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ABSTRACT 

Dynamic Duopoly with Learning Through Market Experimentation 

This paper analyzes how learning behaviors can substantially modify 
the outcome of competition in an oligopolistic industry facing demand 
uncertainty. We consider the case of a symmetric duopoly game where firms 
have imperfect information about market demand and learn through observing 
the volume of their sales. The main body of the paper consists in showing 
how market experimentation can explain the existence of price dispersion in 
an oligopolistic industry. We study this phenomenon and its dynamic 
evolution in the context of a Hotelling duopoly model; we then extend the 
analysis to general demand functions, to N-firm oligopolies, to asymmetric 
duopolies. We evaluate the social cost of price-experimentation by 
oligopolistic firms and we emphasize several implications of the public 
good aspect of information about market demand. We then conclude by a few 
comments on what happens when the value of information in the oligopolistic 
industry is negative. 

Journal of Economie Literature: 022, 026, 610 
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RESUME 

Duopole dynamique avec apprentissage 
au moyen d'expérimentation par les prix 

Le papier montre que la prise en compte de comportements actifs 
d'apprentissage modifie de façon importante l'analyse de la concurrence 
dans les marchés .oligopolistiques. Nous considérons le cas d'un duopole 
symétrique dans lequel les entreprises ont une information imparfaite sur 
la fonction de demande et acquièrent de l'information en observant leurs 
ventes. La partie centrale du papier montre comment l'expérimentation par 
le marché permet d'expliquer l'existence d'une dispersion des prix dans un 
marché oligopolistique. Nous étudions ce phénomène et son évolution 
dynamique dans le contexte du modèle d'Hotelling à deux firmes ; puis nous 
étendons l'analyse à des fonctions de demande générales, au cas d'un 
oligopole à n firmes, et au cas d'un modèle dissymétrique. Nous évaluons le 
coût social de l'expérimentation par les prix et mettons en avant plusieurs 
implications de l'aspect "bien public" de l'information sur la demande de 
marché. Finallement nous concluons par quelques commentaires sur ce qui 
peut aboutir quand la valeur de l'information pour l'industrie est 
négative. 

Journal of Economie Literature: 022, 026, 610 

Mots clefs : Expérimentation, Information, Concurrence 
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influential survey of new theoretical developments on 
with imperfect information, Rothschild laid down three 
for any satisfactory model of price adjustment "A 

model of adjustment to equilibrium will have at least three 
parts : a discussion of the rules which market participants follow when the 
market is out of equilibrium, a description of how a market system in which 
individuals follow these rules operates, and, of course a convergence 
theorem 11 <1 > (Rothschild (1973) pp 1285-1286). He then went on and dismissed 
most existing work for not satisfying all of these criteria: "Most 
adjustment models have sacrified the first requirement to the second and 
third" (Rothschild (1973) pp 1286). 

Unfortunately, his verdict could be returned again, almost 
unaltered today, about models of price adjustment with competition. This 
state of affairs persists largely because of the difficulty of the task set 
up by Rothschild.< 2 > Accordingly, the present paper is a partial attempt at 
developing a theory of prite adjustment with competition which meets all of 
Rothschild's requirements. We propose to circumvent some of the most 
obvious difficulties arising in this type of problems by modelling out of 
equilibrium states as situations in which market participants have 
incomplete information about demand or supply. And we define a long-run 
equilibrium as a Nash equilibrium in the stage game where all participants 
have exhausted all valuable learning opportunities from past observations 
and experimentation about the relevant aspects of demand and supply. 

To model adjustment processes as learning by experimentation 
processes has several advantages, the major one being that the market 
outcome at every stage of the adjustment process can be modelled as a Nash 
equilibrium of an incomplete information stage game. The adjustment process 
is then given by the sequence of Nash-equilibria over time, as the 
information structure changes through learning by experimentation. 
Admittedly, we are putting a lot of faith in Nash equilibrium as a solution 
concept. We have, however, chosen this strategy for lack of any other 
coherent alternative< 3>. Our paper is concerned with new important aspects 
of these adjustment processes. But we do not attempt a full fledged general 
analysis. This remains, as yet, out of reach. 

