that a and b be Borel measurable, 

are purely technical. The boundedness of b simply ensures that the agent's objective is 

well defined for all s . 4 The role of the continuity of a and b is more subtlt, but the 

basic idea is clear enough: if the agent's observations and payoff are continuons, then we 

4 (A3) can be relaxed somewhat. 
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can prove continuity results linking the agent's behaviour for large t with his behaviour in 

a certain long-run, or asymptotic, problem. (A more detailed explanation of the role 

played by the continuity of a and b is given in the Appendix.) 

The sequence of shocks {zt I t ~ 1} is taken to be i.i.d. with distribution R . The 

parameter O is distributed independently of the zt , and has distribution Q . Thus a 

complete description of the underlying state of the world w takes the form ( 0,zp··,zt, .. ) , 

the set of states of the world is n = 9 x zm , and the agent's prior over n is just the 

probability measure P = Q ~ RCD • 

Suppose that the agent employs a strategy s , which may or may not be optimal. 

In period one the agent has no information about the state of the world other than his prier 

P . In period two, however, he will have made one observation y 1 which, together with 

his knowledge of his strategy s1 , allows him to revise this prior. Let P 1 ( · 1 w) be the 

agent's posterior about the state of the world based on the information available to him in 

period two when the true state of the world is w . This posterior will, in general, 

incorporate information about both 0 and z1 , but no information about zt for t ~ 2 . 

More interesting, therefore, is the agent's posterior about the parameter of interest () , 

which is the marginal of P 1 ( · I w) over 9 . Denote this by Q1 ( · I w) . More generally, 

denote by Pi(· I w) and Qi( · I w) the agent's posteriors about w and 0 respectively, 

given his strategy s and the observations (yp .. ,Yt). Finally, denote by Pm(· I w) and 

Q ( · I w) the hypothetical posteriors that the agent would have if he could observe the 
a, 

entire sequence (yl' ... ,yt,···). (Note that Pt and 9t (1 ~ t ~ m) are random variables 

whose values are probability measures.) 

It is easy to see that the posteriors Qt must follow a martingale. For clearly the 

agent's best guess, in period t, as to his posterior in any later period is simply his posterior 

in period t. This implies, by the martingale convergence theorem, that Qt will converge, 

as t-+ m, to a limiting posterior. That is, there is a limit to the information that can be 

obtained by following strategy s. Indeed, the martingale convergence theorem even implies 
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that this limit is Q . That is, in the limit the agent obtains a.il the information he could 
IJ) 

conceivably obtain, namely that conveyed by observation of the entire sequence 

(Yl'···St, ... ). We summarise these remarks in the following observation. 

Theorem 2.1 The posteriors Qt follow a. martingale. Moreover Qt -+ Qm with 

probability one as t -+ m . o 

We turn now to the problem of choosing an optimal strategy, and of finding the 

properties of such a strategy. It is convenient to begin with a simpli:fied version of our 

model in which there is no learning. More precisely, we consider the version of OUI model 

in which the agent does not observe the y t . It is convenient to regard this model as 

being parameterised by the agent's prier Q over e . Since the agent never acquires any 

information in this mode!, his problem is completely stationary. In order to selve it, it is 

therefore sufficient for him to find an action that maximises E[b(x,O,z1)], and to repeat 

that action forever. Actua.lly, under OUI present assumptions, he ma.y not be able to 

maximise E(b(x,O,z1)]. 5·-But he will be able to a.pproach the payoff 

m(Q) = sup E[b(x,O,z1)] 
X 

arbitrarily closely. 

The original model, too, ca.n be parameterised by Q. Let 

IJ) ..t 1 
v(Q) = sup E[(l - Ô) E o-- ,rt] 

s t=l 

... (2.1) 

... (2.2). 

Once again, OUI present assumptions are not sufficient to ensUie that this pa.yoff can be 

5 We have not assumed that Xis compact. 
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attained. However, at this stage we are primarily interested in characterising optima for 

OUI model, and this problem is logically distinct from that of proving that it has an 

optimum. We shall have to tackle the question of existence later. 

One obvious property of m and vis that v(Q) ~ m(Q) for ail Q - the agent can do 

at least as well when learning is possible as he can when it is not. Another is that m and v 

are both convex. This means that, if the prior probà.bility is Q with probability ,\ and 

Q' with probability 1 - ,\, then the agent can do at least as well when he is told which 

before choosing his strategy as he can when he is not. In other words, more information is 

once again a good thing. A less obvious property, but one which is fundamental to much 

of the discussion that follows, is that m and v are bath lower semicontinuous. 6 

Note that the problem (2.2) is stationary in the sense that the agent's decision-
. 

problem in period t is the same as the problem in period zero, except that the prior Q 

must be replaced by the posterior Qt = Qt( · I w). The value function v( ·) is therefore the 

solution of the Bellman equation: 

v(Q) = sup (1 - ô)E[b(x,8,z1)] +"ô E[v(q(Q,x,y1))] 
X 

(2.3) 

where q(Q,x,y1) is the posterior given y1 and x. The first term on the RHS represents 

the expected one-period payoff and the second term represents the continuation payoff 

which incorporates the value of information obtained from one observation, y 1 . If there 

was no information whatsoever to be obtained from the observation of y1 , then (2.3) 

would reduce to finding x to maximize E[b(x,8,z1)]. If the short-run payoff were 

inderendent of x, then (2.3) would reduce to finding x to maximize E[v(q(Q,x,y1))]. 

Thus the Bellman equation is a rather intuitive representation of the trade-off underlying 

OUI decision problem, the trade-off between the maximisation of short-run payoffs and the 

6 The lower semicontinuity of m follows from that of b. The lower semicontinuity of 
v follows from the lower semicontinuity of b and the continuity of a. 
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maximisation of the informational content of x . ln general, the action x which 

maximises short-run payoffs will not be the sa.me as the action that maximises 

informational content. When this conflict arises, the agent will have ta sacrifice part of his 

short-run payoff in order ta acquire useful information for the future. Most situations 

where there is learning by experimentation are characterised by this fundamental 

trade-off. 

We have already pointed out that v(Q) ~ m(Q). Sa v(Q) - m(Q) can be regarded 

as the value of the opportunity ta learn in the dyna.mic model. Our second result concerns 

the asymptotic behaviour of tbis quantity. 

Theorem 2.2 Suppose that s is optimal. Then v( Qt) - m( Qt) -+ 0 a.s. 

Proof See A ppendix. a 

That is, at the optimum, all valuable learning opportunities are exhausted in the 

long run. This is not the same thing as saying-that, in the long run, the agent learns every

thing there is ta learn. After ail, learning is costly. 

Now just as Q can be thought of as summarising all information relevant to the 

original problem, so Qt can be thought of as summarising the problem faced by the agent 

in period t + 1. Moreover, since Qt-+ Qm , we know that the problem at t + 1 settles 

down ta some asymptotic problem as t gets large. ,Let us examine the relationship between 

the problem for large t and the asymptotic problem more closely. 

We begin by observing that v( Qt) -+ v( Qm) and m( Qt) -+ m( Qm). These results 

follow from the facts that m and v are convex and lower semicontinuous, and that Qt 

follows a martingale. Combined with Theorem 2.2, they imply Theorem 2.3. 

Theorem 2.3 Suppose that s is optimal. Then v(Q ) = m(Q ) a.s. 
tD tD 
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Proof See Appendix. a 

ln other words, in the a.symptotic problem the agent knows so much that he cannot 

derive any benefit from trying to learn more. Once again, this is not the same thing as 

saying that the agent knows everything there is to know. It is, nonetheless, a very strong 

result. ln particular, under certain circumstances it implies that the agent knows 

everything that is worth knowing. 

We can also obtain a continuity result about the actions chosen by the agent. To 

state this result precisely, we need some notation. Let B(x,Q) = E[b(x,8,z)] for all x. 

Then B( · ,Q) is the agent's best guess of his short-run payoff function when his prior is Q. 

Theorem 2.4 Suppose that s is optimal. Then with probability one, all limit points of 

{xt 11 ~ t < Cil} maximise B(. ,QCJ)). 1 

Proof See Appendix. o 

At its simplest level, Theorem 2.4 tells us that, a.s time goes on, the agent's·actions 

corne closer and closer to maximising his best guess of his short-run expected payoff. The 

intuition behind this result is a.s follows. As time goes on, the cost of learning, mea.sured in 

terms of the fall in short-run payoff, remains constant. The benefit of lea..."'ning, by 

contrast, falls. Hence the motive of maximising hi~ short-run payoff comes to predominate 

in the agent's choice of action, and the motive of learning induces smaller and smaller 

deviations from the set of actions that maximises bis short-run payoff. At a more general 

level, Theorem 2.4 tells us that any limiting action selves the a.symptotic problem.s 

7 This result uses the upper semicontinuity of b. 

8 To see this, simply combine Theorem 2.4, which tells that any limiting action salves 
the asymptotic problem without learning, with Theorem 2.3, which tells us that solving the 
asymptotic problem without learning is sufficient to solve the asymptotic problem with 
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In order to state Theorem 2.5 we will need some terminology. For any given x and 

0, a(x,0,·) can be regarded as a random variable on Z, Z being given the probability 

measure R. We refer to the distribution of this random variable as the observation distri

bution a.ssociated with action x and parameter 0. 

Theorem 2.5 With probability one, the agent learns the observation distribution associated 

wi th every limi t point of { xt 11 ~ t < CD} and the true parameter. o 

We do not prove this theorem, since it is not central to our paper. It is, however, 

easy to see why it must be true. Indeed, according to one version of the law of large 

numbers, the empirical distribution obtained by making k independent drawings from a 

given population distribution converges to the population distribution as k ~ ai with 

probability one.9 Now suppose that k independent drawings are made from k possibly 

different population distributions, and that the population distributions converge to a 

limiting distribution. Then the empirical distribution obtained will still converge, this 

time to the limiting population distribution. For ultimately ail the drawings are made 

from distributions that are essentially the same as the limiting population distribution. 

And this is precisely the situation that arises in Theorem 2.5. 

The analysis so far can be summarised in two points. First, the problem for large t 

is closely related to the asymptotic problem.10 Second.ly, a very strong result holds for the 

asymptotic problem: v(Qa:i) = m(QCD). That is, in lhe asymptotic problem, the agent 

knows so much that he cannot derive any benefit from trying to learn more. Since learning 

is costly, this does net automatically imply that he knows everything there is to know. 

learning. 
9 This law is usually referred to as the Glivenko-Cantelli lemma, see Parthasarathy 
[1967; section II. 7). . 
10 We have continuity results in values, actions, and observations. 
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But under certain circumstances it does imply that he knows everything that is worth 

knowing. 

The reader will recall that our model has incomplete information and learning, and 

also that we have already considered the variation on it in which there is no learning. In 

order to make the ideas of the preceding paragraph precise, it is helpful to consider a 

second variation on our model, in which the agent is informed of the parameter 8. In this 

complete-information version of our mode!, the best payoff the agent can achieve is 

E(M(8)), where M(8) = supx B(x,8) and, in a convenient abuse of notation, B(x,8) is 

B(x,Q) in the case where Q is concentrated at the single point 8 E e. We refer to this 

payoff as the complete-information payoff. 

Next, if Q is concentrated at a single point 8, then we say that the agent has 

complete knowledge. This corresponds to knowing everything there is to know. Also, if 

m( Q) = E(M( 8)), then we say that the agent has adeguate knowledge. This corresponds to 

knowing everything that is worth knowing. It is strictly weaker than complete knowledge; 

for, even if the agent does not know the parameter exactly, he may still know of an action 

that is optimal irrespective of the parameter values; or, to put the point a different way, he 

may be able to achieve the complete-information payoff even when he does not have 

complete knowledge of the parameter. 

