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ABSTRACT 

This paper considers a competitive, pure exchange model in which 
households face exogenous restrictions on participating in the market for 
inside financial instruments. It is well-known that, except when the yields 
from financial instruments are denominated in commodities, such market 
imperfections lead to substantial indeterminacy in equilibrium allocation. 
So two further issues are examined: First, does the introduction of the 
institution of fiat or outside money reduce or eliminate this real 
indeterminacy ? Second_, if the number of households having access to less 
than a complete financial market is insignificant, then is the extent of 
real indeterminacy also insignificant? 
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INDETERMINATION REEIJ.E A CAUSE DES MARCHES 
FINANCIERS IMPARFAITS: DEUX ADDENDA 

RESUME 

Ce papier considère un modèle concurrentiel d'échange pur, pour lequel 
les ménages sont soumis à des restrictions exogènes sur leur participation 
au marché des instruments financiers internes. Il est bien connu que, sauf 
dans le cas où les rendements des instruments financiers sont définis en 
biens, de telles imperfections du marché entrainent une indétermination 
substantielle dans les allocations d'équilibre. En conséquence, deux 
problèmes supplémentaires sont examinés : En premier lieu, la prise en 
compte de la monnaie externe réduit-elle ou supprime-t-elle cette 
indétermination réelle? En second lieu, si le nombre de ménages ayant 
accès à des marchés financiers incomplets est insignifiant, alors 
l'indétermination réelle est-elle aussi insignifiante? 

Journal of Economie Literature 021,024,311 
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Real Indeterminacy from Imperfect Financial 
Markets: Two Addenda* 

by 

David Cass 
University of Pennsylvania 

Recently there bas been a great deal of interest in examining the 

properties of competitive equilibrium with incomplete or, more generally, 

imperfect -- financial markets.li An important branch of this research bas 

focused on the fact that, in such economies, there is typically a large degree 

of price or nominal indeterminacy -- over and above that analogous to choosing 

a numeraire in the standard Walrasian model -- which also translates into 

allocation or real indeterminacy . .21 The principal aim of this paper is to 

present two analyses that are basically responses to criticism of this latter 

development. 

One sort of criticism bas been based on the idea that the "reason" for 

indeterminacy is simply that the future "price level" is not tied down, and 

that, in particular, introducing the institution of fiat or outside money 

should ameliorate the problem. 1 will argue here that while there is some 

truth to this conjecture (see also Kagill and Quinzii [8]), its validity 

depends crucially on how one conceives the operation of a monetary system and, 

more critically, on what one takes as variable (read "determined 

endogenously") in a monetary economy. My own ultimate conclusion is that 

extensive real indeterminacy persists despite (in the extreme case) simply 

imposing value to holding outside money balances, and that it will be 

necessary (in order to reduce or even eliminate the problem) to look much more 

closely at the structure of the institutions and behavior of the 
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intermediaries that constitute the monetary -- or, more generally, financial -­

sector. 

A second sort of criticism has been based on the following observation. 

While there may be a large degree of real indeterminacy (measured, in 

particular, by the minimum possible dimension of the set of equilibrium 

allocations), this phenomenon may not be of much substantive importance 

(judged, for instance, against the prevalence of such indeterminacy in a 

comparable Yalrasian environment). It is not at all obvious how one can 

usefully formulate this possibility in a tractable fashion. I investigate the 

issue by considering a sequence of economies in which relatively more and more 

households have access to complete financial markets. It turns out that 

(given my particular methodology) as the extent of market imperfection becomes 

insignificant, so does the substantive importance of real indeterminacy. 

a quite different approach, see also Green and Spear [7] and Zame [15]). 

(For 

A 

caution is warranted here, however. Even if (nominal or real) indeterminacy 

is of little substantive importance, it still presents a very difficult 

practical hurdle for the rational expectations hypotheses: Why should one 

believe households capable of concentrating their undivided attention on just 

one among a plethora of conceptually indistinguishable, consistent market 

outcomes? 

In the next section I outline the basic framework for my analyses. Then, 

in the two subsequent sections, I consider first, the introduction of 

institutionalized outside money, and second, the significance of small market 

imperfections. Finally, in the appendix I attempt to explain at a fairly 

informal level -- what is involved in generating nominal as well as real 

indeterminacy when there are imperfect financial markets; this exercise can be 
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viewed as fulfilling a secondary aim of the paper. At the outset I should 

emphasize that I am purposely adopting several simplifying hypotheses (which I 

will highlight as I go along) in order to avoid needless technical 

complication, and that I am purposely stressing results rather than proofs -­

most of which, as the appendix also tries to indicate, are pretty simple in 

conception, but nonetheless pretty complicated in execution. 

II. The Setting 

For my purposes here it is most convenient to utilize the model with 

restricted participation analyzed in Balasko, Cass and Siconolfi (2]. 

Concerning some of its finer points (for example, the justification for the 

assumption Al, or the interpretation of the alternative assumptions AS' and 

AS" below) the reader is advised to consult that paper. [Note: Here I 

employa more mnemonic notation than there; otherwise the models are 

identical.] 

Tbere are C types of physical commodities (labelled by superscript 

c - 1,2, ... ,C, and referred to as goods), and I types of credit or 

financial instruments (labelled by superscript i - 1,2, ... ,1, and referred 

to as bonds). Both goods and bonds are traded on a spot market today, while 

only goods will be traded on a spot market in one of S possible states of 

the world tomorrow (these markets are labelled by superscript s - 0,1, ... ,S, 

so that s - 0 represents today and s > 0 the possible states tomorrow, and 

are referred to as spots). Thus, altogether there are G - C(S+l) goods, 

whose quantities and (spot) prices are represented by the vectors 

X 
0 s S 

(X , •.• ,X , ... ,X ) 

p 
0 s S 

(p ' ... ,p •... ,p ) 

(with 

(with 

s ( s,l s,c s,C)) 
X - X , ... ,X , .•• ,X 

s ( s,l s,c s,C)) 
p - p , ... ,p , ... ,p ' 

and 

respectively. 
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The quantities and prices of bonds are represented by the vectors 

1 i 1 
b - (b , ... ,b , ... ,b) and 1 i 1 

q - (q , ... ,q , ... ,q), respectively. [Note: 

All prices are measured in units of account, referred to as dollars. lt will 

be convenient, for example, in representing dollar values of spot market 

transactions, to treat every price or price-like vector as a row. Otherwise I 

maintain the standard convention.] The typical bond, which costs i q dollars 

at spot 

Let 

s - 0, promises to return a yield of s,i y dollars at spot s > o. 

Y- y 1,1 
• • • y 1,i l,I 1 

••• y y 
• • • . • • 
• . • 

s,l s,i s 
y y y . • • 

• • • 
• • • 

S,l S,I s 
y y y 

(S x I) - dimensional matrix of bond yields. 

There is no loss of generality in assuming that 

Al. Rank Y - I , no redundancy 

which implies that I < S. 

Finally, there are H households (labelled by the subscript 

h-1,2, ... ,H), who are described by (i) consumption sets 
G 

lR++' (ii) 

utility functions ~: ¾ ~ m, (iii) goods endowments eh e ¾ and (iv) 

portfolio sets I assume throughout that, for h - 1,2, ... ,H, 
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is c2 
• differentiably strictly increasing (i.e., ~<,i> >> 0) 

and differentiably strictly quasi-concave (i.e., D~(,i)ilx - 0 and 

4'.lx ~ 0 -> 4'.lxTD2~(,i)ilx < 0), and bas indifference surfaces closed in 

~; and 

A3. Bh is an lh-dimensional linear subspace, 

with lb< S for some h. 

restricted participation 

and 

Let 

P - {p E lR~} 

- set of possible (no-free-lunch) spot goods prices, 

Q - (q E Jlt: there is no h with bh E 8i, s.t. [~~1,, > 0) 

- set of possible (no-financial-arbitrage) bond prices, 

Y - {Y e lRSI: rank Y - 1} 

- set of possible bond yields, 

G H 
E - {e - (e1 ,e2 , ... ,eH) e ('IR:++) } 

- set of possible goods endowments (as well as allocations). 

Then, given (Y,e) e Y x E, (p,q) e Px Q is a financial eguilibrium if, 

when households optimize, i.e., 

solves the problem 

maximize 
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subject to 

s s s s 
P (~ - eh) - y bh' for s > 0, 

and , h - 1,2, ... ,H, 

both spot goods and bond markets clear, i.e., 

and 

(s,c) - (O,l),(0,2), ... ,(S,C), 

l '~(p,q,Y,eh) - 0, i - 1,2, ... ,1. 
h 

(2) 

(3) 

Remarks 1. Severa! specific aspects of this formulation greatly facilitate 

analyzing properties of financial equilibrium. Most notable among these are 

the assumptions that: (i) There are only two periods (obviously the leading 

case); (ii) the financial structure is exogenous (for instance, the number of 

bonds is given a priori), and all financial instruments are inside assets 

(that is, bonds are issued and redeemed by households directly) whose yields 

are specified in terms of dollars (which is one polar case, usually contrasted 

to that in which asset yields are specified in terms of bundles of goods, a 

kind of generalized futures contract); and (iii) the only restrictions on 

portfolio holdings essentially take the form of simple linear equality 

constraints (rather than say, more complicated bounds on borrowing which 

involve households' observable wealth, or even just outright prohibition of 

short sales in some bonds). 