Thus, most of the paper is concerned with a simple repeated duopoly 
where firms offer differentiated products and compete in prices. The 
specific framework we consider is that of horizontal differentiation in a 
simple Hotelling model. We have chosen to focus on one specific aspect of 
demand, uncertainty namely that concerning the substitutability of the two 
products offered by the two firms. As an illustration consider the example 
of Money-market mutual funds versus interest bearing deposit accounts ; 
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when the latter were introduced it probably was net very clear at the 
outset to what extent they were a close substitute for the traditional 
bank-deposit accounts. But gradually, through learning by experimentation, 
the degree of substitutabily of the two financial products became more 
apparent. The incompleteness of information about the substitutability 
between the two products in our model is formalized by assuming that firms 
do net know exactly the "transportation-cost" faced by consumers. 

A key insight of our model is that information about this 
transportation cost is acquired most effectively if firms experiment by 
setting different prices ; That is, if they disperse their prices. We show 
that in a symmetric equilibrium, price dispersion is largest when firms' 
information is weakest and this dispersion gradually declines as firms 
gather more and more information. It eventually disappears in the long-run 
equilibrium where firms end up acquiring complete information about the 
transportation costs of consumers. <4> We thus propose a diseguilibrium 
theory of price dispersion as an alternative to the existing equilibrium 
price-dispersion theories.<5> 

In addition, our simple model illustrates what we believe to be 
several general aspects of any situation of learning by experimentation by 
multiple competing firms. To begin with, optimal learning through 
experimentation with several agents requires that agents take different 
actions so as to obtain as good a sample of observations as possible. As 
mentioned above, in our model this sampling motive takes the form of price 
dispersion. Second, the public-good aspect of individual experimentation 
creates incentives for free-riding. More precisely, some actions while they 
yield socially valuable information, also involve high individual cost.< 6

> 

Each firm then would like the other firm to bear that cost. In our model, 
the costly action is to set the highest of the two prices. Hence the 
existence of a coordination problem between the two experimenting firms. 
Following Crawford and Haller (1990) who argue that "asymmetric pure 
strategy equilibria are unconvincing and inappropriate for the study of 
coordination in games", we select the unique symmetric Nash 
Equilibrium-which involves mixed strategies whenever firms do experiment -
to represent the outcome of this coordination game. 

A third important aspect of experimentation by several agents is 
the fact that experimentation by one agent may "garble" the signal received 
by other agents and thus slow down information accumulation. In our model 
this "signal-garbling" corresponds to the lack of coordination - mentionned 
above - between the two duopolists' price behaviors. It turns out that if 
one firm decided to behave myopically, this coordination problem would be 
automatically overcome. More precisely, we show in section V that an 
experimenting {"farsighted") firm would (weakly) benefit from competing 
with a myopie firm instead of another farsighted firm. This is a striking 
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result, given that the myopie firm free-rides on experimentation costs. 

Finally, in the presence of competition, new information about the 
substitutability of the products may be bad for the firms, since it may 
exacerbate competition and lead to the dissipation of duopoly profits. We 
show indeed that in some situations the value of information is negative 
moreover we show that the fear of discovering "bad" information can be a 
good disciplining device for firms to be less aggressive competitors.< 7> 

To our knowledge, the theoretical literature on the subject is 
almost non-existant. The exceptions are : Cyert and Degroot {1971) who 
develop a model of duopoly in which a leader firm learns about its rival's 
behavior from market data. Because of the sequential structure of the 
model, their analysis comes closest to the case of an experimenting 
monopoly; Kirman (1985), who studies the convergence properties of a model 
where competing firms learn the demand characteristics through time. (This 
analysis however is conducted for the case of non-experimenting firms using 
non-bayesian econometric estimation procedures) ; Riordan (1985), who has 
emphasized strategic manipulation by competing firms of the information 
revealed through market data, in models of signal jamming. 