Finally suppose that Qi( · 1 w)-+ 08 for some state of the world w. (That is, the 

limiting beliefs are concentrated at the single point 8.) Then, asymptotically, the agent 

acquires complete knowledge when w is the state o; the world. If Qi( · I w)-+ ô 8 with 

probability one, i.e. if the agent a.cquires complete knowledge with probability one, then we 

say that complete learning occurs. Similarly, if m( Qt ( · 1 w)) -+ M( 8) for a particular w, then 

the agent acquires adequate knowledge asymptotically. If m( Qt ( · 1 w)) -+ M( 8) with 

probability one, we say that adequate learning occurs. Since certainly m(Qi( • I w)) ~ M( 8) 

for all 8, a necessary and suf:ficient condition for adequate learning is that E[m(Qt( · I w))] 

-+ E[M( 8)]. 
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The import of the conclusion m(Q ) = v(Q ) a.s. is therefore this. In trying to 
Cl) Cl) 

prove adequate-learning results, we can try to show that, for ail Q, m(Q) = v(Q) implies 

that m(Q) = J M( O)dQ( 0). That is, the only way it can happen that there are no learning 

possibilities whatever is if the agent is actuaily maximising the true payoff fonction with 

probability one. For then m(Q ) = v(Q ) a.s. implies that m(O ( · I w)) 
!l) Cl) Cl) 

= JM( cp)dOœ( cpl w) for almost ail w. Moreover our continuity results show that m( Ot( • I w)) 

-+m(Q (·lw)) a.s. Hence,overail, E[m(Qt(·lw))]-+E[m(Q (·lw)]=E[JM(cp)dQ (cpjw)], 
CIi CIi CD 

and the latter is just E[M( O)] by Fubini's theorem. So adequate learning does obtain. 

This is precisely the way in which we shall set about proving adequate learning 

results in Section 3. However, knowing that such results can be obtained, the following 

result should already be of interest. 

Theorem 2.6 Suppose that s is optimal. Suppose too that adequate learning occurs. 

Then, with probability one, every limit point of {xt 11 ~ t < œ} maximises B( · ,0). 

Proof See A ppendix o 

Theorem 2.6 is closely relatai to Theorem 2.4. It shows that if the conditions of 

Theorem 2.4 are strengthened by requiring that adequate learning occurs, t.hen a corre

spondingly stronger result is obtained - every limiting action maximises the true short-run 

payoff function. 
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3 Adeguate Learning Results 

In this section we describe three cases in which adequate learning occurs. The three 

cases ail share one common feature: we assume tha.t y t = 1rt. Tha.t is, ea.ch period the 

agent is informed of his pa.yoff, and this is how he learns. In the first case it is assumed 

further tha.t the payoff function is real analytic with probability one, and that there is no 

noise. In the second it is assumed the payoff function is continuously differentiable and 

quasiconcave, and again tha.t there is no noise. In the third case noise is ailowed, but we 

assume that there is no discounting. 

3.1 The analytic case 

Consider first the case in which the payoff function is a polynomial and there is no 

noise. More precisely, suppose that 

I . 
b(x,O,z) = E c.(O)x1

• 
. 0 l l= 

Then the agent will acquire adequate knowledge after at most I + 1 periods. To see why, 

suppose that s is an optimal strategy. If s in volves I + 1 distinct actions over the first 

I + 1 periods, then the agent will be able to calculate ail the coefficients of the polynomial 

at the end of period I + 1, and will therefore know the global shape of his payoff fonction. 

If, on the other hand, s involves fewer actions, then the agent can change some of them 

very slightly. Because his payoff function is continuous, this will hardly affect his payoff 

from the first I + 1 periods. And it will ensure that he knows the globd shape of his payoff 

fonction at the end of period I + 1. S_o either way the agent can be sure of obtaining the 

complete-information payoff from period I + 2 onwards. 
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More formally, we introduce the following temporary assumptions: 

(Tl) a.= b; 

(T2) b depends only on x and 8; 

(T3) X = [~,x] c IR; 

(T4) b(, ,8) is real ana.lytic on X with probability one. 

(Tl) simply sta.tes tha.t the a.gent lea.rns his pa.yoff; (T2) elimina.tes noise; (T3) is self

expla.na.tory; a.nd (T4) mea.ns that, for a.ny x e X, b( · ,8) can be expa.nded in a power series 

about x in a neighbourhood containing x. 

Theorem 3.1 Suppose tha.t (Al)-(A3) and (Tl)-(T4) hold. Then any optimal strategy s 

involves adequa.te lea.rning. o 

Notice tha.t this result genera.lises the result for polynomials in two ways. It allows 

for an infinite number of coefficients, and it a.llows for b( · ,l)) that ca.n be expanded locally 

but not globa.lly. 

It is not obvious tha.t the result must hold. For while it is certa.inly true tha.t the 

a.gent ca.n learn all the coefficients at essentially no cost, the benefit from doing sois only 

obta.ined a.fter an infinite number of periods! 

The essence of the proof is this. We know t}la.t v(Qcc) = m(Qcc). Hence it suffices to 

show tha.t, if the original problem is such that v(Q) = m(Q), then the agent has adequate 

knowledge in tha.t problem. To this end, suppose that m(Q) = v(Q) but m(Q) < E(M( 0)). 

Then one optimal stra.tegy for the a.gent is to find x* to maximise his best guess B( · ,Q) of 

his payoff function, a.nd clioose x* forever. He ca.n, however, improve on his payoff from 

this stra.tegy, which is a. contradiction. Ali he need do is experiment over a. small 

neighbourhood of x* for n periods. In this wa.y he obta.ins an a.pproxima.tion to the first n 
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derivatives of b{ · ,0). Since b( · ,0) is analytic, the approximate derivatives at a single point 

can be used to arrive at an approximate picture of the global behaviour of b{ · ,0). He can 

therefore pick the action that is optimal according to this picture. This procedure works 

because choosing a smaller and smaller neighbourhood around x* for the purposes of experi

mentation simultaneously reduces the cost of experimentation and increases the accuracy of 

the estimates of the derivatives of b( • ,0). The formai proof is given in the Appendix. 

Corollary Suppose that the conditions of Theorem 3.1 hold. Then the agent's payoff in 

period t, namely b(xt 18), converges to M{ 0) with probability one. 

In particular, every limiting action maximises the true payoff fonction. 

Proof This follows from Theorem 2.6 and Theorem 3.1. o 

Note finally that Theorem 3.1 can certainly be extended to the case of a real

analytic function of several variables.11 

3.2 The smooth guasiconcave case 

We have already seen that, if the payoff function b{ • ,0) is continuous, the cost of 

local experimentation is very small. One might therefore conjecture that the agent will 

continue experimenting as long as he knows that t4ere is some chance that he is not at a 

local maximum, and that the sequence of actions chosen will converge to a local maximum. 

This conjecture isn't quite correct as it stands. Tc see why, suppose that the agent's 

current action is x and that he is at a local maximum with high probability. If he tries 

action x + E then, with high probability, he incurs a small loss. In this case he will return 

11 X would need to be in some sense connected. 
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to action x. On the other hand, there is a small probability that he obtains a small gain. 

In this case he can continue with action x + E, thereby capitalising on the gain. But his 

overall expected gain may nonetheless be negative, because of discounting. 

This example highlights the essential problem. It is that although the costs of local 

experimentation can be made small, the information obtained only leads to local improve

ments, which are likewise small. This problem did not arise in the analytic case, in which 

local experimentation led to global improvements. A version of the conjecture can nonethe

less be salvaged. Indeed, suppose that b( · ,8) is differentiable rather than continuons, and 

that the agent 1s current action is x. If he tries action x + e then one of two things may 

happen. First, it may turn out that Bb/ Bx.(x,8) < O. In this case he can switch to action x 

- eu, for as long as he wishes. Secondly, it may turn out that Bb/ Bx(x,0) > O. In this case 

he can switch to action x + oe for as long as he wishes. His gain will therefore be at least 

eBb/ Bx(x,0) + ôoel Bb/ Bx(x,8) 1- Hence, as long as there is any chance that Bb/ 8x ;/; 0 at x, 

he can ensure that his overall expected gain is positive by choosing e sufficiently small and 

o sufficiently large. 

The crucial difference·between continuity and differentiability is this. With contin

uity the agent can discover, at essentially no cost, the direction in which he should move. 

But he does not know how far to move. Indeed, one can even construct an example in 

which the agent knows that his payoff function is strictly increasing with probability one, 

but cannot take advantage of this fact because he does not know how far he should move to 

the right. With differentiability, on the other hang, this difficulty can be avoided. 

We formalize our conjecture using the following assumptions: 

(Tl) a= b; 

(T2) b depends only on x and 0; 

(T3) X = [~,i] C IR; 
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(T4) for almost ail 0, b( · ,0) is continuously differentiable and quasiconcave; 

(T5) the function D(O) = maxi Bb(x,0)/ &cl is integrable. 
X 

As in Section 3.1, these assumptions are temporary, and they are additional to (Al)-{A4). 

The differentiability part of (T4) ensures, roughly speaking, that experimentation cannot 

stop before a sta.tionary point is rea.ched, and the quasiconcavity ensures tha.t any 

stationary point is also a global maximum. (T5) is a technical assumption. It ensures 

that we can differentiate under the expectation sign. 

Theorem 3.2 Suppose that (Al)-(A3) and (Tl)-{T5) hold. Then any optimal strategy s 

involves adequate learning. 

Proof By (T5) we know that /DdQ < m. Since D ~ 0, it follows that /DdQm < CD a.s. 

Hence, as in the proof of Theorem 3.1, it suf:fices to show that m(Q) = v(Q) implies that 

the agent has adequate knowledge. Let x* maximise B( · ,0). In view of quasiconcavity, it 
. ., 

suf:fices to show that if x* < x then Bb/ &c(x*,O) 5 0 with probability one, and that if x* 

> ~ then Bb/&c(x*,O) ~ 0 with probability one. Let us treat the case x* < x. 

Suppose that x* + aE < x. then the following deviation from sis feasible: (i) play 

x* in period 1; (ii) play x* + E in period 2; (iii) if b(x* + E,0) ~ b(x*,O) then play x* for

ever more; (iv) if b(x* + E,0) > b(x* ,0) then play x* + eu forever more. It leads to an 

increase in the agent 's payoff of 

6(1- ô)E[b(x* + E,0)-b(x*,o)] + 62E[(b(x* + aE,0)- b(x*,O))x(b(x* + E,0)_ - b(x*,en], 

where xis the indicator function of (O,m). Since pla.ying x* forever is optimal, this increase 

is non-positive. We ma.y therefore divide by E and let E-+ 0 to conclude that 
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Since we are free to choose a as large as we like, this implies that 8b/8x(x*,O) ~ 0 with 

probability one, as required. o 

Corollary Suppose that the conditions of Theorem 3.2 hold. Then the agent 's payoff in 

period t, namely b(xt,O), converges to M( 0) with probability one. 

Proof This follows from Theorem 2.6 and Theorem 3.2. o 

Theorem 3.2 and its corollary can be extended in various ways. One extension is to 

the case of many dimensions. 12 Another involves abandoning quasiconcavity. If this is 

done then one can prove that, with probability one, every limit point of {xt} satisfies the 

first-order necessary conditions for an optimum. If, moreover, b( · ,0) is twice continuously 

differentiable, then every limit point satisfies the second order conditions too. Hence, if it 

is never the case that--both 8b/8x(x,O) and-.ô2b/&xf(x,O) are simultaneously zero, then 

every limit point is a local maximum. 

3.3 The undiscounted case 

In Section 3.1 and 3.2 we excluded noise from our mode!, and showed how this 

permitted effective learning strategies on the part of the agent. These strategies did, how-
, . 

ever, depend on regularity properties for the payoff function. In this subsection we 

consider a different possibility: if the discount rate is low then the costs of experimentation 

will be low compared with the potential benefits, so a great deal of learning can be 

12 Here it can be shown that if (T3) is replaced by the requirement that X is a 

convex subset of IRN, and if (T5) is replaced by the assumption that sup I Vb( • ,0) 1 is 
integrable, then Theorem 3.2 continues to hold. (Compactness of X is not required since 
existence is assumed.) 
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expected. More precisely, we show that if there is no discounting, then, even if there is 

noise, the complete-information payoff is attained under very general conditions on the 

payoff function. This highlights the difference between noise and discounting. Noise makes 

learning more difficult, whereas discounting makes learning less attractive. 

We must extend our existing definition of the agent's payoff to caver the case 6 = 1. 