2. This model with restricted participation reduces to the more commonly 

recognized model with incomplete markets when I < S and B - JRI h • 
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h - 1,2, ... ,H. The reason 1 consider a more general formulation is that it 

easily encompasses permitting most -- but not all -- households having access 

to the same complete financial market when 1 later want to formalize the 

notion of small market imperfections. 

The main result establishing extensive real indeterminacy in this setting 

requires two additional sorts of technical assumptions. The first concerns 

sufficiently disparate incentives for exchange of both goods and credit (in 

terms of numbers and also, implicitly, diversity of households), the second 

sufficiently flexible opportunities for exchange of credit (within the 

confines of restricted participation). So suppose that some group of 

households, say, the first H0 , faces common portfolio restrictions, say, 

Also, denote, for h - l,2, ... ,H0 , 1h - 10 , and let DO - S-10 , an indicator 

of this group's deficiency in access to the bond market. Now assume that 

A4. Ho> Do; and 

0 < 10 < S (so 0 < D0 < S) and 

AS'. Thfre is b+ E BO such that 
Yb >> 0, or 

AS". y is in general position, or 

AS"'. Y is variable. 

sufficiently numerous 
households 

possibilit;y of positive 
wealth •accumulation• 

possibility of maximum 
wealth •insurance• 

•endogenous• determination 
of bond yields 

Note that, under either assumption AS' or assumption AS", Y is taken to be 

exogenous or fixed. With some pair of assumptions A4 and AS• -- given the 
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maintained assumptions Al-A3 -- one can demonstrate a precise degree of real 

indeterminacy. 

Proposition O. Generically in endowments, the set of equilibrium allocations 

contains a smooth, n0-dimensional manifold (under assumption AS'), or a 

smooth, (S-1)-dimensional manifold (under assumption AS"), or a smooth, 

0010-dimensional manifold (under assumption AS'").V 

Ill. Outside Koney 

ln order to examine the potential role that outside money might play in 

reducing nominal and hence real uncertainty, 1 consider two of the simplest 

possible specifications, under what are (admittedly) the simplest possible 

assumptions. ln the first model, outside money must be used to paya terminal 

tax liability; in the second, terminal outside money balances have direct 

utility. 

To be more specific, for h - 1,2, ... ,H, let 

m ( m,O m,s m,S) > 0 eh eh ' ... ' eh ' ... ,eh -
and m ( m,O m,s m,S) 

~ - ~ ·····~ ·····~ 
represent outside money endowments (at the beginning of the period) and 

outside money balances (at the end of the period), respectively. Also, 

assume that 

· • there is some initial outside money in the economy, i.e., 

L e:•o > o, 
h 
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• outside money balances must be nonnegative, i.e., by fiat 

m 
~ ~ 0, h - 1,2, ... ,H, 

• the "price" of money is identically one (in units of account, naturally), 

and 

• bond i - 1 is inside money, i.e., yl,s - l, s - 1,2, ... ,S, and can 

be freely transacted by all households, i.e., if bh e Bh' then 

bh+(Ab~ •... ,0, ... ,0) e ~ for Ab~ e lR., h - 1,2, ... ,H. 

Thus, in this setting, 

Y - [l y\l] (identified with y\l e y\l - (Y\l e m_5(I-l): ranlc [l y\l] - I}), 

where y\l is the (S x (I-1)-dimensional matrix of bond yields exclusive of 

inside money, and the possibility of positive wealth "accumulation" is taken 

for granted.Y 

With outside money, the description of financial equilibrium must be 

modified, depending on how the monetary system impinges on households' 

preferences and opportunities. Under the first specification (say, the 

terminal tax model) (1) is replaced by 

given \1 m 
(p,q) -- and Y -- (~'~'bh) solves 

the problem 

maximize 
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0 0 0 m O m 0 
P (~-eh)+(~' -~· ) - -qbh, 

s( s s)+( m,s [ m,O m,s]) sb 
p ~ -~ ~ - ~ ~ - y h 1 

{'s ~ ~· for s > 0, 

for s > 0, 

and (~,{,bh) E ~X~ X Bh , h-1,2, ... ,f 

where ~ ~ 0 represents household h's terminal tax liability, and 

~ - m.!+l by fiat, while under the second specification (say, the terminal 

utility model) (1) becomes 

given \1 m 
(p,q) -- and Y -- (~'~'bh) solves 

the problem 

maximize 

subject to 

for s > 0, 

and , h-1,2, ... ,H 

where ~: ~ x ~ -+ lR, with ~ - lR+ x m.5++' is assumed to be independent 

of {·0 (but otherwise to exhibit the same properties described by 

assumption A2). For both specifications, in addition to (2) and (3), outside 

money markets must also clear, i.e., 

L(~,0-em,O) - 0 
h n h 

(4) 

and ~( m,s [ m,O m,s]) ~( m,s [ m,O m,s]) 0 1 2 s 
L ~ - ~ +eh - L ~ - eh +eh - ' s - ' , ... , . 
h h 

· Proposition Ois easily adapted to these two models. 
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Proposition 1. (The terminal tax model) Suppose that 

m,s 0 ~ - ' for s > 0, h - 1,2, ... ,H, (5) 

and 

Th i 11 i d ( 1 di m,O ( m,O m,O m,O)) 
en, gener ca y n en owments exc u ng e - e 1 , ... ,eh , ... ,eH , 

the set of equilibrium allocations contains a smooth, o
0

-dimensional 

manifold, or a smooth, (S-1)-dimensional manifold (when (1 y\l] is in 

general position), or a smooth, 0
0

1
0

-dimensional manifold (when y\l is 

variable). 

Remaries , 1. 
tt 

Given (5), (1 ) and (4) are only consistent also given (6). 

course, if the price of money were allowed to be different than one -- which 

it surely should be! 

when (6) is replaced by 

then the terminal tax model would also be consistent 

(6') 

strict inequality would simply entail the price of money being identically 

zero in equilibrium. ln this case the conclusions of Proposition 1 would 

clearly still obtain. 

Of 

2. For an economy with incomplete markets, Villanacci (13) -- among other 

things -- considers the more general version of the terminal tax model in 

which (i) inside money may not be available, and (ii) terminal tax liabilities 

-- interpreted as being net of second period outside money endowments, or, 
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more simply, transfers -- may be state dependent. Since, in this more 

general framework he must treat pO,l as variable (whereas, for simplicity, I 

treat it as fixed; see footnote 5 below), be finds an increase in the degree 

of "significant" nominal and hence real indeterminacy of one dimension (under 

assumption AS") . 

Proposition 2. (The terminal utility model) Suppose that 

m,O m,s 
0 8b + eh > ' for s > 0, h - 1,2, ... ,H. (7) 

Then, generically in endowments (including 

equilibrium (and hence equilibrium allocation) is locally unique, or the set 

of equilibrium allocations contains a smooth, 00 (10-1)-dimensional manifold 

(when y\l is variable). 

Proofs of Propositions 1 and 2. ln either model the proof basically involves 

elementary accounting. 

To begin with, observe that, in both models, for there to be no 

financial arbitrage opportunities, it must be true that q1 ~ 1 (since 

otherwise, if 1 
q > 1, every household could immeasurably profit by selling 

inside money and buying outside money at spot s - 0), and for the initial 

outside money market to clear, it must be true that q1 { 1 (since otherwise, 

if q1 < l, no household would be interested in buying outside money at spot 

s - 0). So 1 q 1 in equilibrium. 

Now consider the terminal tax model maintaining (5) and (6). Because 

terminal balances of outside money are only useful for meeting terminal tax 
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liabilities, the optimal solution to (ltt) must have 

m,s t. f o ,i - h' or s > . (8) 

Thus, by employing the notational convention that if 
1 i n 

z - (z , ... ,z , ... ,z ), 

then \1 2 i n 
z - (z1 , ... ,z , ... ,z) (introduced earlier for bond yields exclusive 

of inside money), and reintroducing a variable 

constraints in (ltt) can be rewritten 

1 
q > 0, the budget 

or, by letting q' - (q1 ,q1q\1 ), ps ' - ps/q1 , for s > 0, 

~,l' - e~·
1-(~-e:'o)/pO,l and b~ - (b~-[~-x:· 01, b~1 )/q1 (and then, for 

simplicity, suppressing "'"), just as in (1). Moreover, the initial 

outside money market clearing condition can be presumed satisfied (by having 

households -- who are indifferent between inside and outside money -- hold 

suitable offsetting balances of inside money in their portfolios), while the 

terminal outside money market clearing conditions are, by virtue of (8), 

automatically satisfied. But this means that the terminal tax model 

effectively reduces to the original model of the preceding section (with Y -

[1 y\l]), and, in fact, that the original version of Proposition O still 

applies.21 

The argument for the terminal utility model is even more straightforward. 