The paper is organised as follows. Section I describes the model 
and the equilibrium concept. Section II derives the price dispersion 
result. Section III establishes the robustness of this result to having 
more general demand schedules, to increasing the number of oligopolistic 
firms, and to introducing small asymmetries between firms' demands or 
costs. Section IV studies the dynamics of price dispersion in a T-period 
extension of the model. Section V compares the previous results with the 
situation where only one firm experiments. Section VI is devoted to welfare 
analysis. Finally section VII concludes by investigating the possibility 
and the consequences of a negative value of information, and it clarifies 
the relationship between the notions of value of information and value of 
price discrimination. 
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I. The basic model 

We consider a two-period Hotelling model in which two firms, A and 
B, located at the extreme points of the interval [0,1], costlessly produce 
two goods A and B that are identical except for their location; these two 
firms compete in mill price and cannot change location. Consumers are 
uniformly distributed on the same interval [0,1] and each of them purchases 
only one unit of good per period, provided the total payment (mill price 
plus transportation cost) is less than his/her reservation value R. The 
goods cannot be stored by consumers between period 1 and period 2 and the 
cost of transporting one unit of good is 1/8 per unit of distance. 

At the beginning of period 1, both firms ignore the exact value of 
8. On the other hand this value is known by consumers who directly bear the 
transportation costs.< 8 > However firms A and B initially share the same 
prier beliefs about 8, namely: 

8 with probability 1-qo 

8 = 
8 with probability qo, where 8 < 8 ~ 20< 9>. 

These priors are common knowledge. 

Except in Section 7 below, we shall assume that Ris sufficiently 
large for the whole market (whose size is equal to 1) to be served by firms 
A and B; i.e, none of these firms behaves as a local monopolist. Thus, if 
PA and p8 denote the prices currently charged by firm A and firm B, 
respectively, the deterministic parts of the demands faced by these two 
firms are given by 

1 pB- PA 
DA (pA ,Pa• 8) = -+ . 8 

2 2 
( 1) 

1, pA- Pa 
DB (pA ,Pa• 8) = -+ . 8 

2 2 

Let XA and X8 denote the current observed demands for product A and 
B respectively. Even though total demand (xA + X

8
) is fixed at l(lO), there 

is some uncertainty on how this aggregate demand is distributed between the 
two duopolists. This uncertainty can be due to the fact that some consumers 
make mistakes and end up in the wrong store, or to unexpected changes in 
their tastes that make them prefer, say, firm A to firm B, even though it 
would be cheaper to purchase from B. More formally: 
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(2) 

-= Da(PA,Pa, 8) - E 

-where DA and D8 are given by (1), 

distributed on the interval [- ~. ~] 

and E is a random variable uniformly 

= I, with O ~ Ê ~ 1. 

Insert Figure 1 

The timing of the game is as follows (Figure 1) 

At the beginning of period 1, each firm i = A,B has to set a price 
p1 on the basis of its prior beliefs about the value of parameter 8. Then, 
first-period demands XA and X8 are realized. We assume that both firms 
observe the pair of first-period prices (pA,p8 ) and sales realizations 
- - (11) XA ,XB. 

At the beginning of period 2, firms will revise their prior beliefs 
about 8 on the basis of past observations {XA, X8 , PA, p8 ). This 
information acquired in period 1 is processed using Bayes law and thus 
transformed into a posterior probability distribution {q, 1-q}, where: 

In this basic mode! where 8 can only take two values, the posterior 
probability is simply given by : q = 0, 1, or q0 , depending on whether 
firms have learned that 8 = ë, that 8 = ~. or have remained uninformed 
about 8. Finally, on the basis of their posterior beliefs about 0, firms A 

and B will choose second-period prices Pi and Pii· 

Our equilibrium concept will be Perfect Bayesian Equilibrium (PBE), 
so that a natural way of deriving the equilibria of the two-period duopoly 
game we have just described, is through backward induction starting from 
period t = 2. 