We take it to be 

T 
E [1 i mi nf l E 1rt) . 

T-+CI) T t=l 

This is the most conservative definition of the payoff that is possible. (For example, liminf 

E[+ Er =l 1rt] ~ E [liminf + Er =l 1rt] by Fatou's lemma.) We shall nonetheless show that, 

even on this definition, the payoff can be made to attain the complete-information level. 

W e make the following assumptions: 

(Tl) a= b; 

(T2) b is bounded and Borel measurable; moreover it is lower semicontinuous in x. 

In order to understand (T2), note that there are a countable number of periods only, soit 

is almost a necessary condition for adequate learning that everything worth knowing about 

the short-run payoff functions B( · 18) can be learnt from a countable number of experi

ments. For example, suppose that 8 is uniformly distributed on [0,1] and that b(x,8,z) = 1 

if x = 8 and O otherwise. Then, no matter what his strategy, the agent can never achieve 

adequate learning. 

Theorem 3.3 Suppose that (Al), (Tl) and (T2) hold, and that 6 = 1. Then the complete-

information payoff is attained. o 
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It is easy to see why the complete-information optimum payoff can be approached 

arbitrarily closely. Indeed, our assumption that b is lower semicontinuous in x ensures 

that, if { en} is dense in X, and if we pick a large but fini te number N, then MN( 8) 

= max{B( en' 8) 1 1 5 n 5 N} will be close to M( 8) = sup B( ·, 8) for most 8. Suppose there

fore that the agent tries each en' 1 5 n 5 N, a large number of times, and then selects that 

en that yields the highest average payoff. Then, by the law of large numbers, he will end 

up with a payoff close to MN( 8) with high probability. 

To show that the complete-information payoff can actually be attained involves 

two further difficulties. First, it is clear that adequate information must be obtained. This 

requires that learning go on indefinitely. On the other hand, the agent cannot wait forever 

before reaping his reward. So he must make use of the partial information available to him 
. 

at any given time to accumulate payoffs. Secondly, the agent must be careful that the 

estimate of B( en,8) which he uses as the basis for his payoff accumulation is suf:ficiently 

accurate. Specifically, it is not enough for him simply to ensure that his estima te of 

B(en,8) converges to B(çn1 8) for ail n. He must ensure that this convergence is uniforrn 

in n. The forma! proof is given·in the Appendix. 
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------
4 Existence and Robustness 

In Section 3 we considered two extreme cases - that of no noise and that of no dis

counting. These cases are ·of some interest in their own right, but they are much more 

interesting if they are representative of the nearby cases of low noise and little discounting. 

This section demonstrates that the required continuity is indeed present, thereby 

demonstrating the relevance of the analysis of Section 3. 

Continuity in the level of noise has a second advantage. With no noise, existence 

may fail for our model. But with a small amount of suitable noise, existence is guaranteed. 

So by demonstrating continuity in the level of noise, we put ta rest any suspicion that the 

strong learning results we obtained for the case of no noise are essentially irrelevant since 

the prernise of existence is unlikely to be fulfilled. 

We begin by illustrating the non-existence problem in the case of no noise. Let X 

= [-1,1], let b(x,8) be defined by 

2 

{

4-(x-1) 
b(x,8) = 2 4-(x + 1) 

if e = e1 

if e = e2 

and let Q assign probability 1/2 to each of e1 and e2. Then, if the agent chooses any x 1 O 

in period 1, he will learn the true value of the parameter. He will therefore obtain B(x,Q) 

= 3 - x2 in period 1, and the complete-informatio~ payoff of 4 thereafter. So clearly he 

should pick x as close to O as possible. But he cannot set x = O. For x = 0 is uninform

ative, and if he sets x = 0 in period 1 his payoff from period 2 will be at most m( Q) = 3. 

So an optimal first period strategy does net exist. 

This problem can be eliminated if we introduce noise in a suitable fashion. Let 

F( · 1 x, 8) denote the distribution of the signal y given x and 8. Then we may introduce the 

following assumptions: 

----



24 

(El) X, Y, Zande are complete separable metric spaces; 

(E2) regarded as a mapping from X x e to .9'vK(Y) endowed with the norm topology, F 

is continuous; 

(E3) bis bounded, Borel measurable, and upper semicontinuous in (x,O); 

(E4) Xis compact; 

(El) is identical to (Al), and is purely technical. (E2) is a significantly stronger version of 

(A2). 13 (E3) is actually weaker than (A3). Indeed, upper semicontinuity of b in x and 

compactness of X (i.e. (E4)) are clearly minimal conditions for the existence of an optimal 

strategy. 

Of the assumptions, (E3) is the fundamental assumption insofar as obtaining 

existence with learning is concerned. It is this assumption that ensures that there is 

enough noise in the model. It might arise in practice as follows: Y is IRN; the distribution 

F( · 1 x, 0) of the signal has a density f( · 1 x, 0) with respect to Lebesgue measure on Y; 

f( · lxn,On)-+ f( · lx,O) in mean as (xn,On)-+ (x,O). (E2) does not involve the common 

assumption that, no matter what the value of~(x;O}, eveey observation y is possible. Nor 

does it in volve any assumption that the densi ties f(y I x, 0) mentioned above are jointly 

continuous in (x,O,y). For example, the following case is covered: y is real valued; z is 

distributed uniformly on [-1,1]; there exists a continuous function i such that a(x,O,z) 

= i(x,O) + z. This case would have been excluded if we had assumed, for example, that f 

was jointly continuous in all three of its arguments; or if we had made the 

common-support assumption. 

13 (A2) is equivalent to assuming that Fis continuous when J'>vK(Y) is endowed with 
the weak topology. (E2) means, more explicitly, that supAIF(Alx ,0 )-F(Alx,0)1-+ 0 

n n . 
whenever (xn, On)-+ (x,O), where A varies over the Borel measurable sets of Y. 
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Theorem 4.1 Suppose tha.t (El)-{E4) hold. Then the a.gent possesses an optimal 

stra.tegy. 

Proof See Appendix. a 

We tum now to the continuity result for noise. We define E(v(Q )) to be the 
a, 

asymptotic payoff in our mode!. When adequate learning occurs, the asymptotic payoff is 

equal to the complete-information payoff E(M( fJ) ). So i t seems reasonable to measure the 

departure of an optimum from adequate lea..1"1ring by E(M( fJ)) - E(v(Q )), the extent to 
CD 

which the asymptotic payoff fails short of the complete-information payoff. We treat only 

the quasiconcave case, since this illustrates the issues adequately. 

Theorem 4.2 Let X = [2S,x] c IR. Suppose that: (i) a = b; (ii) bis continuous in all its 

arguments; (iii) Bb/ ôx. is continuous in all its arguments; (iv) for ail fJ, b( · ,fJ,O) is quasi

concave; ( v) D( fJ) = sup I Bb/ ôx.(x, fJ,z) 1 is integrable. Then the asymptotic payoff 
x,z 

converges to the complete-information pàyoff as R-+ 80. o 

Note that the symbol "O" simply denotes a. particular element of the space Z, that 

60 is the proba.bility measure concentra.ted a.t 0, and tha.t the convergence of R takes place 

in the weak topology. Note tao that the conditions on b are stronger than those assumed 

for Theorem 3.2: band Bb/ ôx. are now assumed tope continuous in ail their arguments, 

and not just in x. The proof of Theorem 4.2 is given in the Appendix. 

Unlike continuity in noise, continuity in the discount factor as 6-+ 1- can be 

obtained without ·assumptions additional to those made in Theorem 3.3. 

Theorem 4.3 Suppose that (Al), and (Tl) and (T2) of Section 3.3, hold. Then the 

optimal payoff converges to the complete-information optimal payoff as 6-+ 1-. o 
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The proof of Theorem 4.3 is in the Appendix. Note that it does not actually require 

that the optimal payoff for ô < 1 be attained. 
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5 Inadeguate Learning with a Smooth Payoff Function 

In this section we present a simple example in which there is no noise and the payoff 

function is infinitely differentiable. In this example the agent settles with probability one 

on an action which he knows is not the global optimum. It highlights simultaneously the 

essential roles played by the assumption of analyticity in Theorem 3.1 and that of quasi

concavity in Theorem 3.2. More importantly, it shows that adequate learning is by no 

means an inevitable consequence of the absence of noise. 

We also discuss an question raised by our example, that of which outcomes are 

generic. For the purposes of this discussion it will be helpful to introduce some more 

terminology. We have already used the phrase adequate learning to describe the case in 

which the agent acquires adequate knowledge asymptotically with probability one. Let us 

sa.y that inadeguate learning occurs when the agent acquires adequate knowledge with 

probability zero, and that partial learning occurs when the agent acquires adequate know

ledge with probability strictly between zero and one. In this terminology, our discussion of 

genericity reaches the tentative conclusion that partial learning is the generic outcome. 

Our presentation will be informa! throughout this section. 

In our example the behaviour of the left-hand half of the payoff function depends 

only on r.p e [.52,~, that of the right-hand side depends only on 7/J e [Jll,~, and 0 = ( ,.,o, 7/J). 

For any given 0, b( ·, 0) is fairly fiat over the interval (.52,~, attaining a local maximum of 

size 1 at r.p. It then falls to O at 1.5, where a11 its d~rivatives are fixed and independent of 

r.p. After 1.5 it remains low, except for a narrow spike in a small neighbourhood of 7/J, where 

it attains a second local maximum of size 2. A typical such b( · ,0) is pictured in Figure 1. 

It should be clear that, provided ois sufficiently small, the agent's action will 

converge to r.p with probability one in this example. Indeed, as long as he choose an action 

in [.52,~ he is guaranteed a payoff near 1. But if he chooses an action greater than 1.5 then 

he will almost certainly get a payoff near O. So although choosing an action above 2 might 
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allow him to obtain a payoff of nearly 2 forever more, the high rate of discounting makes 

such a choice unattractive. Thus, with probability one, the agent's action converges to a 

point that he knows is not the global optimum. 

Note that it is essential that the behaviour of b( · ,fJ) over the interval [0,1.5] be 

determined entirely by rp, and that its behaviour over [1.5,3] be determined entirely by 'I/J. 

This ensures that the agent cannot learn anything about 'I/J from the outcomes of actions in 

[~,~. Yet such a situation hardly seems generic. This leads one to ask whether adequate 

learning is in fact the generic outcome when there is no noise. 

One way of formalising genericity is as follows. Suppose that 8 and X are fixed sub

sets of !Rm and !Rn respectively, and that we are given a density on 8. Then we could call a 

property generic if it held for an open dense set of functions b: 8 x X -+ !R. And it would 

appear likely that, generically, the agent achieves adequate knowledge in a finite numôer of 

periods. 

This formulation may not be appropriate, however. For it implicitly restricts 

attention to a finite-dimensional set of possible payoff functions. (In this respect it is 

rather like analysing the case of a polynomial payoff.function.) _ Yet the pro blem of learning 

about a payoff function, which is the problem in which our agent is engaged, is intrinsically 

infinite dimensional. It is therefore worth considering a second formulation in which a 

fixed set of payoff functions is given, but the agent's beliefs about these functions vary. 

For example, the set of payoff functions might be a subset 8 c C(0,1], the space of 

continuous functions on [0,1], and Q would then v~ry over .9'.J((8), the set of probability 

measures over 8. A statement would be generic if it held for an open dense subset of 

.9'.J((8). 

One problem with this second formulation is that the results may be sensitive to the 

choice of topology for .9'.J((9). ·suppose first that .9'.J((8) is given the weak topology. 

Then adequate learning will be non-generic. Indeed, suppose that adequate learning occurs 

when the prier is Q. Let x1 be the optimal fi.rst move, and find c such that b(x1,fJ) = c 
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with Q-probability zero. Let Q be the prior of an inadequate learning example in which: 

x1 
is a local optimum of b( · ,8) with Q-probability one; b(xl'O) = c with Q-probability 

one; and optimal behaviour involves choosing x1 forever. Then the prior Q' = (1-e)Q 

+ eQ leads to partial learning. For x1 is the optimal first period action, the agent 

discovers which of the priors Q and Q he really faces as soon as he observes his first-period 

payoff, and the former prior leads to adequate learning while the latter leads to inadequate 

learning. If, on the other hand, a.dequate learning does not occur with prier Q, then one 
,A ,A 

can find a Q near Q such that Q has finite support, and such that the agent learns whlch of 

the fini te number of payoff functions is actually in play as soon as he observes hls 

first-period payoff. So inadequate learning is non-generic too. 