Here the budget constraints in (ltu) can be rewritten 
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and 

for s > 0, 

b . 1 . , ( 1 1 \1) s' s1 1 m,s' m,O m,s f 
or, y now ett1.ng q - q , q q , p - p q , eh eh +eh , or 

s > 0, and b~ - (b~+[~'O-~m,O], bh\l)/q1 (and again, for simplicity, 

suppressing "'"), just as in (1) when there C types of commodities at spot 

s - 0 but C+l at each spot s > 0, and (with appropriate relabelling of 

commodities at spots s > 0) spot goods prices are normalized so that ps •1 

1, for s .> O. So this model too effectively reduces to the original model 

•l 
of the preceding section (but now with both p 1 and Y - [l y\1 ]), and 

an appropriate modification of Proposition O again applies (a result also • 

verified in the appendix). 

Yhat do I conclude? Simply that institutionalized outside money of and 

by itself doesn't necessarily eliminate real indeterminacy, and may even 

provide a convincing rationale for a substantially greater degree than has 

been proposed in the bulk of the literature on this problem. It all depends 

on the nature of the (market clearing) equations added when characterizing the 

economy's monetary equilibria, as well as the variety of the (market 

determined) variables introduced when characterizing the economy's monetary 

sector. In the almost trivial, extreme models I've considered here, either 

the additional equations are completely redundant -- with terminal taxes -- or 

they are completely determinant -- with terminal utility W -- provided that 

the monetary mechanism is presumed to have no influence on any nominal 
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variables other than spot prices, for instance, on interest rates (and thereby 

bond yields). Of course, this last proviso runs counter to long-standing 

tradition in (one might even say the essence of) monetary theory, which leads 

me to the position that in Propositions 1 and 2 it is precisely the case 

where y\l is variable and where extensive real indeterminacy is exhibited 

regardless of the direct consequences of institutionalized outside money -­

which is by far more natural and interesting.ll 

IV. Small Imperfections 

Now returning to the original model, assume that 

• the bond market is (in principle) complete, i.e., that I - S, and 

• there are two groups of households, the unrestricted households 

h e Huc (1,2, ... ,H} who can freely transact on the bond market, 

so that 

and the restricted households 
r u 

h e H - (1,2, ... ,H}\H who are 

effectively constrained in their transactions on that market, so that 

Bh is an Ih·dimensional linear subspace with O ~ Ih < I, h e Hr.y 

I will compare the financial equilibria of two distinct derivative economies. 

In the first, say, the complete market economy, only the Hu unrestricted 
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households trade, while in the second, say, the improved participation 

u u economy, j ~ 1 replicas of the H unrestricted households (totalling jH 

in number) together with just the original Hr restricted households trade . .2./ 

The basic idea is to interpret j being sufficiently large as representing 

the situation in which there are only small imperfections on the bond market. 

Proposition 3. As j goes to infinity, the financial equilibria in the 

improved participation economy converge uniformly to (a subset of) those in 

the complete market economy. 

Remark. This result explicitly pertains to equilibria, i.e., prices. To 

understand its ramifications for quantities, i.e., equilibrium allocations, 

focus on just the unrestricted households, who, for sufficiently small 

imperfections, carry essentially all the weight in the economy. Then applying 

two well-known results, we find that in the complete market economy, 

generically in endowments, equilibrium allocations are locally unique.W 

Thus, Proposition 3 basically means that in the improved participation 

economy, "typically" equilibrium allocations to just the unrestricted 

households are "almost" locally unique.li/ I don't know -- and don't see why 

it is especially interesting to know -- whether the "opposite" of this 

proposition is also true, namely, whether every equilibrium in the complete 

market economy can be arbitrarily closely approximated by some equilibrium in 

the improved participation economy (for sufficiently large j). 

Proof of Prgposition 3. The argument is considerably more technical than any 

other in the paper. It also requires, in order to distinguish between the two 
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economies, introducing considerably more notation. So let the original model 

u I u 
(with H replaced by H and ~ - m:, h e H) now describe the complete 

market economy. Furthermore, let 

- equilibrium set, 

•l ( 0,1 s,l S,l) 
p - p , ... ,p , ... ,p 

- vector of spot goods prices for just the first type of commodity 

(as introduced earlier, in footnote 5), 

p•l _ {p•l e nf+:l> 

and w - restriction to M of the projection of Px Q x E onto 

•l P XE. 

[Note: We know, in fact, that the set M is a smooth, ((S+l) x HuG) 

dimensional manifold, and, furthermore, that the mapping w is proper and 

surjective (so that, in particular, equilibria exist for every •l •l 
(p ,e) e P 

x E); see Theorem 4.1 in [2]]. For the improved participation economy with 

j replicas of the unrestricted households, adapt the same notation by 

affixing "(j)" where appropriate: For example, for this economy, spot goods 

prices will be denoted p(j) e P, while endowments and the equilibrium set 

will be denoted 

j times 

e (j ) - (( ~) , ... , (eh) , ... , (eh) , (eh) ) e 
heHU heHU heHU heHr 

E(j) - {e(j) e (IR!+_)jHu+Hr} (identified with E - {e e (IR!+_)H}) 

· and M(j) - {(p(j),q(j),e(j)) e Px Q x E(j): 

j l (fh(p(j),q(j),Y,eh)-eh' ,h(p(j),q(j),Y,eh)) + 
heHU 
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(Note: Here too we know, by the same reasoning as in the proof of Theorem 4.1 

in [2], that M(j) is a smooth, ((S+l) x·HG)-dimensional manifold, and that 

w(j) is proper and surjective.] 

Now the argument perse proceeds in four steps. (i) Pick êh e ~· 

h e H. -·l •l (ii) Pick P c P compact. (iii) Define 

•l -·1 -A - {a - (p,q) e Px Q: p e P & (p,q,e) e Ml, 

- •l -·l -A(j) - {a(j) - (p(j),q(j)) E p X Q: p (j) E p & (p(j),q(j),e(j)) e M(j)) 

for j ~ 1 

and a(j) - SUf min lla-a(j) Il. 
a(j )EA(j) aeA 

Since w is proper, A is compact, and min lla-a(j) Il is well-defined. 
aEA 

(iv) Show that 

lim sup a(j) - !im a(j) - 0, 
j- J-

i. e., that it is not the case that 

lim sup a(j) > c > O. 
j-

This last step is established as follows. Suppose that the assertion were 

false, i.e., that, without any loss of generality, there were a sequence 

a(j) e A(j), j ~ l, such that 

min lla-a(j)II ~ c, j ~ l, 
aEA 
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or 

lla-a(j) Il > i: - for aeA, j ? 1. (9) 

From an argument basically identical to that used to show that w(j) is 

proper, or that, in particular, w· 1(j)(P•l x ë(j)) is compact, it follows 

that we can pick a subsequence, without any loss of generality the original 

sequence itself, such that 

and 

. •l -·1 
lim a(j) - lim (p(j),q(J)) - a(=) - (p(=),q(=)) e Px Q (with p (=) e P ) 
j- j-

lim (fh(p(j),q(j),Y,~), ~(p(j),q(j),Y,ë)) -
j-+aD 

But since (p(j),q(j),ë(j)) e M(j), j > 1, this implies that -

or that (p(=),q(=),ë) e M, or that lim lla(=)-a(j) Il - 0 with a(=) e A, 
j-

which contradicts (9). • 

Two aspects of the foregoing merit brief comment. First, the argument 

actually only applied to the subsets of equilibria in the improved 



20 

participation economy for which •l -·l 
p (j) E p ' where -·l p is an arbitrary 

•l compact subset of P . I simply have no idea whether there can be some sort 

. •l •l -•l 
of "perverse" behavior if p (j) goes to p (m) e aP (i.e., the boundary 

of the closure of p•l) as j goes to infinity. Second, while the argument 

was carried out for fixed or exogenous Y, it can be easily extended to cover 

the case of variable or endogenous Y (restricted to Y c Y compact). 
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Appendix 

The purpose of this appendix is to provide some insight into the 

rationale for nominal indeterminacy, as well as the logic supporting its 

natural translation into a corresponding degree of real indeterminacy (barring 

exceptional circumstances). Though the results being presented can be derived 

formally, my express aim here is to try and explain them in a fairly casual, 

intuitive manner. 

Nominal Indeterminacy 

The central idea in establishing this result is pure and simply to "count 

equations and unknowns". That is, the essence of the analysis involves 

treating the market clearing conditions (2)-(3) as a system of equations in 

the whole collection of variables p,q,Y and e and then -- after verifying 

certain crucial prerequisites (by utilizing several basic techniques from 

differential topology) -- employing the old workhorse of economic theory, the 

implicit function theorem. In following this program I intentionally give 

short shrift to the details of the underlying justification for treating 

particular price variables as being "dependent" (and the other price cum 

"fundamental" variables as being "independent") -- the "certain crucial 

prerequisites" referred to just above. 

Recall what, roughly, the implicit function theorem asserts: 

that we are given a system of J (independent) equations in K 

Suppose 

(explicit) 

variables, so that necessarily J < K (and the equations, being defined by 

sufficiently smooth functions of the specified variables, have Jacobian of 

full ranlc J at some particular solution). Then, locally, the system can be 

solved for J (distinguished) variables as continuously differentiable 
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functions of the other K-J variables. Thus, my task basically amounts to 

calculating J,K and K-J for the particular system of equations at hand. 