The subgame starting at date t = 2 is easy to salve. Firms simply 
play the one-shot Hotelling game with common posterior beliefs 
q E {0,1,q0 }. This symmetric game has a unique Nash (Bayesian) Equilibrium, 
corresponding to the following second-period payoff for both firms< 12 i: 

(3) 
1 

,r(q) = 
2 

1 
---= 
E{0/q) 

1 

2 

1 

q e + (1-q) e 

It follows from (3) that information about 0 is positively valued 
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by both firms ex-ante. To see this, it suffices to compare between firms' 

expectations of second-period profits as of period 1, respectively when the 

true value of 0 is to be learnt between period 1 and period 2 and when it 

isn't. In the first "informed" case, expected second-period profits will be 

equal to: 

In the second "uninformed" case, expected second-period profits will simply 

be 

Since ~(q) is convex in q, we have indeed: V= ~1 - ~u > O· 

We shall refer to V as the value of information. As long as this value is 

positive, both firms will face a fundamental trade-off between maximizing 

short-run expected payoffs (i.e E8 (pA· D(pA 1 p8 ,8)) for firm A) and 

max1m1z1ng the informational content of first-period price strategies (i.e 

Ea (~(q)/q0 ,pA,p8 )). This trade-off would naturally disappear if firms were 

myopie, in which case they would simply choose first-period prices so as to 

maximize short-run eXPected profits. In that case, the 
1
unique 

Nash-equilibrium would be symmetric in prices {with PA= p8 
= ----), 

E{0/q0 ) 

i.e, given (1), totally uninformative about 0. 

This implies that whenever firms are non-myopie, they will be 

willing to sacrifice part of their short-run profits in order to acquire 

valuable information about 0 in period 2. 

The total profits expected by firm A in period 1 are given by 

(4) 

where 6 E [0,1] is the firms' common discount factor. Total expected 

profits for firm B (which we denote by ~8 (pA,p8 )) are similarly defined. 

A first-period price-equilibrium (P:,P;) will be simply defined as 

a Nash-equilibrium of the reduced game G = {~.x ~ •• ~A(.,.), ~8 (.,.)}· 
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II. The "sampling effect" of learning 

In this section we shall completely solve the duopoly game G. In particular we will prove that, whenever 6 7 0, all equilibria of that game involve price-dispersion in period 1. This result is not surprising in the context of the model introduced in Section 1, where the only way for firms to acquire information about 8 is by setting different prices PA 7 Pa· However we shall argue about the generality of this price-dispersion result in the next section. 

The first step is to describe the inference process followed by firms A and Bonce they have observed first-period data (PA,Pa,XA,Xa), so as to derive an expression for expected second-period profits as a function of first-period prices (pA,Pa). Firms' information can be summarized by XA = D(pA,Pa,8) + E, where 8 and Ë are unknown. Two cases must be distinguished: 

(a) either firms do not infer any information about 0 from observing the realization of their sales. This will be the case, in the situation described by figure 2, if and only if: 

(b) otherwise firms will necessarily learn the exact value of parameter 0. 

Insert Figure 2 

The probability, evaluated ex-ante, of firms learning the true value of 0 given first-period prices pA,p
8 , will then simply be equal to: 

i.e, from (1) in section 1 

In particular this probability is zero whenever PA= Pa and it is an increasing linear function of the degree of price-dispersion lpA - Pal in the neighbourhood of any diagonal point (pA,p8 ) = (p,p)· 



.. 
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So is the expected value of second-period profits, which we can 
rewrite as 

E9 (1r(q)/pA,pB) =1Tu +min (1 , ~ lpA -psi)· (1ri-1ru) 

First-period profit maximization would induce firms to set the same 
price PA= p8 ; however, due to the fact that second-period expected 
profits are linearly increasing in lpA - p8 1 around any diagonal point 
PA= p8 , there is a first-order gain for firms to price-disperse. For 
lpA - p8 1 small, such gain dominates the second-order loss, in terms of 
short-run profits, of price-dispersing. We can then estabiish: 

Proposition 1 : 
In the game with learning G, there exist no symmetric equilibrium 

in pure strategies. 