These arguments could be ta.ken to suggest that the question as to whether adequate 

learning does or does not occur simply is not the right question to ask. We would argue 

that this is the wrong reaction. Indeed, the problem with the weak topology is precisely 

that it is tao weak. The sets of priors that are open in this topology are simply tao big, 

and therefore it is relatively easy to upset any given behavioural pattern by finding anot.her 

prier which is nearby accorcling to the weak topology, but which is in fa.et quite clissimilar. 

Suppose therefore that .,9>.;!(0) is endowed with the norm topology. Then the same argu

ment as in the previous paragraph shows that adequate learning is non-generic. But the 

argument showing that inadequate learning is non-generic breaks down. Indeed, it seems 

very likely that all priors in a neighbourhood of a prior that leads to partial learning 

themselves lead to partial learning. And if thls is ~o then partial learning will be generic.14 

14 There is a significant problem, however. When 'generic' is given the meaning we 
are using here, non-existence is probably the generic outcome. To see this, simply note 
that any prior for which existence does obtain can be mixed with a small amount of a prior 
for which it does not in such a way as to destroy the existence. Moreover, non-existence 
probably obtains for all priors in a neighbourhood of the resulting 'mixed' prior. So in 
order to make our daim that partial learning is generic precise, one would either have to 
give a meaning to terms such as adequate and inadequate learning in the case where 
non-existence obtains, or consider genericity in the topology induced by the norm topology 
on the set of priors for which existence does obtain. 
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To summarise, we think that the question of genericity is an interesting one in our 

mode!. Great care must, however, be taken to arrive at a sensible definition of genericity. 

Of the de:finitions we have discussed, we think that the last, which uses the norm topology 

on the space of priors, appears to be the most appropriate. If this is correct, then it would 

appear that partial learning is the only generic outcome. 
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6 Inadeguate Learning with a Discontinuous Payoff Function 

In this section we provide a second example in which there is inadequate learning. 

The· example has a number of attractive features. First, an optimum exists in spi te of the 

absence of noise. Secondly, inadequate learning occurs with probability one. Thirdly, 

there is a positive probability that learning ceases altogether after a finite number of 

periods, and a positive probability that learning goes on forever. 

Each period a monopolist tries to sell an indivisible good to a consumer. The mono

polist sets a price x, and the consumer buys iff the price is less than or equal to his reserv

ation price 0. Initially the monopolist believes that 0 is distributed uniformly on [0,1], but 

he revises these beliefs in the light of his failure or success in selling at the price he asks. 

For this problem: e = (0,1]; X= [0,1]; b(x,0) = x if x 5 0 and b(x,0) = 0 if x > 0; 

and a= b. So the standing assumptions (A2) and (A3) are not satis:fied. As a result, we 

must pay attention to the specific structure of our problem. 

Because the monopolist can only observe whether he sells or not, his beliefs in 

period t + 1 must be that fJ is distribut.eà uniformly in an interval [.ii,7\]. Here .i.t is the 

highest price at which he has so far sold, or O if he has not yet succeeded in selling; and 7Jt 

is the lowest price at which he has failed to sell, or 1 if he has not yet failed to sell. Clearly 

.ii is non-decreasing in t and 7Jt is non-increasing. Moreover we need not calculate the 

value function v for ail possible priors. Indeed, we need only calculate vin the case where 

his beliefs are that 0 is uniformly distributed on [g,h]. To this end, consider the Bellman 

equation 

w(g,h) = sup ((1 - b)(l - À)(g + À(h - g)) 
05À~l 
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+ 8(1 - ..\)w(g + ..\(h - g),h) + 8..\w(g,g + ..\(h - g))] ... (6.1), 

which is a simplified version of the original equation (2.3). 

Lemma 6.1 Equation (6.1) has a unique solution. This solution is continuous and convex. 

Proof It is easy to check that continuity is preserved by the Bellman operator. Similarly, 

since the supremum of a family of convex functions is convex, convexity is preserved too. 

The lemma therefore follows from standard considerations. o 

Theorem 6.1 There exists an optimal strategy. 

Proof Since w is continuous, the supremum on the right-hand side of (6.1) is attained. 

Indeed, the correspondence mapping (g,h) into those ,\ which maximise the right-hand side 

of (6.1) is upper semicontinuous. It follows that a measurable selection from this 

correspondence exists. Standard considerations then show that this selection generates an 

optimal strategy, and that w is the value function for the problem under consideration. o 

Since w(g,h) is the value function for the problem, it must be homogeneous of 

degree 1 (because the problem is invariant under scaling), and it must be strictly increasing 

in bath arguments. The first of these properties is especially useful, since it shows that we 

can confine our analysis to the case h = 1. Let W(g) = w(g,l). In order to proceed 

further, it is helpful to know the circumstances in which learning can cease. Now no 

further information is obtained if a price xt+l such that xt+l 5 .i.t, or xt+l ~ 7Jt is chosen. 

And of these possibilities only xt+l = .i.t could possibly be optimal. So learning can cease 

iff .i.t is an optimal price. 
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Lemma 6.2 Let c = 1/(2 - 5). Then learning can cease iff J.ifOt ~ c. In this case J.i is the 

unique optimal price. 

Proof Suppose that gis an optimal price when beliefs are summarised by (g,l). Then 

setting a price of g forever is an optimal strategy, and so W(g) = g. Conversely, if W(g) 

= g then gis an optimal price when beliefs are given by (g,l). So, overall, learning can 

cease iff W(g) = g. 

New setting g forever is always a possible strategy. So W(g) ~ g. Also W(l) = 1. 

Since W is convex, it follows that the set of g such that W(g) =gis a closed interval with 

right-hand endpoint 1. Hence W(g) = g implies that g selves the problem 

... (6.2) 

which in turn implies that g ~ c. Conversely, if g ~ c then g selves (6.2) for all g ~ g, which 

implies that W(g) = g. So W(g) = g iff g ~ c. Finally, the solution to (6.2) is always 

unique. o 

Lemma 6.2 tells us that if J.i ~ c'Yt then next period's price xt+l = flt' and that if Qt 

< c'Yt then xt+l > J.i· Our next goal is to show that, in this latter case, xt+l < c'Yt as 

well. This turns out to be a surprisingly difficult result. The first step is to show that 

xt+l ~ c'Yt. 

Lemma 6.3 Suppose that flt < c'Yt. Then xt+l ~ c'Yt. 
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The intuition behind this result is as follows. Consider an x > 7Jtc. If the agent 

were informed whether e < 7Jtc or e ~ 7Jtc, he would weakly prefer c7Jt to x in the first case, 

and strictly prefer c7Jt to x in the second. Hence xis dominated by 7Jtc. This intuition 

must, however, be treated with care. 

Proof It suffi.ces to consider the case where (~, 7Jt) = (g,1), and to show that, in this case, 

the optimal x is a.t most c. To this end, note tha.t the pa.yoff from pla.ying x > c now a.nd 

optimally therea.fter is a.t most equal to the pa.yoff of pla.ying x now, then being informed 

whether e e [g,c) or 8 e [c,1] (in addition to the usual information as to whether 8 e [x,1] or 

8 e [g,x)), a.nd then playing optimally therea.fter. The latter pa.yoff is 

< Î~ [<1 - ô)cd + éw(c,1)] + ~=: w(g,c) 

(since c is strictly optimal when it is known that 8 Ë [c,11) 

= (1- ô)[i~]c + c[i~]w(c,1) + c[~~]w(g,c), 

(which is the payoff from playing c now and optimally therea.fter). That is, overall c is a 

strictly better choice than a.ny x > c. o 

It will be seen from the proof just how slippery was the intuition with which we 

started. We were· only able to make it precise by feeding the agent the extra information 

after he made his decision, and by noting that the extra. information turned out to be 

redundant. 
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Obtaining the strict inequality xt+l < cit is significantly harder. The basic 

clifficulty can, however, be understood in terms of our intuition. To prove that xt+l < c~t 

we have to show that there is some x < cit that dominates the choice of cit itself. It is 

easy to see that some x < cit is better than cit when fJ < cit. The problem is that any x 

< cit is strictly worse than cit when fJ ~ cit. So we have to show that the trade-off 

between optimality in the two events fJ < cit and fJ ~ cit faveurs a compromise between 

the two. 

Lemma 6.4 Suppose that .it < cit. Then xt+l < cit. 

Proof In the first step of the proof we show that the right-hand derivative of 

(h - g)w(g,h) with respect to h is at most h. In the second, we exploit the envelope 

theorem to show that this upper bound can be refined progressively, obtaining a final 

bound of max{g,ch}. The last step of the proof uses this bound to show that, when g < ch, 

the choice of action ch is dominated by some x < ch. 

Turning to the first step; ·note that-8'T((h - g)w(g,h))/8h is well defined because w 

is convex in h. Next, 

(h + f - g)w(g,h + f - g) ~ (h - g)w(g,h) + ew(h,h + e), 

by convexity of the value function w. Moreover w(h,h + e) ~ h + e. So 

(h+e-g)w(g,h+e-g)-(h-g)w(g,h) < h + f. 
f -

The required inequality 
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+ k ((h-g)w(g,h)) ~ h ... (6.3) 

follows on letting f -+ o+. 

For the second step, we must distinguish between the cases g = h and g < h. If g = 

h then a+((h - g)w(g,h))/ 8h ~ h = g by the first step, and the required inequality follows 

trivially. If g < h, let x be any optimal choice of action when e e [g,h]. Then x < h and 

we may apply the envelope theorem to the Bellman equation to conclude that 

+ a+ k ((h - g)w(g,h)) ~ (1 - Ô)x + ô fuï{(h - x)w(x,h)) ... (6.4). 

But x 5 max{g,ch} by Lemmas 6.2 and 6.3, and a+((h - x)w(x,h))/ 8h 5 h by (6 · 3). So 

(6.4) implies that 

+ k ((h - g)w(g,h)) 5 (1 - Ô)max {g,ch} + ôh ... (6.5), 

which is an improved version of (6.3). Since this inequality holds for ail (g,h) suc~ that 

g < h, we may apply it to the right-hand side of (6.4) to conclude that 

+ k ((h - g)w(g,h)) ~ (1- Ô)x + 6((1 - 6')max{x,ch} + ôh) 

5 (1 - 8)(1 + Ô)max{x,ch} + 62h 

5 (1 - ÔJ(l + Ô) max{g,ch} + 62h. 

lterating this argument yields the desired conclusion. 
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For the third step, suppose that g < ch, and consider f(x) = (1 - t5)(h - x)x + 

ê(h - x)w(x,h) + ê(x - g)w(g,x) (f/(h - g) is the maximand in the Bellman equation). To 

show that the optimal xis less than ch, it will suffice to show that of(x)/ 8xl x=ch < O. 

But 

of(x)I < a+~x)I 
~ x=ch - x=ch 

by convexity of w. Moreover f(x) = (h - x)x + ê(x - g)w(g,x) if ch ~ x < h. So 

a+ux) ~ h-2x + êmax {g,cx} (for such x) 

= -ê( ch - max{g,c2h}) (when x = ch) 

< o. 

This completes the proof of the Lemma. a 

We are now in a position to prove the promised results about learning behaviour. 

Note that the price falls in period t (i.e. xt < xt_1) iff the monopolist fails to sell in period 

t -1. 

Theorem 6.2 Suppose that O = O. Then the price falls in every period, and converges to 

zero as t-+ Cl). In particular, the monopolist learns the true value of the parameter. 



38 

Proof Certainly .io = 0 and 10 > la· If .ii-i = O and lt-l > 0 then the monopolist will 

choose O < xt < clt-l by Lemma. 6.3. Since fJ = 0 he will fail to sell a.t xt. So .ii = 0 and 

lt = xt < c7Jt-1" Hence both the price and the upper bound on the consumer's reservation 

price converge to zero geometrically. a 

Theorem 6.3 Suppose that fJ > O. Then learning is inadequate. 