In carrying out this task it is quite instructive to begin by recalling a more 

familiar example, that arising from the standard Walrasian model. 

So now suppose that, instead of trading on many spot goods and the bond 

markets, households trade on a single "overall" market for current and future 

contingent goods. For simplicity letting the previous notation also represent 

prices and allocations for such an economy, then, here, given e e E, p e P 

is a Valrasian eguilibrium if, when households optimize (according to the 

usual budget-constrained, utility-maximization problem), i.e., 

given p, ~ - ~(p,eh) solves the problem (Al) 

maximize ~(~) 

subject to p(~-~) - 0 

and ~E~ , h - 1, 2, ... ,H, 

just the overall market for goods clears, i.e., 

In this setting, from the restriction imposed by the budget constraint in (Al) 

it follows that the market· clearing conditions (A2) yield only G-1 

independent equations (Walras' law), while p and e constitute the only 

explicit variables. Thus, obviously J - G-1 and K - G+HG, and (locally), 

say, the K-J - l+HG variables 

remaining prices p less 
0,1 

p 

0,1 
p and e uniquely determine the 

In other words, there is one degree of 
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nominal indeterminacy, the choice of the "price level", represented by pO,l 

Of course, from the linear homogeneity of the budget constraint in (Al) it 

also follows that such nominal indeterminacy is "insignificant", in the sense 

that it never engenders any real indeterminacy. For this reason it is 

conventional to normalize prices, for instance, by setting pO,l - 1, and to 

maintain that equilibrium is locally unique (up to a "harmless" choice of 

numeraire), or that, say, there are no significant degrees of nominal 

indeterminacy in the Walrasian model. While I will also adopt this position 

in discussing the model with restricted participation, 1 repeat for emphasis 

that it is, from a practical viewpoint, quite misleading; even such 

"insignif~cant" nominal indeterminacy raises havoc for presupposing rational 

expectations (a very important message, but one I will hereafter take as 

having been delivered). 

ln applying similar reasoning to the model summarized by (1) - (3), it 

turns out that the only potential complication involves figuring out the 

number of significant price (or price-like) variables .. So, now returning to 

consideration of this system, we first notice that the restrictions imposed by 

the budget constraints in (1) render S+l of the market clearing conditions 

(2) - (3) redundant (for instance, those concerning just the first type of 

good). Since these equations number altogether G+I, J - G+l-(S+l), while 

clearly, since in general p,q,Y and e are all variable, K - G+l+Sl+HG. 

Thus (locally), say, the K-J - (S+l)+Sl+HG variables 

uniquely determine the remaining spot prices p less 

•l p ,Y and e 

•l p and there are 

apparently (S+l)+SI degrees of nominal indeterminacy. ln order to explain 

why exactly 2 (when Y is exogenous or fixed) or (S+1)+12 (when Y is 

endogenous or variable) degrees of such nominal indeterminacy are 
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"insignificant", it is very helpful (and indeed indispensable) to digressa 

moment and reformulate the budget constraints in (1). The particular 

reformulation I have chosen to elaborate will also be very convenient for the 

discussion in the succeeding subsection. 

Focus on the budget constraints of a typical household h, 

(A3) 

and for s > 0, 

and consider the following two-step transformation (both steps of which leave 

the household's consumption opportunities unaltered): 

Step 1. Divide each of the budget constraints in (A3) by its corresponding 

spot price for the first type of good: 

where 

pO(~-~) _ (-q/pO,l)bh (A4) 

and ps({-e:) - (ys/p
s

' 1)bh' for s > 0, 

-s 
p s1 s,1 (l s,21 s,l s,c1 s,l s,c1 s,l) 0 1 S 

- p p - ,p p •... ,p p •... ,p p ' s - ••...•. 

Step 2. Assume, without loss of generality (by using assumption Al and 

relabelling spots appropriately), that the last I rows of Y are linearly 

independent, so that we can partition 
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where D - S-1 and thus Y is an 12-dimensional, full-rank matrix. Then 

(implicitly referring to assumption A3), reduce the right-hand side of (A4) by 

transforming from the variables b1 to ehe variables bi' - (yD+i/pD+i,l)bh' 

i - 1,2, ... ,1, as follows: 

/ 
0,1 

-q p 

1/ 1,1 y p 

D/ D,l y p 

D+l/ D+l,l y p 

D+I/ D+l,l y p 

b -h 
(AS) 

l 
y 

.1/pD+l,l 

0 
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- .. -(l/pO,l)q 

1/pl,l 0 y 
[[ 

1/pD+l,l . O l y l-l 

0 1/pD+I,l 

0 . 1/pD' 1 

I 

-(l/pO,l)q y-1 [ Pl>i-1,1 . • O l 

. D+I 1 
0 p • 

b' 
h 

-q' 
_, 
y 

I 

--1 
q' - q y D+l,1/ 0,1 

p p 

- --1 YY 

[ 

pD+l, l o l 

0 PD+I,l 

I 

0 
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and 

y' - -[wj'k(pD+k,l/pj'l),j - 1,2, ... ,D,k - 1,2, ... ,I] - --1 
with O - -Y Y ; 

the reason for the sign change in the definition of O will become clear 

below. [Note: It is easily seen that if q are no-financial arbitrage 

(A6) 

prices for bond yields Y - [·;·l: then q' are also no-financial arbitrage 

prices for bond yields Y' - [·~·]· This means that, in (A5), for all 

I 
practical purposes we can safely ignore the genesis of q' e IR -- but of 

course not at all that of Y' e m.°1 .] 

Letting 

p -

and R' -

-0 
p 

0 

-q' 

Y' 

I 

0 

-s p 

and then substituting from (AS) into (A4) (while rewriting "b n 
h 

the budget constraints in (1) can be compactly reformulated as 

for 

(A7) 

"b' ") h • 
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Now simply notice that, by virtue of the structure of Y' displayed in (A6), 

nothing significant is lost by assuming -- when y is fixed -- that, for 

instance, 0,1 D+l,l 
- 1, or -- when y is variable that, for p p --

instance, •l 
- 1 and y - I (so that, in (A6), Y' -0 - Y, (D XI)-p - a 

dimensional matrix): There are only (S+l)-2 - S-1, or 

[(S+l)+SI]-[(S+l)+I2] - DI (significant) degrees of nominal indeterminacy, 

respectively. 

Finally, to show that, with inside money (where Y - [1 y\l] by 

definition, so that only y\l and not all of Y is potentially variable), 

nominal indeterminacy is unaffected in the terminal tax model, and reduced by 

just D degrees in the terminal utility model (where, in demonstrating its 

relation to the original model, we also introduced the restriction •l 
p - 1 

by definition), I make two observations. First (referring to the terminal tax 

model), the immediately preceding argument 

directly recast in terms of fixing pO,l 

when Y is variable -- can be 

1 and, for instance, yl,s - 1, 

for s > 0, rather than •l p 1 

unaffected by having restricted Y 

(since here the force of the argument is 

to vary in (Y e Y: yl,s > 0, for s > 

0), an open subset of Y). Second (now referring to the terminal utility 

•l 
model), notice that, given p - 1, there is a 

y\1 -

1
-y~l -] 

y\l 

rank [ 1 y\l] - I} 

(an open subset of y\l) such that 
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if and only if 

_n1,. ~ i ,k _ 
0 E O - {0 E llr LW" - 1, j - 1,2, ... ,D}, 

k 

so that again referring to the structure of Y' displayed in (A6) -- here 

•l 
nothing significant is lost by parameterizing the effects, given p - 1, of 

varying y\l within y\l (whose dimension is S(l-1)) in terms of varying 

0 within O (whose dimension is also S(l-1)). Hence, in this model, there 

are only D(l-1) degrees of (significant) nominal indeterminacy. 

Table 1 summarizes the foregoing enumeration, and should aid in digesting 

it. 

Its Translation into Real Indeterminacy 

ln order to see how the conclusions of Proposition O follow from the 

existence of these two possible degrees of (significant) nominal 

indeterminacy, it is convenient to introduce a simplifying change in notation 

that reduces the analysis to that for the model with incomplete markets, as 

well as an additional piece of notation that permits concentrating on just 

significant price or yield variation. 

• Consider the households h - l,2, ... ,H0 distinguished by the common 

portfolio restrictions 1\i - B0 with O < dim B0 - 10 < S. By virtue of 

assumption (A3), there is no loss of generality in assuming, 
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aay, 0 • • 

Dl 



• 

30 

in fact, that 

I i 
B0 - {be m:: b - o, i - 10+1,10+2, ... ,I}. 

Since I will be almost exclusively concerned with just this group of 

households, hereafter I simply let unsubscripted notation (in particular, 

I, D - S-I and B - JR.
1 ) represent their pertinent characteristics 

in effect dropping, from their own viewpoint, irrelevant financial 

opportunities. 

Consider the, transformed representation of bond yields in (A6), the 
_, •l 

matrix Y. Since I will only be concerned with perturbing p (with 

0,1 D+l,l 
- 1, for y fixed) y (with •l 

- 1 and p - p or p 

y - I, for y variable), let 

( 1,1 D,l l D+2,l D+I,l) 
w - p •... ,p • ,p •... ,p 

as well as 

- --1 
0 - - y y . 