Proof We refer for details to Appendix A, where the best response 
correspondances for firm A and firm B are explicitly derived. In particular 
we show that both correspondances never cross the diagonal : firm A's 

1 
(respectively firm B's) correspondance has a discontinuity at p8 = E(S) 
(respectively at pA = 1/E(8)), illustrated by figure 3. Proposition 1 
follows then immediately. 

Insert Figure 3 p8 = 1/E(8} 

In particular, we can easily compute the equilibria of the learning 
game Gin numerical examples such as the following one, illustrated by 
Figure 4. 

Example 
8 = 

Then we have 
t:JJ = 

4 
3 

2 -
3 

2 
8 = 

3 
1 1 

E = 4 ; qo = 2 

Insert Figure 4 

In this example there are two equilibria in pure strategies 

(pA ,PB) 
1 = (1+ :a· 1- :a) 

(pA,Ps\ = (1- : 8• 1+ : 8) 
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The following pair of price distributions is the unique equilibrium 
in mixed strategies : 

To characterize the equilibria of Gin the general case, turns out 
to be far more complicated. (See Appendix for a detailed analysis.) 

However, one can prove the following: 

Proposition 2 : 
The learning game G has a unique symmetric Nash equilibrium, in 

mixed strategies, with both PA and p8 (first-period prices) distributed on 
the same compact interval. This interval is centered at 1/E{8) [i.e at the 
one-shot Nash equilibrium level] ; and its diameter -which measures the 
average degree of price-dispersion in period 1- is an increasing function 
of the value of information V, and of the discount factor 6, it is 
increasing with E when it is small, decreasing when it is large. 

Proof: see appendix. 

This result is intuitive: the higher the value of information V, 
the more incentives firms have to price-experiment in period 1. Similarly 
the higher 6, the more firms will value future expected profits and the 
more they will be ready to sacrifice in terms of shor"t-run profits in order 

E 
to acquire better information about 8. The effect of t:fJ is more ambiguous. 

E 
The basic intuition is that the higher the ratio t:fJ the more firms will 
have to price-disperse in order to infer the true value of 8. However when 
E 

is too large, information becomes so costly to acquire that firms give 
t:fJ 
up on information acquisition they emphasize short-run profits 
maximisation with a resulting decrease in the equilibrium level of 
price-dispersion. 

III. Robustness of the price-dispersion result 

In this section we analyze the robustness of the price-dispersion 
result stated in Proposition 1. First, we extend our analysis to more 
general demand functions than the one derived in the Hotelling context. In 
particular we consider the case where aggregate demand is both affected by 
the unknown parameter 8 and subject to random perturbations. Second, we 
generalize Proposition 1 to the case of N ~ 2 oligopolistic firms and we 
study the asymptotic behavior of first-period equilibrium prices when N 
tends to infinity.Finally, we briefly discuss what happens when we 
introduce a small asymmetry between the duopolistic firms. 
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(a) More general demand functions 

We first consider the case where two duopolists A and B face the 
following symmetric demands for their products at each period t = 1,2 : 

where 

* 

* 

and 

(pA,p8 ) are the 
current period. 

prices charged by firms 

8 is an unknown parameter which is fixed for 
can take only two values: 8 < 8. Both firms 
same priors about 8, namely: proba (8~) = q0 • 

A and B during the 

the two periods and 
initially share the 

* (e
8

, Ë
8

) is a random shock on demand. The aggregate component E
8 

is interpreted as a shock on total demand and reflects all the 
random influences that affect both firms equally (for example, 
random changes in consumers'income). This component was equal 
to zero in the Hotelling case analysed in the previous 
section. The other component Ê

8 
is interpreted as a shift of market 

share from one firm to the other which leaves total demand 
unchanged. For simplicity we assume that Ê

8 
and E

8 
are 

independantly and uniformly distributed, respectively on [- }, }] 

[ 
- E2-](13) 

and - :. 
2' 

Now, the reasoning is similar to the one developed in the above 
section II : suppose that firms A and B have respectively chosen PA and p

8 

in period 1 and that they observe the volumes of 
of that period. Then, as in the previous 
distinguished. 