Proof Let u be the :first period in which the monopolist makes a sale, and let Pt = .i.if7Jt. 

Since O > 0, u < CD. 

Now Pt = 0 for all t < u. Also, 0 = x and 7J = x 1· -u u u u-

< pu < c. Thirdly, for any t, if O < pt < c then Pt < Pt+l < 1. 

< 1.) Fourthly, if Pt~ c then Pt+l = Pt· 

Hence ·.i u < c 7J u' and 0 

(In particular, p < p + 1 . u u 

Overall, then, {pt} is a non-decreasing sequence that converges to a limit pm < l. 

Since .it/7Jt 5 p m for all t, adequate learning cannot occur. a 

Note that the proof of Theorem 6.3 also tells us that there is at least one period in 

which the monopolist raises his price. That is, there exists t > 1 such that xt > xt_1.1s 

Our next result makes more precise the nature of the inadequate learning signaled 

by Theorem 6.3. It shows that learning may go on forever, or that it may cease altogether 

after a finite number of periods. 

Theorem 6.3 Suppose that O > O. Then the number of periods in which the price falls is 

fini te. (It may be zero.) If T is the last period in which the price falls then the price either 

remains constant at xT forever more (i.e. xt = xT for all t ~ r), or it is strictly increasing 

1s This contrasts with the results of Lazear (1986), who finds that prices must fall. 
But that is only to be expected in a. mode! without repeat purcha.ses. 
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forever more (ie, xt+l > xt for ail t ~ r). Moreover each of these possibilities occurs with 

positive probability. 

Note that ris a random variable. In the case when price remains constant, the 

monopolist knows that r has been reached. But in the case when price increases forever, he 

does not. (For ail he knows, his current price increase could result in a failure to sell.) So 

r is not a Markov time. 

Proof Suppose that the price falls in period t. Then 7Jt-l = xt-l · ~ c7Jt_2. So if the price 

fails in an infinite number of periods then 7Jt -1 0 as t -1 ai. This contradicts the assumption 

that 0 > O. Hence r < ai. There are now two possibilities. If Pr-l ~ c then xt = ..i,_1 for 

ail t ~ r by Lemma 6.2. If, on the other hand, Pr-l < c then .i.,_1 < x, < 7J
1

_ 1 by 

Lemmà 6.3. Also, by definition of r, the monopolist will succeed in selling in period ,, so 

.i.'T = x,,. > ..i,,._ 1 and p,,. = §.
7

/7J 
1 

= x 
7

/?J r-l < c . Moreover this argument can be 

continued indefinitely. So the price increases strictly forever. (Note how we have exploited 

the foreknowledge obtained from the non-Markov time ,. ) 

It remains to show that both of these possibilities can arise with positive 

probability. It is easy to see that this is true of the second possibility: it occurs whenever 0 

~ c. To obtain the second, let {xt I tt ~ 1} be the sequence of prices charged when 0 ~ c. 

Then xt -1 c-. (If it did not, then it would follow from the upper semicontinuity of the set 

of maximisers of the right-hand side of (6.1) that ;ai is an optimal price when (g,h) = 

(x ,1), where x < c is the limit of the xt. But this contradicts Lemma 6.2.) So there 
al al 

ex:ists T such that ~ ~ c2. The first possibility arises whenever 0 E [~,c). o 

It should be emphasized that, even when lea.rning goes on forever, it does not result 

in adequate knowledge. 
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7. Conclusion 

In this last section we briefly summarize and interpret the main findings of the 

paper. 

Our first set of results concerns the long-run learning behaviour of an economic 

agent facing an unknown payoff function. Our main convergence result, which states that 

in the long run the benefit of experimentation tends to zero, provides a general perspective 

applicable bath to the case where the payoff function is deterministic and to the case where 

it is stochastic. In bath cases the motive of learning induces smaller and smaller deviations 

from the myopie optimum as time goes to infinity. In other words, whatever is learned 

asymptotically from experimentation can only be learned as a result of local 

experimentation about the myopie optimum. In particular, the possibility or otherwise of 

adequate learning relates directly to local properties of the payoff function. 

Our second set of results relates to the case where the payoff function is 

deterministic. Here we have shown that, when the payoff function is, in addition, analytic, 

local experimentation allows for global extrapolation, and that the agent is therefore able 

to attain the true global optimum asymptotically. On the other hand, if the payoff 

function is infinitely differentiable but not analytic, an example shows that this result may 

break down. Similarly, when the payoff function is continuously differentiable, local 

experimentation allows for local extrapolation, by providing an arbitrarily precise estimate 

of the slope of the true payoff function at any givei: point. This in turn guarantees that 

local experimentation will eventually lead to a local optimum of the payoff function. On 

the other hand, if the payoff function is continuous but not continuously differentiable, an 

example (which we do not provide in the paper) shows that this result may break down. 

(A case of special interest here is that-in which the payoff function is continuously 

differentiable and quasiconcave. For in that case any local optimum is also a global 

optimum, and the global optimum will be reached as a result of local extrapolation.) 
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This second set of results is of interest for at least four reasons. First, it represents 

a partial (though fairly extensive) characterisation of those situations in which adequate 

learning will and will not occur. This is in contrast with much of the literature, which has 

tended to concentrate on providing examples of inadequate learning. Secondly, this 

characterisation illustrates the principle which emerged from the first set of results, namely 

that local properties of the payoff function will be crucial in determining whether adequate 

learning occurs or not. Indeed, the central properties of the payoff function are analyticity, 

d.ifferentiability and continuity, ail of which are local properties. Thirdly, as we illustrated 

in our discussion of robustness, this set of results extends ( at least approximately) to the 

case of a small amount of noise. Fourthly, the case of a deterministic payoff fonction 

occurs frequently in applications. 

By analysing a polar case of special interest, the second set of results illustrates 

some of the factors that will determine whether adequate learning will or will not occur in 

the general case of a stochastic payoff fonction. But other factors can be expected to corne 

into play in this case. For example, although local experimentation is likely to continue to 

be of central importance, the nature of learning from local experimentation is likely to 

change. In particular, if small local·changes in action are to provide usable information 

about the shape of the payoff functions, they may have to be maintained over many 

periods. This and similar effects could render learning more difficult, and make adequate 

learning less likely. On the other hand, as we know from one of the convergence results, 

the agent will ultimately learn the true distributio~ of bis observations. This could make 

adequate learning easier. Indeed, suppose that the agent's payoff is a noisy function of his 

action and the true parameter, and that he simply observes bis payoff in each period. 

Then, in the limit, he will know the true payoff distribution associated with bis limiting 

action. This is at least as much information as he would obtain in the corresponding 

deterministic case - in which he would learn only the expectation of the true payoff 

iistribution - and is likely to be significantly more. 
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Our third and last set of results relates to the problem of characterising the process 

of adjustment to the long-run outcome, as opposed to the problem of characterising the 

long-run outcome itself. This problem is much harder to dea.1 with in the genera.1 case, so 

we worked instead with a simple example in which a monopolist made repeat sa.les to a 

myopie buyer. In this example we were able to build up a detailed qualitative picture of 

the optimal strategy, and of the associated process of adjustment. It seems likely that 

further results on short-run learning behaviour will be obtained similarly in the context of 

simple examples. One possibility here would be to extend our example of a monopolist to 

the case where the buyer behaves strategica.lly. Another would be to ana.lyse the 

interaction between competition and learning in an oligopolistic mode!. 
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Appendix 

This appendix begins by providing the justification for the material in Section 2. In 

doing so, we follow a pattern of development slightly different from that followed in 

Section 2. It continues with a proof of the existence theorem of Section 4; and concludes by 

collecting together a1l the remaining proofs missing from Sections 3 and 4. 

For our development of the material of Section 2 we need the following two 

assumptions: 

( A2 ' ) a is Borel measurable; 

( A3') b is bounded and Borel measurable. 

These assumptions differ from (A2) and (A3) in that they do not assume that a and b are 

continuous in (x,O). We assume henceforth that (Al), (A2') and (A3') hold. We also 

assume that a1l spaces of probability measures are endowed with the weak topology unless 

explicitly stated to the contrary. 

Suppose now that an arbitrary strategy s is given. Let 5 0 be the trivial cr-algebra. 

Next, for a1l t ~ 1 the agent will have observed (Yl'···,Yt) at the beginning of stage t + 1. 

In this case let 5t be the cr-algebra generated by (Yl'···,Yt). Finally, let $ai be the 

cr-algebra generated by the sequence (yl'y2, ... ). Then standard considerations show that, 

for each O ~ t ~ ai, we may construct an r.c.p.d. (r~gular conditional probability 

distribution) of P given 5t. That is, there exists a Pt satisfying: 

(i) for all w E n, Pt(· I w) e .9'.,{{(0); 

(ii) P t(A I ·) is 5t-measurable for all A E 5; 



• 

44 

(iii) P(A n B) = /BP/AI w)dP(w) for ail A e .Y and ail BE ..5\; 

(iv) Pi(· I w) is concentrated on the atom16 of .:Tt containing w for P-almost all w 

Pi(· I w) is to be interpreted as the agent's posterior about the state of the world, based on 

the information available to him prier to stage t + 1, when the true state of the world is w. 

(i) and (iii) capture the idea that Pt(· I w) is the agent's posterior. (ii) captures the idea 

that this posterior depends only on information available to him prier to stage t + 1. 

Finally, (iv) ensures that his posterior assigns probability zero to the set of states of the 

world that do not generate his observations to date. 

The agent's posterior concerning the parameter of interest are now given by 

Qi( · I w), the marginal of Pi(· 1 w) over 9. We regard Qt as a random variable defined on 

n and taking values in .9'.Jt'(8). With this convention, the following result is standard. 

Theorem A. l { Qt l 1 $ t $ m} is a martingale. Moreover Qt ~ Qm a.s. as t ~ m-. o 

Note that {Qt 11 5 t 5 CI)} follows a martingale in the sense that there exists a single 

null set outside which E[JfdQt 1 .Y ul = /fdQu for all 1 $ u 5 t $ m and ail bounded 

continuous f: 8 ~ IR. Also, by definition of convergence in the weak topology, there exist a 

single null set outside which /fdQt ~ /fdQm for all such f. 

and 

16 

At this point we remind the reader that, by definition, 

m(Q) = sup E(?r"1] 
s 

The atom of .:Tt containing w is the smallest .Yt-measurable set A such that w E A. 
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We also introduce the following assumption: 

(B) there exists a countable set of strategies S such that, for a11 Q E .9>.4(9), 

supseS E[(l - 6)Et m 1 f-l~tl = v(Q). 

We can now state two results, both of which follow from standard considerations 

( cf. Striebel [1975], for example). 

Theorem A.2 Suppose that (B) holds. Then {v(Q) 11 ~ t ~ 111} follows a submartingale. o 

The essential point here is that v can be expressed as the upper envelope of a 

countable number of linear functions by (B), and that Jensen's inequality therefore applies. 

Theorem A.3 Suppose that (B) holds, and lets be optimal. Then v(Qt) = 

E[(l - 6) Eu 111 

15u-l11"t+u l .5\] a.s. for a11 t ~ 1. o 

The point here is that, while it is obvious that v(Qt) ~ 

E[(l - 5) Eu 111 

1 5u-l11"t+u 1-'t], assumption (B) is needed to show that we can construct a 

strategy that improves on s if this inequality holds,strictly on a set of positive probability. 

Theorem A.4 Suppose that (B) holds, and that sis optimal. Then v(Qt) - m(Qt)-+ 0 a.s. 

as t-+ m-. 