Then, for simplicity suppressing the superfluous ""' (since q' depends 

only indirectly on w and O under either hypothesis), we can rewrite 

_, , 
Y and R as 
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Y - Y(w,O) - - l,k( D+k/ 1) l,I( D+I/ 1) w w w ••• w w w (A8 

and R - R(q,w,O) -

respectively. 

The particular approach I prefer basically involves analyzing the overall 

implications of the households' personalized no-financial arbitrage conditions 

(which derive from the Lagrangean characterization of the optimal solution to 

(1) after the budget constraints have been reformulated according to (A7); 

cf., again, [1]). [Note: Alternatively, another approach basically involves 

analyzing the overall implications of the budget constraints themselves; cf. 

Geanakoplos and Mas-Colell [6]. In my opinion this second approach is not 

nearly as efficient (or powerful) for drawing conclusions about properties of 

the mapping, say, for Y fixed, f:M ~ E such that (p,q,e) ~ (x1 , ... ,~,···~) 

- f(p,q,Y,e) 

Mc Px Q x E again represents the equilibrium set, so that f(M) represents 

the corresponding allocation set.] Associating the Lagrange multipliers 
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0 s S _S+l 
¾i- <>i,···•>i•···•>i> e :nr++ with the constraints (A7) -- and incorporating 

the hypothesis that Bh - B -- the first-order conditions for (1) become 

°'\i (~) - ).hp (A9) 

and 

~R - ¾t r: J 

+ îh - 0 

or 

).h -\ 

[ I t:] ] ' (AlO) 

- = 0 D ~1 ~I 
where, as before, I partition ¾i - <¾i•¾i) - ((>.h, ... ,>-ii), ~>-ii , ... ,>.h )). 

Substituting from (AlO) into (A9) yields the fundamental construct for 

verifying the generic existence of precise degrees of real indeterminacy, 

P, h-1,2, ... ,H0 . (All) 

The key mechanism for generating real from nominal indeterminacy is, in 

principle, quite simple. Perturbations of the S-1 spot prices w 

(typically) or the, say, reduced form bond yields O (generally) alter the 

linear subspace orthogonal to that spanned by the columns of R 

(alternatively, and equivalently, the latter subspace itself). But this in 

turn (typically) changes the equilibrium allocations consistent with R 
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according -- in particular -- to (All) (alternatively, to (A7)). In order for 

this chain process to actually work out it must be the case, first, that R 

is sufficiently sensitive to price or yield variation, and second, that as a 

whole, households are sufficiently sensitive to their altered financial 

opportunities. Assumption AS is designed to guarantee the former, and 

assumption (A4) (together with enough variety of endowments, given 

preferences) the latter. Before describing how these two assumptions operate, 

it is quite illuminating to look at several examples in which, though 

(significant) nominal indeterminacy is pervasive, it doesn't necessarily 

induce any real indeterminacy. For simplicity, I always suppose that 

H - H0 • 

Example 1. Fully Complete Markets: Suppose that 

Y - Y and 

1-s. Then (adapting 

previous usage in the natural way), 

R-

and clearly, whether Y 

independent of both w 

is fixed or variable, since R is essentially 

and 0, there is purely nominal indeterminacy. I 

must reemphasize here, however, that even in such an idyllic situation, 

households would still surely be in a real quandary about what prices they 

could reasonably expect in the future (as they certainly are in any actual 

economy!). 
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Example 2. Fully lncomplete or Restricted Markets: Suppose that 1-0 or, to 

the same end, that O < 1 < S but Y - O. Then (again adapting previous 

usage in the natural way), necessarily q - 0, so that 

R - 0, 

and we have precisely the same outcome as in the opposite case where there are 

fully complete markets. 

Example 3. Incomplete Markets with Arrow Seçurities (for a Subset of Future 

Spots): Suppose that O < 1 < S and 

Then, 

ys,i _ { 
1

• 
0, 

Y-

[ : ] . 
for s-D+i, i-1,2, ... ,1 

otherwise. 

so 0 - 0 and 

R- []. 
and again, clearly, for Y fixed, since R is independent of w, there is 

purely nominal indeterminacy. 
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Exemple 4. Inçomplete Markets with Inside Money plus a Subset of Arrow 

Securities: Suppose, slightly modifying the previous example, that bond 1 

is inside money (rather than the Arrow security paying off at spot D+l). 

Then, 

Y-

with 

--1 
Y - [ (l,0, ... ,0) l 

-1 I 

so 

0 - - [1 0) and R- -q 

1/c.} 

l/w2 

I 

0 

In this example, for Y fixed, only perturbations of the first D elements 

of "'• 
- 1 2 D 

say, "' - (w ,"' •···•"' ), affect R and therefore possibly generate 

real indeterminacy; Y satisfies assumption AS' but not AS". [Note: 
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Generally, these two assumptions are not nested, so either can be satisfied 

when the other is not.] 

Example 5. Pareto Optimality: Suppose that e is a Pareto optimal 

allocation (which is always true when H-1). Then, clearly, since the only 

equilibrium allocation is autarky, households' equilibrium behavior is 

independent of R, and there is, once again, purely nominal indeterminacy. 

To see what can be learned from the first four examples -- and understand why 

perturbations of w or O alter the column span of R', say, for 

simplicity, span R, and thereby its orthogonal complement as well, that is, 

for short, why such perturbations are effective -- it is important to bear in 

mind that, for this analysis, when Y is fixed, then O - -YY-l is also 

fixed, and only w is perturbed, while when Y is variable, then w-1 

itself is fixed, and only O is perturbed. 

From examination of the examples it is apparent that in each of the first 

three the difficulty is simply that no permissible perturbation is effective, 

while in the fourth, that only certain permissible perturbations (namely, of 

the subvector ;) are effective. More generally, and equally apparent from 

examination of R as displayed in (AS), is why assumptions AS' and AS" 

guarantee that perturbations of w and w, respectively, are effective. In 

the first instance, Yb+>> 0 is equivalent to (Y y·l)b+, >> 0, where 

b+, - a.+, i S i i h 1 YD and assumpt on A' s tantamount to assum ng t at at east one 

element in each row of O is nonzero. Hence, for j-1,2, ... ,D, 

j" ,. w (with 
s, s" 

w -w for s-D+k,k-1,2, ... ,I) -> 
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R(q' ,w' ,O)b ~ span R(q",w",O), for b1 ,. 0, i - k, - 0, otherwise. 

In the second instance, assumption AS" implies that every element of O is 

nonzero. Bence, for j-l,2, ... ,D,k-2,3, ... ,I, 

wj 'k ,. 0 (resp. j 1 j ' i " D+k' D+k" 
w' "0), w -W" &w "'"' (resp. 

,.,J',. J") -> R(q',w',O)b ~ span R(q",w",O), for b1 "' 0, i - k (resp. 

i - j), - 0, otherwise. 

[Note: To say that "Y is in 'general position'" means precisely that every 

I
2

-dimensional submatrix of Y bas full ranlc. This condition is violated if, 

for some (j,k), J,k - 0, because then replacing the kth row in Y with 

the j
th 

row in Y yields an 12-dimensional submatrix with rank I-1.] 

It should now be more or less obvious why assumption AS"' works equally 

well: 

,.,j,k',. J,k" -> R(q',w,O')b ~ span R(q",w,O") for bi,. 0, i - k, - 0, 

otherwise. 

Finally, it is also worthwhile mentioning explicitly that while assumption AS' 

(but not AS") bas economic content -- and thus permits arguing for real 

indeterminacy without mathematical artifice it also entails a weaker result 

than assumption AS", since it only provides a lower bound on the degree of 

real indeterminacy. (For further analysis of various specific alternative 

assumptions about the structure of bond yields, see, especially, Werner [14].) 

Once it bas been determined that suitable perturbations of spot prices or 
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bond yields are effective, the rest is easy (at least in conception). Yith 

enough households, as specified by assumption A4, the property that 

ranlc [D~('1t),h-l,2, ... ,H0 ] - rank [\,h-l,2, ... ,H0 ] - D+l, (Al2) 

which is its maximal value, is -- like the property that •l p , Y and e can 

be taken as "independent" variables generic in endowments. That is, this 

"rank" property obtains on an open, dense subset of E. [Note: of course, 

Example 5 illustrates the difficulty when (Al2) fails, since, if x is a 

Pareto optimal allocation, then 

(Al3) 

This last result therefore also ratifies the intuition that, in the presence 

of restricted participation, the coordination required by (Al3) is most 

unlikely.] So, locally, variation in w or O (by means of perturbing the 

overall returns exhibited in (AS)) must typically map diffeomorphically into 

variation in x (by virtue of satisfying the gradient restrictions exhibited 

in (All)). As in the preceding subsection, 1 give short shrift to the 

argument supporting this last step -- which again amounts to utilizing basic 

techniques from differential topology. For a more detailed account, the 

interested reader is once more referred to [l]. 