(a) either firms do not infer any 
observing XA and X8 • This will be the case 
(xA, X8 ) belongs to the shaded region in Figure 

sales XA and X8 at 
section, two cases 

information about 
if and only if the 

5 below. 

(b) otherwise firms will learn the true value of 0. 

the end 
must be 

0 from 
vector 

The ex-ante probability of firms not learning 0 given first-period 
prices (PA, p8 ) can then be shown to be equal to: 
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(5) 

whenever this expression is positive, where 

Insert Figure 5 

This probability is expressed as the product of two terms : the 
first term is the probability of not learning 8 through observing the 

aggregate component of demand; the second term is the probability of not 
learning 8 through observing the shift component of demand. Now, while the 

first-term can always be reduced through increasing or decreasing the 
PA + Pe ( 14) 

average price level 
2 

, the second term can only be made smaller 

than 1 if firms price-disperse ! In other words, starting from a symmetric 
pair of prices pA= p8 = p which is not fully informative, firms can always 
increase the probability of learning by setting pA~ p8 • Whenever the value 
of information V= ~1 - ~u is strictly positive and the one-shot 

Nash-equilibrium is not fully informative, price-dispersion around this 
one-shot NE will generally involve first-order gains in terms of long-run 
expected profits, which will more than compensate the second-order loss in 
short-run profits. Proposition 1 will then carry over to this general case. 

As it appears, for price dispersion to obtain in equilibrium, two 

conditions must be satisfied 
a) Information is valuable. 
b) Price dispersion increases the amount of information acquired by firms 

about demand. 

Deriving conditions under which the value of information is 

positive turns out to be difficult and lies beyond the scope of this paper 
(see section VII for a discussion on this issue). The second condition is 
purely statistical. In the uniform case analyzed above, firms would either 

learn the exact value of 8 or nothing. In the general case where noises 
é

8
,é

9 
are distributed according to some (non-uniform) joint density 

function µ(€
8

,€
9

) firms may instead acquire partial information about 8 

from observing market data, in which case they both end up with posteriors 
(q,1-q) that might take any value between O and 1. For this general case, 

we want to compare on informativeness basis the quantity signal generated 
by a small amount of dispersion to the one generated when there is no price 
dispersion. In.the present framework an appropriate criterion turns out to 
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1 
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be the following.Let s be a signal of the parameter 9 leading to some 

posterior probability q(s) = prob(~/s) and lets' be another signal leading 

to posterior q(s') = prob(9/s') ; we say that sis more informative than s' 

if for any convex function ~: 

(*) E
8
~(q(s)) ~ E

8
,~(q(s')).<15) 

This condition ensures that any individual decision maker would prefer 

signal s to signal s'. We can then establish: 

Proeosition 3 . Assume that µ is ci, symmetric and quasi-concave in its . 
second argument (;s), then for a fixed level of aggregate demand 
uncertainty (MA + MB) a small amount of price dispersion is more 

informative than no dispersion at all. 

Proof see appendix. 

This 
assumptions. 
symmetry of 
shifts in 
shifts. 

general result is obtained under fairly reasonable 

The symmetry of µ(Ëa,Es) with respect to Ë
8 

reflects the basic 

the model. Quasi-concavity then amounts to assuming that large 

demand from one firm to another are less likely than small 

Remark : With smooth density functions the gain from a small amount of 

price-dispersion becomes of second order. Therefore price-dispersion will 

only obtain when firms' discount factor is sufficiently high. Otherwhise 

firms will not learn the true parameter. 