Proof We have 
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a, 

v(Qt) = E[(l - ô) l c511-l?r"t+ul ..,-tl a.s. 

u=l 

(by Theorem A.3) 

a, 

= (1-ô)E[,r-t+ll ..,-tl + ôE[(l- ô) l ôu-1,r-t+l+ul ..,-t+ll ..,-tl a.s. 
u=l 

(because f 1!"t+l dP t is a version of the conditional expectation E[7!"t+l l ..,-t], and by 

Theorem A.3 again). Moreover 

(by definition) 

(by property (iv) of an r.c.p.d., and the fact that xt+l is ..,-t-measurable) 

= J B(xt+l (w),1)dQ/11 w) 

(because zt+l is independent of 8 conditional on ..,-t). 
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(by definition of B) 

(by definition of m). Hence 

But { v( Qt) 11 5 t 5 œ} is a bounded submartingale. Standard martingale results therefore 

show that there exists a bounded V such that v( Qt) -+ V a.s. 1 v( Qt) 5 E[V 1 .5 t] a.s. for all 

t, and E[V 1 .5 t] -+ V a.s. It follows at once that 

-+ O a.s. 

This completes the proof. o 

So far we have phrased our analysis in terms of the non-basic assumption (B). This , 

potential weakness will be rectified shortly: we shall show that 1 to obtain (B) 1 it is 

sufficient to assume that ais continuous in (x 1 0) and that bis lower semicontinuous in 

(x,O). The reason why we have not invoked these assumptions before is that we feel that 

Theorems A.l to A.4 have a greater generality than such continuity assumptions on a and 

b might suggest. 
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Theorem A.5 Suppose that ais continuous in (x,O) and that bis lower semicontinuous in 

(x,0). Then v and mare both lower semicontinuous in Q. 

The daim that m is· lower semicontinuous is easily verified, and depends in fact only 

on the assumption that b is lower semicontinuous. The daim that v is lower semi

continuous is much harder to prove. lndeed, in order to prove it we need to extend the 

concept of a strategy for period t + 1 from a Borel measurable function st+ 1: yt -+ X to 

that of a Borel measurable function st+ 1: yt -+ .9'...K (X). The bulk of the proof is 

accounted for by the following three lemmas. 

Lemma A.l Suppose that st+( yt-+ .9'.J((X) is Borel measurable, and let a>. te .9'.J((Yt) 

be given. Then, for all e > 0, there exists a continuous s:+i=yt-+ .9'.At(X) such that 

d(s:+l (y), st+l (y)) < e for a11 y in a set of>. t-measure 1 - e. 

ln the statement of the lemma, d( ·,.) is any metric on .9'.J((X) which induces the 

weak topology. 

Proof ln order to simplify notation, suppose simply that s: Y-+ .9'.At(X) is Borel 

measurable, >. e .9'...K(Y), and e > 0 is given. 

Let {Pnln ~ 1} be a sequence that is dense in .9'.J({X). Let B/pn) denote the ball 

of radius e centred on p . Define s: Y-+ .9'...K(X) inductively by the formula: s(y) = p1 if n , 

s(y) e B/p1); s(y) = Pn+l ifs(y) e B/Pn+l)\uin 1 Bipi). Because {pn} is dense, 

{B /Pn)} covers .9'.At{X), and sis well defined. Moreover it is dear that d(s(y), s(y)) < 2e 

for all y. 

Next, let En= s-1 (pn) for all n. Find N such that EnN 1>. (En)> 1- e. For each 

n ~ N, find Kn c En such that Kn is compact and >.(En \Kn) < e/N. (Such Kn exist 

because every Borel measure on a complete separable metric space is tight. See 
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Parthasarthy (1967; Chapter 3) for example.) Find disjoint open sets V n such that Kn c 

V n for ail n 5 N. Find continuous functions Xn= Y-+ [0,1] such that Xn = 1 on Kn and Xn 

= O outside V n· (Such functions exist by Urysohn's Lemma.) Let 1/J1 = x1; for each 2 5 n 

5 N let "Pn = (1 - x1) ... (l - Xn_1)xn; and let 7PN+l = 1-EnN 1 "Pn· And define sE 

- ~+1 4/, 
- n=l PnY'n· 

It can be checked that sE(y) = Pn on Kn, and therefore that d(s\y), s(y)) < 2E on a 

set of >.-measure at least 1 - 2E. Also sE is continuous by construction. Finally, "Pn ~ 0 for 

all 1 5 n 5 N + 1, and ~+i "Pn = 1. So sE(y) E conv{pl'p2, ... ,pN+l} c .9>.,K(X) for a11 

y. 0 

Lets be any fixed strategy, and let vs(Q) be the payoff obtained when sis played 

and priors are Q. 

Lemma A.2 Suppose that ais continuous in (x, 0) and that bis lower semicontinuous in 

(x,0). Lets be any continuous strategy. Then vs is lower semicontinuous. 

By saying that sis continuous, we mean that st+l: yt-+ .9>.,K(X) is continuous for 

all t ~ 1. (s1 is just an element of J>.J((X).) 

Proof For each (x,0) e X x 9, let o( · lx,0) be the distribution of the random variable 

a(x,0,· ): Z-+ Y obtained when Z is given distributiçm R. Because ais continuous in (x,O), 

a(· I ·) is a continuous transition probability from X x e to Y. Let cri(· I yt) = st+l (yt) 

for all yt e Yt. Ifs is continuous, crt is likewise a continuous transition probability from yt 

to X for all t ~ 1. 

Now suppose we are given priors Q and a strategy s. Then we may build a sequence 

of probability distributions i( · 1 s,Q) over e x xt x yt inductively as follows. First 

combine the marginal Q e s1 over e x X with the transition probability which takes ( O,x) 
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into D(O,x) •a(· lx,O) to obtain J,,.l( • ls,Q) over 9 x X x Y. Then, having obtained the 

distributionµ,\· I s,Q) over 9 x xt x yt for some t ~ 1, apply the transition probability 

that takes ( O,xt ,i) into DO• D t • o"t( · I yt) • D t followed by the transition probability 
X y 

which takes (O,xt+1,i) into Do• D t+l • D t •a(· lxt+l'O), and obtain the distribution 
X y 

µ.t+l(. ls,Q) over 9 x xt+l x yt+l. The sequence of distributions obtained in this way is 

consistent, so there is a unique l'( · I s,Q) over 9 x xm x yai of which they are the 

marginals. Moreover, ifs is continuous then each µ,\ · I s,Q) depends continuously on Q, 

and therefore µ,ai(· I s,Q) too depends continuously on Q. 

Next, let B(x,O) = Jb(x,0,z)dR(z) for ail (x,O). Bis bounded and lower 

semicontinuous in (x,O) because bis. Let /3(xai,O) = (1- o) ~t ai 1 é-1B(x7,0) for all (x'°, 0) 

e xm x 8. Because Bis bounded and lower semicontinuous, sô is (3. Finàlly, note that 

for ail Q. Because µ.ai(· 1 s,Q) is continuous in Q, and because /3 is bounded and lower 

semicontinuous, vs is bounded and lower semicontinuous. o 

Lemma A.3 Suppose that ais continuous in (x, 0) and that b is lower semicontinuous in 

(x,0). Lets be any strategy. Then v/Q) ~ suPs vg{Q), where s varies over ail continuous 

strategies. 

Proof For the proof we shail need some notation. First, ifs is a strategy then let s t 

( ) t+ 1 ( ) . t t 
= sl's2, ... ,st an,d s = st+l'st+2, .... Secondly, suJpose that we are given (Q,x ,Y ) e 

.9'.;{{(8) x xt x Y\ ç e .9'.A{(X), and a strategy s. Then we may construct a probability 

measure µ,ai(· I s,( O,xt ,yt),ç) over 9 x xm x yai much as in Lemma A.2: begin with the 

probability measure Do• D t • ç • D t over e x xt+l x Y\ use a(· lxt+l'O) to move from 
X y 
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9 x xt+l • yt to 9 x xt+l x yt+li then uses exactly as in the proof of Lemma A.2. 

Thirclly, let 

CD 

t t J \ -1 "' "' CD "'"'CD "CD t t v/ çl 8,x ,Y ) = (1 - 6) l t1 B(xt+u'O)dµ ( 8,x ,Y I s,( 8,x ,Y ),ç) 

u=l 

be the continuation payoff obtained when the parameter is 0, xt is the past history of 

actions, yt is the past history of observations, and ç is the probability distribution over 

actions employed in period t + 1. We shall also need the following obvious facts. First, 

µ\ · 1 s,Q) depends on s only insofar as it depends on st. Seconclly, µCD(· 1 s,( O,x\yt),ç) and 

v/çl 0,xt,yt) depend on s only insofar as they depend on t+2s. Thirclly, v/çl O,xt,yt) is 

bounded and lower semicontinuous in ç. 

Turni:Îl.g to the proof itself, let s be any strategy. Because bis bounded, there exists 

T such that 

v[ T T+l-J (Q) > v/Q) - e 
s , s 

for a1l continuons T+ls. Next, from Lemma A.1 it follows that we can find strategies sTn: 

yT-l ... .9>...K(X) such that, regarded as a random variable on 9 x xT-l x yT-l, sTn -1 sT 

. T-1( I T-1 ) a.s. relative to the measure µ, • s ,Q . But 

J [T-1 l t-1 T-1 T-1 T-1 T-1 
v[ T-l - T+l-J (Q) = (1- 6) E o B(xt,O) dµ ( 0,x ,y I s ,Q) 

s ,sTn' s t =1 
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I - ( 1 T-1) 1 T-1 T-1) T-1( T-1 T-1 I T-1 Q) 
+ v[ T T+l-JsTn . y 8,x ,y dµ 8,x ,Y s ' ' 

s ' s 

with a similar formula for v[ T-l T+l-J. But the first term on the RHS is 
s ,sT, s 

independent of n. In the second, B(x.r,D) is lsc in Lr and sTn( · IYT-l) converges 

weakly to sT( · IYT-l) for almost ail yT-l. In the third, v[ T T+l-J is lsc in 
s ' s 

sTn( • IYT-l), and sTn( · IYT-l) converges weakly to sT( · IYT-l) as before. It follows 

that 

liminf v [ T-1- T+l-J (Q) ~ v[ T-1 T+l-J (Q), 
n~ai s ,sTn' s s ,sT, s 

and therefore that there ex:ists N such that 

v[ T-1- T+l-J (Q) > v[ T-1 T+l-J (Q) - E/T. 
s ,sTN' s s ,sT, s 

Let stT = sTN· 

Iterating this argument we eventually obtain a strategy s such that vg(Q) > vg(Q) 

- 2f.. This completes the proof of the lemma. a 

Proof of Theorem A.5 Define y(Q) = SUPg vg(Q),,where s varies over all continuous 

strategies, and v(Q) = supsv/Q), where s varies over ail strategies. Clearly y and v are 

bounded, and y ~ v. By Lemma A.3, y ~ v, soin fact y = v. By Lemma A.2, each v5 is 

lower semicontinuous, so v too is lower semicontinuous. It remains to relate v to v. (The 

difference between v and v is that v is dëfined for general strategies taking on random 

values, whereas v is defined only for strategies taking on deterministic values.) Certainly v 
~ v, since vis the supremum over a smaller set of strategies. On the other hand, standard 
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considera.tions show that, for any given stra.tegy s with possibly randomised va.lues, there 
A 

exists a. deterministic s tha.t does at least as well. So v ~ v. a 

We turn now to two important corolla.ries of Theorem A.5. 

Corollary A.l Suppose that the conditions of Theorem A.5 hold. Then (B) holds. 

Proof Consider the epigraph E = {(Q,w) 1 w ~ v(Q)} of v. For ea.ch CQ',w) E ( .9'.A((0) x 

IR)\E, i.e. for which v('Q) > w, there exists a. continuous stra.tegy s such tha.t v/'Q) > w. 

Let A(s) = {(Q,w)lv/Q) > w}. Because vs is lower semicontinuous, A(s) is open. By 

choice of s, (Q",w) e A(s). So the sets A(s) obta.ined as (Q",w) va.ries over ( .9'.A((0) x IR)\E 

from an open caver for this set. Because this set is separable, we ma.y select a countable 

subcover {A(s)ls e S}. The set of strategies S then serves in the capacity required 

by (B). o 

Corollarv A.2 Suppose that the conditions of Theorem A.5 hold. Then v(Qt)-+ v(QCIJ) and 

m( Qt) -+ m( QCIJ). 