Concluding Comment 

The particular sort of financial instruments considered in this paper, 

for which underlying asset yields are specified in terms of units of account, 
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is the most convenient for demonstrating a precise degree of real 

indeterminacy. However, it is only in the contrasting polar case, for which 

underlying asset yields are specified in terms of bundles of goods (which are 

also taken as exogenous or fixed) -- so that the asset yields themselves are 

linear homogeneous in corresponding spot prices -- that all nominal 

indeterminacy is necessarily "insignificant". Some interesting analysis of 

real indeterminacy in various intermediate cases can be found in [l, pp. 148-

9], [6, pp. 36-8] and, especially (the most general treatment available), 

Pietra [10]. 
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Footnotes 

* This paper, intended to be a modest contribution to the theory of general 

competitive equilibrium, is dedicated to Lionel McKenzie. The importance 

of Lionel's seminal influence on the modern development of this 

fundamental discipline almost requires no elaboration (and is, anyway, 

very amply detailed elsewhere in this volume). More personally, Lionel 

has been an incomparable role model for me, as well as my friend and 

benefactor. 

Research support from the NSF under grant #SES 88-08524 is gratefully 

acknowledged, as are useful comments by numerous (supportive and yet 

critical) colleagues. 

1. Two somewhat different kinds of surveys of this literature can be found 

in Cass [4] and Geanakoplos [5]. Both contain extensive references. 

2. This branch developed from an example I constructed that emphasized the 

possible sunspot interpretation of this phenomenon (see Cass [3]). 

Generalization and refinement (as of this date) can be found in Balasko 

and Cass [l], Balasko, Cass and Siconolfi [2], Geanakoplos and Mas-Colell 

[6], Mas-Colell [9], Pietra [10], Polemarchakis [11], Siconolfi and 

Villanacci [12] and Werner [14]; the list is not exhaustive. 

3. This is essentially Theorem 5.1 in [2]. The very last assertion, 

however, requires straightforward modification of the proof of Theorem 

5.3 in Balasko and Cass [l]; it will be central to the argument in the 

subsequent section. 

4. Notice that postulating the existence of inside money is equivalent to 

assumption AS' (for an appropriate choice of units of account), since the 

households' financial opportunities are unaffected by replacing any 
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particular bond with a fixed portfolio that includes that bond (a sort 

of mutual fund). As far as I can see, this is a pretty innocuous 

assumption, taken by itself. Much less innocuous is the further 

assumption that all households can freely transact on the market for 

inside money. 

S. Here two minor technical points need checking: First, in the transformed 

model, pO,l must be large enough to guarantee (implicitly) that 

e~· 1 > 0 (i.e., in the terminal tax model itself, to guarantee that 

ehO,l_(t-ehm,O)/pO,l > 0). Th" i i · · · b · f" d h 1s nter or1ty restr1ct1on can e satis 1e 

by utilizing the fact that, in the original model of the preceding 

i •l ( 0,1 s,l S,l) sect ~n, p - p , ... ,p , ... ,p as well as e can be treated 

as parameters (see [2], Section 4.3). Second, in the transformed model, 

. •l \1 appropr1ate perturbations of p and Y must still yield 0
0

1
0 

"significant" degrees of nominal indeterminacy. This result, involving 

routine linear algebra, is verified in the appendix. 

6. An even more direct derivation of this seemingly strong conclusion 

follows upon just appending spot-by-spot price normalization to the 

original model -- the crudest version of the venerable quantity theory of 

money -- for instance, in the form of the additional equations 

where s ( s,l s,c s,c) O a - a , ... ,a , ... ,a > and s p > o, s - 0,1, ... ,s. 

This is, for all practical purposes, the route followed by Magill and 

Quinzii [8]. 
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1 recognize that it makes sense to consider variation in [ -yq] as 

being limited by specific functional characteristics of the financial 

sector. Nonetheless, the fundamental conclusion, that endogenous bond 

yields -- or, more generally, financial instruments -- contribute to 

extensive real indeterminacy seems tome to be quite robust. My position 

receives some support from Proposition 2 itself: To be concrete, 

suppose that S - 3, 1 - 2, H > 1 and the market imperfection is purely 

incompleteness. When bond 1 is inside money, so that yl,s - 1, 

1 2 3 b b d 2 i bl 1 h Y2,s - l+rs > 1, 
s - , , , ut on a var a e rate oan, sot at 

s - 1,2,3, the set of equilibrium allocations will still typically 

contain a continuum. 

8. For simplicity, 1 will also denote the numbers of unrestricted and 

restricted households by Hu and Hr, respectively (and hereafter, for 

symmetry, also the set of all households by H - Hu u Hr). No confusion 

should result. 

9. Equivalently, in this second type of economy there are J > 1 replicas 

of the Hu unrestricted households and K < J - replicas of the Hr 

restricted households, and j - J/K ~ 1. 

10. The two results required are that (i) equilibrium allocations in the 

complete market economy are identical to those in the corresponding 

Walrasian economy with the same fundamentals (i.e., preferences and 

endowments), and (ii) in a smooth Walrasian economy, generically in 

endowments, equilibria (up to price normalization) and hence equilibrium 

allocations are locally unique. [Note: Here and in the text, 

translating from prices to allocations only utilizes the underlying 

result that demand functions are smooth]. 
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11. "Typically" also refers to just endowments of the unrestricted 

households. I doubt that much can be inferred regarding the asymptotic 

behavior of equilibrium allocations to the restricted households. There 

is simply no reason to expect their goods demands to be systematically 

delimited on the sets of (financial) equilibrium prices 

0' l' 1 s' s S' S {(p,q) E PX Q: p - (p ,p /À , ... ,p /À , ... ,p /À) 

with À - qY-l >> 0} 

associated with equilibrium prices p' in the corresponding Walrasian 

economy -- as they certainly are for the unrestricted households 

(precisely the content of the first result mentioned in the preceding 

footnote). 
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Appendix to CARESS Working Paper #90-13, •Indefinitely Sustained Consumption 

Despite Exbaustible Natural Resources• by David Cass and Tapan Mitra (to be 

published in Economie Theoty) 

We have clearly demonstrated that sufficiency of the substitution 

condition (SC) basically rests on just Hl and H2. In contrast, we have 

merely asserted that necessity critically depends on hl, h2, and h3 (as 

well as H2). The purpose of this appendix is to substantiate this latter 

claim. We will demonstrate by example that, without any one of these three 

assumptions, (3) may be satisfied even when (SC) is not. Along the way we 

will also establish that h2 can be replaced by a weaker regularity 

requirement when time is modeled as being continuous rather than discrete, and 

that h3 can be replaced by a weaker curvature condition provided that (SC) 

itself is reformulated in terms of "lim inf" rather than "lim". 

AI. Counterexample to Dropping Assumption hl 

Suppose that 

h(y,k) - - y for y< g(k) -
otherwise 

with H - m.x m.+' where g: m.+~ m.+ is decreasing and satisfies 

(Al) 

g(O) > g(œ) - lim g(k) > 0, and a> O. Such a resource requirement function 
k~ 

effectively embodies the antithesis of hl, since, up to some limit 

(determined solely by the capital stock), more output always requires less 

depletion. The salient features of (Al) are depicted in Figure Al. For an 

economy enjoying this peculiar static technology, it is fairly obvious that 
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[insert Figure Al about here] 

(3) is satisfied, since, for instance, given arbitrary (r,k) >> 0, the 

growth path described by 

and 

c - g(ao) for t > 0 
t -

k - k 0 
for t > 0 -

is a solution to (10). Equally obvious is the fact that (SC) is not 

satisfied, since ~(y) - k - ao for O <y~ g(ao)] but, for every O < k < ~. 

lim+l/y r:::u) - y]du - [ 1/y [[g(u) - y]du] 
y~o k k O<y<g(ao) 

- [ 1/y [[g(c) -y]du] 

k O<y<g(ao) 

- ao. 

Two further points about this particular example are worth making 

explicitly. (i) The argument is very direct. Though much more complicated 

in detail, the basic logic for each of the succeeding examples in this 

appendix is absolutely identical: First, describe a particular resource 

requirement function. Second, exhibit a solution to (10) (given arbitrary 

(r,k) >> 0). Third, and finally, verify violation of (SC). (ii) (Al) fails 
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to satisfy h3 as well as hl. This follows immediately from the observation 

that 

h(y,k) 

y 

g(k) 
---y 

according as 

so that, though y - g(O), for every v > 0 and every k ~ 0, if y' - g(k) 

and O < y" < y' , then 

g(k) 
0 - y' - 1 

h(y' ,k) h(y" ,k) - [ g(k) l 
, < V II V " - 1 

y y y 

Thus, one could legitimately puzzle over the appropriate interpretation of the 

example. However, because (Al) does satisfy the still weaker version of 

diminishing returns presented below, it seems quite properly viewed as 

basically a counterexample to dropping hl rather than to dropping h3. 

All. Counterexamples to Dropping Assumption h2 

These two examples exhibit quite distinct kinds of nonmonotonicity. 