(b) The N-firms case 

As we already pointed out in the introduction, our explanation of 

price-dispersion as a learning device is complementary to the existing 

"equilibrium" approach developed in search models and other models with 

consumer heterogeneity. An empirical observation that might a priori 

privilege the search approach is the evidence that price-dispersion also 

occurs in markets with a large number of sellers (e.g the markets for 

automobiles). This apparently contradicts what a "n-seller" extension of 

our model would presumably imply : in our model price-dispersion might 

indeed rapidly decrease as the number of sellers becomes large, the reason 

being that the informational effect of a single firm's experimentation 

would become negligible compared to the cost of such experimentation. 

Things are not seemingly so clear-cut. 

Price dispersion in our model is the only way for oligopolistic 

firms to acquire more information about their elasticities of substitution. 

One can think of two polar situations where the number of firms N tends to 

infinity, but where the asymptotic results on price-dispersion are 
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opposite. In one case, the elasticity of substitution between any two 

products tends to zero when N tends to infinity (See Dixit-Stiglitz [1977]). 

It is then likely that price-dispersion would disappear asymptotically. In 

the other case each particular firm keeps on having only a small number of 

close competitors, and moreover the elasticity of substitution between a 

firm and its closest competitors remains significant as N becomes large 

(See Salop [1979]). In that case instead one might expect price-dispersion 

net to disappear asymptotically. We shall now formally discuss this last 

conjecture using the N-firm extension of the Hotelling model introduced by 

Salop [1979], 

We consider the case of N (~2) oligopolistic firms evenly located 

on a circle of total length equal to 1, where consumers are uniformly 

distributed. 

The game lasts for two-periods, according to the same timing as in 

Section 1 above : before the game starts, all firms ignore the true value 

of the transportation cost 1/8, which they may still learn through 

price-experimenting in period 1. At each period, each firm n (1 ~ n ~ N) 

faces a demand for its product given by 

where Dn is the deterministic part of n's demand, which depends on 

current prices and on the unknown parameter 8 <16 >; and Ën is an 

idio-syncratic shock which is uniformly distributed on the interval 

- - (17) -

[- E/2N, + E/2N] • Given that the r.v En are independantly distributed, 

we have, by the law of large numbers: 

N 
L Ën -+ 0 when N -+ + oo• 

n=l 

In other words, the situation becomes asymptotically similar to the one 

described in Section 1 in the sense that the total noise on demand is 

randomly distributed between the N oligopolistic firms in such a way that 

aggregate demand remains deterministic. 

We assume that in any period T = 1,2 each firm n observes the whole 

vector of current prices (p1 , ••• , pN) plus its own volume of sales Xn. 

Under such informational assumption we characterize (see Appendix B), for 

each N, the second-period equilibrium payoffs as a function of first-period 

prices and of the observation by each firm of its first-period sales Xn. 

The next step is then to derive the first-period price equilibrium. 

In Appendix B we establish the following result 
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Proposition 4 : 
For all N ~ 2, the learning game with N-firms has a symmetric mixed strategy equilibrium with all first-period prices pn(l ~ n ~ N) distributed on an interval 

[ 1/N (1/E(8) - K(N)) , 1/N (1/E(8) + K(N))] 

where K(N) > O. 
Furthermore the sequence K(N) remains bounded away from zero when N-+ + oo. 

In words, price-dispersion does not vanish relatively to the average price level as N goes to infinity. Obviously, in absolute terms, all equilibrium prices converge to the marginal cost zero when N-+ + oo, the N-firms Hotelling model being asymptotically competitive. However, if we put this "competition effect" aside, our price-dispersion result established in the previous section is robust to introducing a large number of firms. 