Proof Consider the case of m. Because mis lower semicontinuous and convex, and 

because .9'.A( ( 0) x IR is separable, m can be expressed a.s the upper envelope of a. countable 

number of continuous linear functiona.ls. Jensen's !nequality therefore applies, and 

{m(Qt) Il ~ t ~ CIJ} is a bounded submartinga.le. Hence, by the submartinga.le convergence 

theorem, there exists M such that m(Qt)-+ M a.s. as t-+ en-. Since m(Qt) ~ E[m(QCIJ) l .5\) 

a.s. and E[m(QCIJ) l .5\]-+ m(QCIJ) a.s., M ~ m(Qm) a.s. On the other hand, M = lim m(Qt) 

~ m( QCIJ) a.s. by the lower semicontinuity of m. o 
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Theorem A.6 Suppose tha.t sis optimal, that ais continuons in (x,O), and that bis 

continuons in (x,O). Then, with probability one, all limit points of {xt 11 ~ t ~ m} maximise 

B( ·,Q ). 
aJ 

Proof Re-examining the proof of Theorem A.4, we see that it incidentally shows that 

m( Qt) - B ( xt+ 1, Qt) -+ 0 a.s. Restrict attention ta states of the world in w hich this occurs, 

and in which moreover Qt-+ Qm and m(Qt)-+ m(Qm). Let x
111 

by any limit point of {xt 11 5 t 

< m} in such a state of the world. Moving ta a subsequence if necessary, we may assume 

that xt-+ xm. We have 

(by upper semicontinuity of B) 

= m(Q) 
aJ 

(by our choice of state). That is, x maximises B( · ,Q ). o 
CIi CIi 

Corollarv A.3 Suppose that the conditions of Theorem A.6 are satisfied, and that 

adequate learning occurs. Then, with probability one, every limit point of {xt 11 5 t < m} 

maximises B( · ,0). 

Proof This can be proved in almost exactly the same way as Theorem A.6. We know 

that, with probability one: m( Qt) - B(xt+ 1,Qt) -+ O; Qt -+ Qm; and m( Qt) -+ M( 0). For 

states of the world for which this is the case, B(xm,Qm) ~ M( 0) for all limit points xm of 

{ Xt 11 ~ t ~ m}. D 
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We turn now to the proof of our existence theorem. We will accomplish this proof 

under the assumptions (El)-{E4). It should be noted that these assumptions are 

unambiguously stronger than (Al), (A2') and (A3'). The crucial step is to show that 

Bayes' Law is continuous in an appropriate sense. This is the content of Lemma A.4. 

In order to state Lemma A.4 we need some notation. First, standard considerations 

show that there is a Borel measurable mapping q: !fJ~(9) x X x Y~ !fJ~(9) such that, for 

all Q, x, and y, q(Q,x,y) is the agent's posterior when his priors are Q, he takes action x 

and he observes signal y. Secondly, because X x e is separable and Fis norm continuons 

in (x, 8), there exists a probability measure ,\ on Y and a Borel measurable mappîng 

f( · I ·,·):Y x X x e ~ [O,ai) such that f( · lx,8) e L1(..\) and dF( · lx,8) = f( · lx,O)d..\ for all 

(x,8). Moreover f(· lx,8), regarded as an element of L1(..\), varies continuously with (x,O) 

in the usual L 1 norm. 

Lemma A.4 Suppose that (El) and (E2) hold. Let {(Qn,xn)ln ~ 1} be a sequence that 

converges to (Q,x). Then q(Qn,xn,· ), regarded as a random variable on Y, converges in. 

JF( • 1 x, O)dQ( 0) - probability to q( Q,x, · ), similarly regarded. 

Note that /F( · 1 x, O)dQ( 0) is simply the marginal distribution of the observation 

when the agent has priors Q and chooses action x. 

Proof It suf:fices to prove that f gd[q(Qn,xn, · )], r7garded as a real-valued randorn 

variable on Y, converges in JF( • lx,O)dQ(O) - probability ta f gd[q(Q,x,· )], similarly 

regarded, for any given bounded continuons g: e ~ IR. To this end, let g be such a fonction. 

Because the observation distributions are absolutely continuons with respect to ..\, we have 
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for ail y in a set of JF( • I xn,cp)dQn ( cp) - probability 1. 

Since Q -+ Q we may find random variables~ and~ on some auxiliary probability 
n n 

space such that ~ n has distribution Qn, ~ has distribution Q, and ~ n-+ ~ a.s. We then 

have 

JI f g( cp)f(y I xn,cp)dQn( cp) - f g( cp)f(yl x,cp)dQ ( cp) 1 d;\(y) 

= JI E[g( ~ n)f(y I xn,~ n)l - E[g( ~ )f(y I x,~ )] 1 d;\(y) 

But f I f(y I xn,~ n) - f(y I x,~) 1 d..\(y) ~ 2, and converges to zero a.s. So, applying Lebesgue's 

Bounded Convergence Theorem, we conclude that fg(cp)f( · lxn1cp)dQn(cp), regarded as an 

element of L 1(.X), converges in norm to f g( cp)f( · I x,cp)dQ( cp), similarly regarded. This 

implies in particular that J g( rp)f( · lxn,cp)dQn( cp) converges in À-probability to 

f g( cp)f( · 1 x,cp)dQ( 'ip). Similarly, Jf( • 1 xn,cp)dQn( cp) converges in À-probability to 

Jf( · lx,cp)dQ(cp). Hence, finally, fgd[q(Qn,xn,· )] converges in À-probability to 

fgd[q(Q,x,· )] on the set ofy such that Jf(ylx,cp)dQ(cp) > O. This is the required 

conclusion. a 

Theorem A. 7 Suppose that (El )--(E4) hold. Th~ the agent possesses an optimal 

strategy. 

Proof The proof reduces to solving the Bellman equation for our problem, and showing 

that it can be used to construct an optimal strategy. Although we merely sketch it, we 

hope that our sketch will illustrate the role played by the main assumptions. 
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Consider the mapping <I> defined on the Banach space of bounded, Borel measurable 

functions on .9..K(0) by 

[<I>(w)](Q) = sup{(l-ô)Jb(x,8,z)d(QeR)(8,z) + 6Jw(q(Q,x,y))f(ylx,8)d(Q®.X)(8,y)}. 
X 

It is easily checked that <I> is a contraction of order 6 < 1, and that it is monotonie in the 

sense that <I>( w 2) ~ <I>( w 1) if w 2 ~ w 1. Finally, it follows from the facts that b is use in x 

and that q is continuous in (Q,x), that <I> maps use functions to use functions. 

Let K be a bound for b, set w0 = K, and set wn+l = <I>(wn) for al1 n ~ O. Because <I> 

is a contraction, w converges u.niformly to the unique fixed point w of <I>. Next, it is 
n oo 

clear that w1 ~ w0. It then follows by induction that wn converges monotonically. Hence 

w = inf w ·. Finally, w O is clearly use. Hence ail the w are use, and w is use as an 
oo n· n n oo 

infimum of use functions. Because w is use, 
00 

ar~max{(l - â}Jb(x,8,z)d{Q®R)(O;z} + ~Jw
00

(q{-Q,x,y))f(yJx,8)d(Q®,\)(B1y)} 

is a non-€mpty and compact-valued correspondence defined on .9..K(9). It is also 

measurable in an appropriate sense. It therefore admits a measurable selection x*: .9.;{((0) 

-+ X. Standard considerations then show that w is the payoff obtained when x* is 
00 

employed, and that any other strategy yields a payoff of at most w . It follows that w is 
00 00 

, 

the value fonction for our problem, and that x* is an optimal strategy. o 

It should be noted that, as the prao{ of Theorem A.7 makes clear, (El)-(E4) 

represent a set of conditions alternative ta (Al)-(A3) under which dynamic programming 

can be justified in our model. In particular, under (El)-(E4) one can prove an analogue of 

Theorem A.4 on the exhaustion of learning opportunities in the long run. This should help 
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to explain the special prominence which we gave to that result. One cannot, however, 

prove continuity results like Corollary A.2, on the continuity of v( Qt) and m( Qt) in t, or 

even like Theorem A.6, on the continuity of optimal actions xt in t. 

We illustrate these points by means of two examples which should, incidentally, 

higblight the role played by the various continuity assumptions that we have made. In the 

first example: 9 =X= [0,1], Z = IR, a(x,8,z) = 8 + z, b(x,8) = 1 if x = 8 and O otherwise, 

Q is the uniform distribution over [0,1], and Ris the standard normal distribution. This 

example satisfies (El)--{E4), but fails to satisfy (A3). In it, learning is purely passive, and 

the agent's only objective is therefore to maximise B( · ,Qt) in every period t + 1. B( · ,Qt) 

is, however, identically zero. For the agent's beliefs about 8 have a density relative to 

Lebesgue measure on (0,1]. So he is indifferent between ail choices of action x, and rn(Qt) 

= O. On the other hand, Q ( · I w) = o8·with probability one. So B(x,Q ) = 1 if x = 8 and 
m m 

0 otherwise, the agent has the unique optimal action x = 8 in the asymptotic problern, and 

m( Q
00

) = 1. Bence, with probability one, m( Qt) fails to converge. Moreover there exist 

optimal strategies s such that, with probability one, no limit point of {xt 11 ~ t} maximises 

B( · ,Q
00

). This latter finding is, however, patholàgical. -There does exist an optimal 

strategy s for which, with probability one, every limit point of {xt 11 5 t} maximises 

B( ·, Q ). So the feeling that Theorem A. 6 relies, in some sense, on upper rather than lower 
m 

semicontinuity is vindicated to some extent. 

In the second example: e =X= [0,1]2, Z = IR, a(x,8,z) = (81 + z,82) ifx1 = 81 

and (81 + z,O) ifx1 :/: 81, b(x,8,z) = --{x2 - 82)2, 9 is the uniform distribution over (0,1]2, 

and Ris the standard normal distribution. This example satisfies (Al) and (A3) but not 

(A2). More specifically, bis continuous but ais not. It can be analysed in much the sarne 

way as the previous example. The crucial point is that the agent wants to learn e2, so he 

can set x2 = e2. However, to do so he must set x1 = e1. This he cannot achieve because 

he learns about e1 only slowly and passively. Since bis continuous, m(Qt)-+ m(Q
00

) a.s. 
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However v(Qt) = 0 a.s. whereas v(Q
111

) > 0 a.s. In other words, new learning possibilities 

spring up in the limit. 

We conclude this appendix with proofs of Theorems 3.1, 3.3, 4.2, and 4.3. 

Proof of Theorem 3 .1 

A detailed proof conceals more than it reveals, so we merely sketch the main steps. 

Also, we have already remarked that it is suf:ficient to consider the case m(Q) = v(Q), so 

let us assume this. Let x* maximise B( ·,Q) and assume, for a contradiction, that m(Q) 

< E(M(0)). 

The main obstacle that needs to be overcome is that of constructing a global 

estima te of b( ·, 0) given approxima te knowledge of its derivatives at x*. More precisely, for 

ail n and a0,al' ... ,an2, we need to construct an estimate e( · ;n, < ai 10 5 i 5 n2 >) of b( · ,0) 

with the following properties: (i) if <ai li~ 0> are the true derivatives of bat x*, then e ... 

b( ·, 0) as n ... 111; (ii) for any given n, e is continuous in < ai 10 5 i 5 n2>; (iii) e is bounded. 

(Here the range of e, which consists of continuous functions, is endowed with the topology 

of uniform convergence.) 

Suppose, for the moment, that such an estimate e is given, and let /3 = (E[M( 0)] 

- m( Q))/3. Then, for sui table choice of n and E, the following scheme yields an 

improvement in the agent's payoff. Over the first µ2 + 1 periods, try n2 + 1 actions that 

are evenly spaced with spacing E, ensuring that one of these actions is x*. Next, use a 

sui table differencing scheme to arrive at an estima te < ai 1 0 5 i 5 n 2> of the first n 2 + 1 

derivatives of b( · ,0) at x*. (This estimate will depend on n, E and the n2 + 1 observations 

obtained.) Finally, choose x to maximise the associated estima te e( · ;n, < ai 10 5 i 5 n 2>) 

of the payoff function. 
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The choice of n and e can be made as follows. By the first property of e, 

e( • ;n, < ai~(x*,O) 1 o ~ i ~ n2>)-+ b( · ,0) 
ôx. . 

uniformly for every O (but not, of course, uniformly in 0). Hence, by property (iii), we may 

find ÏÏ such that 

... (A.l) 

Next, by choosing Ë° = e(n) sufficiently small, we can simultaneously ensure that 

... (A.2) 

2 
and that the cost of experimentation over the first n2 ·+ 1 periods is less than on + 1 /3. 