Though either one by itself would suffice for our present purpose, we include 

both in order to emphasize the wide variety of situations which can be covered 

in continuous, but not discrete time. (Refer to the analysis in the following 

subsection.) Our elaboration of each example is intentionally abbreviated, 

since, as noted above, it is logically straightforward. In particular, among 

other more minor details, we leave to the reader explicit verification that, 

in both examples, hl and h3 are satisfied. 
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Example A2a. Suppose that 

h(y,k) - f(y)g(k) (A2) 

with ·H - 1R. x 1R. , where f: 1R. ~ lR.+ 

satisfies f(y) t:} 0 according as 

> 

while 

if (i) g1 : [0,1] ~ lR.+ is continuous and satisfies g1 (x) 0 according 

as x(l-x) {:} 0, and (ii) g2: IR+~ IR+ is decreasing and satisfies 

0 < [ g2 (u)du < œ, then 

g(k) - { gl(k -

g2(k) 

n) + g
2

(k) for n < k < n + 1, - n-0,2,4, ... 

otherwise. 

In a manner of speaking, the isoquants suffer chronic (as well as uniform) 

"bumpiness," as exhibited in Figure A2a. 

[insert Figure A2 about here] 

To see that (10) has a solution, let 

Y - (n - k)/m for n > k and m > 2(n - k) both integral, 
nm -

and consider the growth paths described by 
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t > 0 -
and 

and for O < t < m - 1 - -
otherwise. 

Then all that needs checking is that, for some n and m, the resource bound 

will be satisfied. Direct calculation yields 

m m-1 m 

L h(ct+kt+l-kt,kt) - L h(2y ,k+y t) + L h(y +l,k+y m+(t-m)) (A3) 
t-0 t-0 nm nm t-m nm nm 

m-1 œ 

- (f(2y )/y ) L g(k+y t)y + f(y +1) L g2 (n+(t-m)) 
nm nm t-O nm nm nm t-m 

. m-1 
< (f(2y )/y ) l g(k+y t)y + f(y +1) 
- nm nm t-O nm nm nm 

So just pick n large enough so that 

(A4) 

and m large enough (with corresponding y small enough) so that 
nm 
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m-1 
I 

t-0 
g(k+y t)y < 2 Jn g(u)du 

nm nm -
k 

and (AS) 

4(f(2y )/2y ) Jn g(u)du < r/2, 
nm nm -

k 

and the desired conclusion follows immediately upon using (A4)-(A5) to extend 

the chain of inequalities in (A3). 

Finally, to see formally that (SC) is not satisfied (informally, this is 

obvious from Figure (A2a), let 

n(k) - min (n: n is even and n ~ k} for k > O. 

Then, because ~ - œ, for every O < k < k, 

J
k(y) 

k h(y,u)du - f(y) [ J
n(k)+2i+l [ ] 

~ g1(u - (n(k) + 2i))du + g2(u)du 

i O n(k)+2i k 

or 

J
k(y) [ 

lim 1/y h(y,u)du - (f(y)/y) 
y-+o+ 

k 

Example A2b. Suppose that 

[ 
J

n(k)+2i+l 

.Ï g1(u - (n(k) 
i-O n(k)+2i 

+ 2i))du + [ g2 (u)du )] - m, 

k y>O 



h(y,k) - { hl(y,k) 

. hl(y,k)+h2(y) 

with H - 1R x lR+ and 
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for (y,k) e H1 

otherwise 

n-1 n 
H1 - {(y,k): 0 ~y~ 1/2 and k - 1 - i/2 for 

(A6) 

n 
i - 0,1, ... ,2 , n - 1,2,3 ... ), 

2 
where h1 : [O, 1] .. lR+ 

y, and satisfies 

is increasing in 

and 

y, decreasing in k and convex in 

h1(y,k) {:} 0 according as 

for O <y< 1, - is increasing and convex, and 

satisfies h2(0) - 0 and lim h2(y)/y >·o. This example is bard to describe 
y .. o+ 

in words, but not in pictures, as Figure A2b attests. 

Now let n be a positive integer such that 

growth paths described by 

l/2n < ië, -

n 
et - 1/2 for t > 0 -

and 

n { n ko - 1/2 and kt+l - :t + 1/2 for O < t < 2n - 2 - -
otherwise. 

Then, in this instance direct calculation yields 

œ 2n-2 
L h(ct+kt+l-kt,kt) - L h(l/2n·l,(t+l)/2n) 

t-m t-0 

and consider the 



for n large enough. 
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2n.2 
- l/(l/2n) I h

1
(1/2n-l,(t+l/2n)(l/2n) 

t-0 

l-l/2n 

~ 2/(1/2n-l) J
0

h
1

(1/2n-l,u)du 

1 

~ 2/(1/2n-l) J
0

1½_(1/2n-l,u)du 

< r -

Finally, observe that, for every 0 <y< l, h - is integrable in k on 

[O, 11, and has closed form, for every 

(since, if l/2n <y< l/2n-l, then there are only a finite number of points -
ki - 1 - i/2n for i - O,l, ... ,2n). Hence, because ~(y) - k - 1 for 

0 <y~ 1, for every O < k < ~. 

J
k(y) 

lim 1/y h(y,u) 
y-+o+ k 

1 

- lim 1/y J h2(y)du -
y-+O+ k [ 

lim h2(y)/y ] (1-k) > O. 
y-+o+ 
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AIII. Hodeling with Çontinuous Time; Veakening Assumption h2 

For simplicity we again illustrate the main point by focusing on the 

intermediate case in which y> 0 as well as k - ~. A similar modification 

of the analysis (but with additional -- and purely technical -- complication) 

applies in the general case. 

In this setting a feasible growth path is a solution to the dynamical 

system 

c(t) > - 0 and (c(t) + (k(t). k(t)) EH for t > - 0 (A7) 

and 

[h(c(s) 
• - ~ k, + k(s) ,k(s))ds < r and k(O) -

where te [0,m) and k(t) - k(O) + J:~(s)ds (soit is understood that, by 

hypothesis, all requisite integrals are well-defined, say, in the sense of 

Riemann). Now replace h2 by the weaker regularity requirement 

h2'. If y> 0, then, for every O <y< y, h is integrable in k on 

(k: k e H(y) and k < ~(y)}, 

and consider feasible growth paths of the specific form 
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k(t) ~ 0 and (c + k(t), k(t)) e H for t ~ 0, 

lim k(t) - Cl) 

t-+co 

and 

C > 0, ( h(c + k(s),k(s))ds < r - and k(O) ~ k. 

(AS) 

In the same spirit as the argument underlying the Growth Theorem in Section 

!VA, the following result is also easily demonstrated. 

Sustainability Theorem in Continuous Time. For every (r,k) >> 0 there 

exists (c, (k(t)}) satisfying (AS) if and only if (SC) obtains. 

Proof of the Sustainability Theorem in Continuous Time. Sufficiency. 

Pick y> 0 such that (y,k) e H [using Hl] and 

1/y ~ h(y,u)du ~ r;2 

[using (SC)], and consider the particular growth path defined by 

! 
k(O) - k 

and 

c(t) - y/2 and k(t) - y/2 for t > O. ·-

Then 

(A9) 

(AlO) 
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[h(c(s) + k(s),k(s))ds - [h(y,k(O) + (y/2)s)ds 

- 2/y (h(y,u)du [changing variables from 

"s" to "u - k(s)"] 

< r. - [using (A9)] 

Thus, (AlO) yields a solution to (AB) with c - y/2. 

Necessity. Suppose that (AB) bas a solution for arbitrary (r,k) >> O. Again 

it is straightforward to show that this implies that 

for every O <y< c, 

1/y (h(y,u)du ~ r;v: 

r ~ [h(c + k(s),k(s))ds 

~ [h(y + k(s),k(s))ds for O <y< C 

> [

h(y)+k(s),k(s)) 
-----.---- k(s)ds 

- y+k(s) 
0 

[using Hl and hl] 
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v ---- k(s)ds > "[oh(y,ky(s)) 

- V/y (h{y,u)du. 

AIV. Counterexamples to Dropping Assumption h3 

[using h3] 

[changing variables from 

"s" to "u - k(s)"] 

As in the examples concerning the necessity of h2, these two examples 

differ markedly from one another. However, unlike there, here the difference 

has substantial significance. On the one band, the first example involving 

average returns to exhaustible resources which become "too large" at high 

levels of output -- represents situations where a substitution condition like 

(SC) is simply inappropriate; sustained consumption typically requires 

geometric accumulation. (These are, in our view, extremely implausible 

situations anyway). On the other hand, the second èxample -- involving 

average returns to exhaustible resources which behave "too erratically" at low 

levels of output -- represents situations where, with suitable relaxation of 

h3, a parallel relaxation of (SC) will still apply, as we demonstrate in the 

following section. (These are, in our view, distinctly plausible situations, 

especially when translated into the disaggregative terms we proposed in 

Section IVB.) Once again, our argument is purposely terse. 

Example A3a. Suppose, as earlier, that 

h(y,k) - f(y)g(k) (A2) 

• 
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with H - lR x JR+' where now f: lR-+ JR+ is increasing (and strictly 

increasing for y~ 0) and satisfies lim f(y)/y - 0 and O < f(œ) -
y-+o+ 

lim f(y) < œ (so that lim f(y)/y - 0), while g: JR+-+ JR+ is decreasing 
y-+O y-
and satisfies, for every k > 0, 

[g(u)du - m and (g~u) du< m 

(for instance, g(k) - k-l/2). As Figure A3a suggests, h3 isn't satisfied, 

-since obviously y - œ (noting that 

and every k ~ 0, if O <y"< y', 

h(y' ,k) f(y') f(y") 

y' y' g(k) < v-
y" 

lim g(k) - 0), 
k-

then 

h(y" ,k) 
g(k) - V y" 

for y' large enough (noting that g(k) > 0). 

but for every v > 0 

[insert Figure A3 about here] 

Let O <y~ k/2, 0 <À< 1 and n be a positive integer, and consider 

the growth paths described by 

et - y for t > 0 -
and 

k0 - ië and kt+l - {kt+ y for 0 < t < n - 1 - -
(1 + À)kt otherwise. 
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Then direct calculation yields 

m n-1 m 

I h(ct+kt+l-kt,kt) - I f(2y)g(k+yt) + I fCy+Àkt)gCkt) 
t-0 t-0 t-0 

(All) 

n-1 m g(kt) 
< CfC2y)/y) I g(k+yt)y + f(m) I --=- <kt+l-kt) 
- t-0 t-n Àkt 

J

k+(n-l)y 

~ 2(f(2y)/2y) g(u)du + 

k-y 

So just pick ny large enough so that 

m 

(f(m)/À) J 
g(u) 
-- du< r/2, 

u -

(1-À)(k+ny) 

and (fixing ny) y small enough so that 

r g(u) 
(f(m)/À) -u- du. 

(1-À)(k+ny) 

J

k+(n-l)y Jk+ny 

2(f(2y)/2y) _g(u)du ~ 2(f(2y)/2y) _g(u)du ~ r/2, 

k-y k/2 

(Al2) 

(A13) 

and, as before, the desired conclusion follows immediately upon using (Al2)­

(Al3) to extend the chain of inequalities in (All). 

Finally, because ~ - m, for every O < k < ~. 
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J
k(y) 

lim 1/y h(y,u)du -
ro+ . k 

[1/y [f(y)g(u)du] -
k y>O [ (f(y)/y) [g(u)du] - m. 

k y>O 

Example A3b. Suppose, once more, that 

h(y,k) - f(y)g(k) (A2) 

with H - 1R x JR+, where now f: 1R ~ JR+ is as depicted in Figure A3b, 

while g: JR+ ~ JR+ is decreasing and satisfies, for every k > 0, 0 < 

[g(u)du <;: ~. 

Explicitly, f is defined by the formula 

f(y) - l(l-+o)y1 + (y·y1) for y~ Y1 

y1/i + (y-y1)/(i+l) for Yi 1 <y< y.' i - 2,3, ... 
+ - 1 

0 for y< 0, -

where a> 0, y1 > 0 and yi+l - min {y: yi/i + (y-y1)/(i+l) ~ (l+a)y) for 

-
i > 1. For this example, h3 isn't satisfied since again y - m, but now, 

for every 11 > 0 and every k > 0, - if O < y" - Yi+l <y'< Yi' 

h(y',k) 1 h(y" ,k) 

lim 
y'~y: 

1 

y' - i g(k) < 11(l+a)g(k) - Il y" 

for i large enough. 

then 
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In fact, the critical feature of this example is precisely that 

f(y) 
lim inf -- - 11m 

y-+o+ Y 1- [ 
. f(y) ] 

11.m -- -
y-+y: y 

l. 

1 
Hm--0< 
1- 1 

f(y.) 
(l+a) - lim __ 1._ - lim 

1- Y1 1- [ 
f(y) ] 

Hm-- -
y-+y~ y 

l. 

lim sup 
y-+o+ 

f(y) 

y 

Hence, on the one side, the demonstration that (10) bas a solution follows 

from the observations that k - m and that, for every O < k < ~. 

lim inf 
y-+o+ J

~(y) [ f(y)] [ 
1/y h(y,u)du - 11m inf -- g(u)du - O. 

y-+o+ Y 
k k 

(A14) 

(As we show in the following section, (A14) completely captures the only 

implication of (SC) we actually needed for the sufficiency argument in the 

proof of the Sustainability Theorem.) On the other side, the verification 

that (SC) itself is not satisfied follows from the observations that k - m 

and that, for every O < k < ~. 

lim sup 
y-+o+ J

~(y) [ f(y)] [ [ 
1/y kh(y,u)du - li; .. ~~p -y- kg(u)du - (l+a) kg(u)du > O. 

AV. Erratically Behaved Average Returns: Veakening Assumption h3 

Consider replacing h3 by the weaker assumption 
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h3'. If y> 0, k - co and, for every k > 0, -
h(y,k) 

lim inf - 0, 
y-+O+ y 

then there exista positive constant v > 0 and, for every c > 0, a 

smaller, positive output level O <y< c v > 0 with the property that, 

for every k > 0, 

h(y' ,k) 

y' E H(k), y" - y and y"~ y'-> --y-,--? V 

and (SC) by the weaker condition 

for every O < k < ~. 

J
k(y) 

lim inf 1/y 

0

h(y,u)du - O. 
y-+o+ 

h(y" ,k) 

y" 

(SC') 

h3' is a significant relaxation in the sense that it permits including the 

additional cases shown in Figure A4. 

[insert Figure A4.about here] 

These changes require some minor adjustments in the previous proof of 

the Sustainability Theorem. 
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Sufficiency. Clearly (SC') suffices for our earlier construction, since it 

too permits picking O < ~ < 1/2 and y> 0 such that (y,k-Ày) e H and 

J
k(y) 

1/Ày _h(y,u)du ~ r/2 

k-~y 

(cf. top p. 22). 

Neçessity. We introduce an additional lemma, and then suitable corresponding 

modification of the concluding argument (currently on pp. 30-33), as follows: 

Lemma' (given the Lemma on p. 25). If (10) bas a solution for every 

(r,k) >> 0, then 

for every O < k < ~. 

h(y,k) 
lim inf --­ o. 

y-+O+ y (Al5) 

Proof of the Lemma'. Given r > 0 and O < k < ~. suppose that (c,{kt}) 

is a solution to (10). Then, by virtue of the Lemma, 0 < c ~ y -- so that 

the conclusion of h2 obtains -- while, for every O <y< c, ~(y)~ sup kt 
t>O 

so that (recalling that k0 ~ k < ~ ~ k(y) for y~ 0), for every 

k < k' < k, there exists O < t' < œ such that 

kt {:} k' accorcling as O < t {:} t'. 

-



19 

So let 

+ t (t') - {t: 0 ~ t < t' and kt+l - kt> 0) 

(noting that t'-1 e t+(t')) and 

k~+l - min{k' ,kt+l} for te t+(t') 

(noting that k~+l - k', for t - t'-1, - kt+l' for te t+(t'), t < t'-1). 

Then the resource bound in (10) yields the following chain of inequalities: 

a:, 

r ~ l h(c + kt+l - kt,kt) 
t-0 

- > h(c + k 1 - kt,kt) 
tet~(t') t+ 

> > h(c + k' - k k) 
- tet~(t') t+l t, t 

> - ) h(k~+l - kt,k') 
tet~(t') ·. 

[using H2 and hl) 

[using H2, hl and h2] 

h(kt+l - kt,k') 
) kt'+1 - kt (k~+l - kt) 

tet~(t') 

h(y ,k') ] 
and y ~ k'} y (k~+l - kt) 



à; [ y E {y: 
inf 

yeH(k') 
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and y ~ k') 
h(y,k') 

y ] (k' - k). 

But since r > 0 and O < k < k' < k are arbitrary, the last inequality 

obtains only if 

for every O < k < ~. 

inf 
y E {y: y E H(k) and y< k) -

h(y,k) 

y - 0 

a property which itself obtains only if (Al5) does. 

The balance of the proof distinguishes the two cases 

k < «> and k - «>, 

Case 1. k < «>. 

Take O < k < k. Then, by virtue of Hl and h2, there is y' such 

that 

for every O <y< y', 

(y,k) e H J
~(y) h(y,k) 

and O < 1/y h(y,u)du < 
- y 

k -

(~(y)-k). 

Hence, by virtue of the Lemma' together with lim k(y) - ~ > k, 
y ... o+· 

• 
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J
k(y) 

lim inf 1/y h(y,u)du - O. 
ro+ k 

Case 2. k - m. 

Now, by virtue of the Lemma', all the triggering hypotheses of h3' are 

satisfied, so that our previous argument is virtually unchanged (by picking 

suitable O <y< c). • 
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Fig. Al Critical Features of the Example Showing that 
without Assumption h 1, Condition (SC) is not Necessary 
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b. Example where h(y,k) = { h1(y,k) for (y,k)~H, with 

h1(y,k) + h2 (y) otherwise 

H = { (y,k): 0 f y~ ~2n-t and k= 1- ~2n for i=O, I ,·· ·, 2", n=l,2,3,···} 

Fig. A2 Critical Features of the Two Examples Showing that 

without Assumption h2, Condition ( SC) is not Necessary 
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b. Example where lim inf .!.!!l:o < lim sup f(YY> 
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Fig. A3 Critica I Fèatures of the Two Examples Showing that 
without Assumption h3, Condition {SC) is not Necessary 
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Fig. A4 Relaxation of Assumption h3 
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