Finally, in view of (A.l) and (A.2), playing x from period n-2 + 2 on yields an expected 

payoff of more than m(Q) + /3 per period. This increased payoff more than compensates 

the cost of experimentation. 

It remains to construct the estimate e. This would present no problem if we knew 

that b( ·, 0) could be expanded globally as a power series about x*. For then we could 

simply set 

n2 

ë(x;n,<ai>) = l ai(x-x*} 
i=O 
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and e = max{-K,min{K,ë} }, where K is a bound for b. But we must contend with the fact 

that b can only be expanded locally about any given point. 

We cope with this difficulty as follows. Let l = (i - ~)/n. Approximate b( · ,0) in 

the interval [x* ,x* + 4 by 

n2 

l ai(x-x*i, 

i=O 

and approximate the first (n2 + 1) - n derivatives of b( · ,0) by the first (n2 + 1) - n 

derivatives of this polynomial. Next, let </3i 10 ~ i ~ n2 - n> be the values of these 

derivatives at x* + l Approximate b( · ,0) in the interval [x* + l,x* + 24 by 

n2 

l {ji ( X - x* - l)Ï, 

i=O 

and approximate the first (n2 + 1) - 2n derivatives of b( · ,0) by the first (n2 + 1) - 2n 

derivatives of this polynomial. Proceeding in this way, one reaches i after at most n steps, 

at which point one has an estimate of at least the first (n2 + 1) - n2 = 1 derivatives of 

b( · ,0), i.e. of b(i,0). Similarly, proceeding leftwards instead of rightwards, one can 

estima te b( ·, 0) up to ~-

This procedure works for the following reasons. First, since b( ·, 0) is real analytic, 

we know that there exists r( 0) > 0 such that the radius of convergence of the power series 

for b( ·, 0) about xis at least r( 0) for all x e [~,x]. Bence, for n sufficientl) large, our step 

size lis less than r( 0) and approximation by polynomial is valid. Secondly, by orùy 

estimating the first (n2 + 1) - n derivatives of b( · ,0) at x* + l, we ensure that we have at 
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least n terms in our approximations. These approximations therefore improve as n gets 

large. a 

Proof of Theorem 3.3 

The first step is to tackle the learning problem in isolation. As remarked in the 

text, we must ensure that the agent's estimates of the B(çn18) are sufficiently accurate. To 

this end, note that for each n and 8, !Er =l b(çn1 8,zt) .... B(çn1 8) outside a null set of Za,. 

1 T 
Bence TEt=lb(çn18,zt) .... B(çn18) P-a.s. Bence, for ail N, we can find TN such that 

... (A.3) 

for ail T ~ TN. 

The second step exploits the sequence {TN} to construct an optimal strategy. In 

this strategy, information-accumulation periods lasting {3N stages alternate with 

payoff-accumulation periods lasting r N stages. The first information-accumulation period 

consists of T 1 trials of e1. For N ~ 2, the Nth information-accumulation period consists of 

(TN - TN_1) trials of çn for ail 1 5 n 5 N - 1, and of TN trials of çN. Bence, at the 

outset of the Nth payoff-accumulation period, the agent has a total of TN observations on 

each çn with 1 5 n 5 N. Assume that he estimates B(çn1 8) by averaging these observations, 

and let çi(N) yield the highest estimate. Then the'Nth payoff-accumulation period 

consists in playing çi(N) a total of rN times. Let aN be the total number of stages before 

the N
th 

payoff-accum~ation period starts .. Then aN+l = aN + rN + f3N+l' where f3N 

= NTN - (N-l)T~-l is the number of stages of the Nth information-accumulation 

period. We choose aN, r N so that r N / aN + 1 .... 1 as N .... a,. Thus, for large N, the payoffs 

accumulated in the Nth payoff-accumulation period outweigh ail previous payoffs 
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(inclucling those from payoff-accumulation periods) and also the payoffs obtained in the 

subsequent information-accumulation period. 

The third and final step verifies that this strategy is indeed optimal. It suffices to 

check that E(li min! !tr =l ,rt) ~ E(M( 9)). The most clifficult case is clearly that in which 
T-+œ 

the (N + 1) th information accumulation period has just finished, so we confine ourselves to 

the case T = aN+i· Let K be a bound for b. Then ,rt ~ -K for the first aN and the last 

{3N + 1 stages. 

Hence 

1 

aN+l 

aN+l 
K [ J rN 1 

7r >- a -r + -l t - aN+l N+l N aN+l rN 
t=l 

aN+rN 

l b{çi(N)'O'zt). 

t=aN+l 

The first term on the RHS is easily dealt with. It converges to zero by choice of r N· The 

second requires more care. Note first that certainly 

as N-+ CD. This follows from (A.3) above, the Borel-Cantelli lemma, and the fact that rN ~ 

TN. It implies that 

aN+rN 

[r! l b{Çi(N),9,zt)]- B{Çi{N)'O) J ~ 0 a.s. 
t=aN+l 
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Soin order to tie down the behaviour of the second term it suffi.ces to tie down the 

behaviour of B( {i(N)' 0). But by definition of i(N), 

max ~ l b( {n, O,zt) = ~ l b( {i(N)' O,zt) 
n5N N tel(n,N) N tel(i(N),N) 

where I(n,N) is the set of periods in which the first TN observations on çn are made. Also, 

by (A.3) and the Borel-Cantelli lemma again, we have 

and 

So B(çi(N)'O)-+ M(O) a.s. The result follows.· o 

Proof of Theorem 4.2 

The theorem is obvious if Xis a degeneratejnterval, so we assume that X= [~, x] 

with i > ~- Also, it suffi.ces to verify the theorem for sequences {Rn} such that Rn-+ o0. 

So we fix attention on a particular such sequence. 

For any given n we know from Lemma A.5 that the agent's posterior converges. In 

a convenient abuse of notation, we donate the limiting posteriors by Q . (Note that Q n n 

should be thought of as a random variable defined on the measure space (0,.Y) and taking 

values in M(9).) We also know that the asymptotic payoff is m(Qn). So we may define a 
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random variable en such that en(w) maximises B( ·,Qn(w)) for each w En. Then, in the 

game with prier Qn(w) (and noise distribution Rn), pla.ying en(w) forever is an optimal 

stra.tegy. 

New suppose that a> 0 and /3 > 0 are given. Then, if en(w) < i, we may pick 

O < 'Y(w) ~ /3 such tha.t en(w) + a'Y(w) < i. Since playing en(w) forever is optimal, it is in 

particular superior ta the alternative strategy: (i) play en(w) in sta.ge 1; (il) pla.y çn(w) 

+ 'Y( w) in stage 2; (ili) if the pa.yoff in stage 2 exceeds that in stage 1 then play çn ( w) 

+ aï( w) for evermore. This implies that 

where xis the indicator function for (0,CJJ), and where we have suppressed the dependence of 

Qn, çn and 'Y on w. Let ~ne_ (çn,en + 'Y~_ and ên e (çn,çn + a-y) be chosen such that 

b(çn + 1,0,z2)-b(çn,O,z2) = 'Y(Bb/ôx){?n,0,z2) and b(en + a1,0,z3)- b(çnO,z3) 

= aï( 8b/ ôx)(ên,e,z3). Then the a.bave inequality reduces ta 

... (A.4) 

where we have suppressed the arguments of the measures. The bulk of the remainder of 

the proof consists in showing that, for suitably chosen a,/3 and 'Y, this inequality implies 

that 

... (A.5) 
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converges to zero as n ... m, where P n is the probability measure on O x 9 obtained by 

combining the probability measure Pon O with the transition probability Qn. 

As a first step in this direction, we need to complete the definition of in, ên and 1· 

Set in= i, ên= i and 'Y= O when en= i. We also need a version of the inequality (A.4) 

for this case. The trivial inequality O ~ 0 will suffi.ce for our purposes. We can now 

integrate with respect to w to obtain 

where we have again suppressed the arguments of the measures. (Note that all five 

integrands are zero when en = i.) 

... (A.6) 

The next step is to estimate the terms on the right-hand side of this inequality. 

For tbis purpose we introduce some further notation. Let 'ljJ be the indicator fonction of the 

set {O}. Let 
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ab 8b 
d1(z,O) = supl~x,O,z) -~x,0,0)I, 

X 

where x e X. Finally, let 

where xl'x2,x3 e X, x2 ~ x1 + /3, and x3 ~ x1 + a/3. Then it is easily checked that all four 

of these functions are dominated by D( 0). 

We can now proceed to the estimation itself. Suppose that E > 0 is given. Pick 

a= a(E) sufficiently large that (1- Ô)(/D(O)dQ(O))/aô < E. Next, note that c1(a,/3,0)-+ 0 

and c2( a,/3,0)-+ 0 as ,B-+ O. Pick .B = /3( E,a) sufficiently small that Jc1 ( a,/3,0)dQ( 0) < E, 

J~( a,/3,0)dQ( 0) < E, and /3 < E. Thirdly, note that di(z,O)-+ 0 as z-+ 0 and that 

We can therefore pick N = N(E,a,/3) sufficiently large that Jd1(0,z)d(Q x Rn)< E, and 
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for ail n ~ N. Now suppose that a, /3 and N are chosen in this way. Then the choice of a 

ensures that the first term on the right-hand side of (A.6) is smaller than E in absolute 

value; the choice of /3 ensures that the same is true of the fourth term; the choice of N 

ensures that the second term is less than E in absolute value, and that the third is less than 

f + /c2(a,/3,0)dQ(O) in absolute value; and the choice of /3 ensures that /c2(a,/3,0)dQ(O) < 

f. So, overall, (A.5) is at most 5f. 

We are now in a position to complete the proof. The analysis so far shows that we 

can find a sequence of random variables ên such that (A.5) converges to zero and such that 

ên - çn converges uniformly (in w) to zero. An analogous argument shows that we can 

find 1/n such that 

(A.7) 

converges to zero, and such that çn - nn converges uniformly to zero. Next, passing to a 

subsequence if necessary, we may assume that P -+ P for some P . Also, by Skorohod1s 
n Cil Cil 

theorem, we can find a sequence of random variables (U , T , ( ) on an auxiliary 
n n n 

probability space such that: (A.5) can be represented as 

an analogous representation holds for ( A. 7); and tl\e expectation of the asymptotic 

conditional payoff can be represented as 

(A.8) 

(A.9) 

Moreover (Un,Tn,(n)-+ (U ,T ,0) a.s., where (U , T ) has distribution P . But (A.8) and 
Cil Cil Cil Cil Cil 

its analogue imply that, with probability one, every limit point of çn (Un) maximises 
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b( ·,0,0). Hence (A.9) converges to Ë(b(X(Tm),Tm,O)) = /b(X(0),0,0)dP m(w,0). Finally, 

p is a measure on 9 x zm. 9. Because Q is a conditional probability measure, the 
n n 

marginal of P over the second 9 is Q. Hence the marginal of P over this 9 is Q. Hence 
n m 

/b(X(0),0,0)dP (w,O) = /b(X(cp),cp,O)dQ(cp). But this last integral is precisely the 
a, 

complete-information payoff when R = 60. a 

Proof of Theorem 4.3 

Fix N and consider the strategy: play each çn for 1 5 n 5 N a total of T N times, 

where TN is as in the proof of Theorem 3.3; estimate B(çn,O) by averaging; and play the 

highest estimate çi(N) for ever. Then the payoff from this strategy satisfies: 

Call the latter quantity 'YN(ô). The limitinfinum of-the optimal payoff-when o tends to 1 

is at least the limit infimum of 'YN( o). Therefore, for any N ~ 1, the limit infinum of the 

optimal payoff is at least 

which implies that it is equal to E[M(O)]. a 
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