The asymptotic result stated in Proposition 3, can be explained by the fact that each firm directly competes only with its two neighbours, so that the informational effect of each firm's experimentation remains relatively non-negligible; however the size of the market served by one firm and its two neighbours decreases at the rate 1/N~ 

(c) Asymmetric duopoly 

So far we have assumed that demand was symmetric among firms. This allowed us to exhibit price-dispersion as an unambiguous equilibrium phenomenon. The logic of the argument extends to the case of a small asymmetry between firms by continuity of the equilibrium correspondance. Namely, if the intrinsic asymmetry between firms is small, price-experimentation will induce them to price disperse to a larger extent than one would expect from asymmetric firms maximizing short-run profits. The following continuity argument is fairly general and applies to bath demand and cost asymmetries. Let us for example consider the same Hotelling duopoly game but allow for differÎn! fransportation cost for each firm. The unit cost of going to firm Ais 
8 

while the unit cost of going to firm 
B 

of 
is 

1 + À 

8 
the one 

where À is known. Then we can easily construct the equilibria 
shot game when firms have posterior q, the equilibrium expected profits are 

1 
[1 + iJ2 2 E(8/q) for firm A 

1 
[1 - iJ2 2 E(8/q) for firm B 

Let V = ½ { E(¼) E(~ )}' 
the value of information in this new game is 
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VÀ [1 Àr = V +- for firm A A 3 

V~= V [1 - ir · for firm B 

It follows that the expected payoffs in the two period game in 
terms of first period prices writes as 

[
l+À 

~ [pA,pB] = PA 2 + E(8} PA~ Pol+ 6V (1 + iJ2 min {1, tBlp;~ Po'} 

+ 6 ,ru (1 + ir 
~ [p.,p0 ] = p0 [

1;À + E(8) PA~Pol + 6V (1 -ir min {1, tBlp;~Po'} 

We can now consider the game as a one shot game with complete 
information and payoffs ~.~-But~ and~ are uniformly continuous with 
À. It follows that the equilibrium correspondance is upper-semi-continuous 
with À at À= O. Therefore for À small enough, any equilibrium must be 
close to an equilibrium of À= O. It must then exhibit a finite 
(zero-order} degree of price dispersion, while the one-shot (myopie) 
equilibrium exhibits only a first order degree of price dispersion. 

IV. The Dynamics of price-dispersion 

In this section we analyze the dynamic evolution of 
price-dispersion in the context of a T-period extension (T ~ 2) of the 
Hotelling game described in Section 1. We concentrate our attention on the 
unique equilibrium path, where, at any date TE {1, •.. , T-1}, the 
duopolists play the (unique} symmetric Nash Equilibrium in the subgame with 
learning starting at T< 18 l. The existence and uniqueness of such 
equilibrium is guaranted by the following Proposition, which extends the 
above Proposition 2 to the T-period case: 

Proposition 5 : 
For any T < T, let t = T - T and Gt denote the t+l-period subgame 

with learning, starting at date T. Then, Gt has a unique symmetric 
Nash< 19 l equilibrium, but in mixed strategies, with bath Pl and p; (prices 
played at date T by A and B} distributed on an interval centered at 
1/E(8}. The diameter of this interval is an increasing function of the 
value of information at date T + 1. 

Proof see appendix. 

In particular, as in the two-period case, the average degree of 
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measured at each date T < T by the expected 
IP! - p;I, will be proportionna! to the value of 

since we shall reason by backward induction 
denote the value of information at date T by Vt, 

remaining number of periods to be played. More 

price-dispersion dT, 
equilibrium value of 
information at date T 

starting at date T, we 
where t = T - T is the 
precisely 

(1) 

where 

V - ,rt - ,rt 
t - i u 

(a) 1r~ is the expected discounted value of each firm's profits when 
t+l periods remain to be played and firms are uninformed about 0 at the 
beginning of period T = T-t. Equivalently, ,rt is the average equilibrium u 
payoff for each firm in the subgame Gt. 

(b) 1rf is the expected discounted value of each firm's profits when 
t+l periods remain to be played and 0 is to be learned by firms at the 
beginning of date T. We simply have : 

1 1r1 = 2 E ( 1 /0) · ( 1 + 6 + ··· + 6 t ) 

In particular we know from Section 1 that: 

1 
,r> = --

u 2E(0) 
and 

1 
~ = 2 E(l/0) with a corresponding value of information 

at date T equal to: 

(2) 
1 

V0 = 
2 

(E(l/0) - 1/E{0}} 

It follows from the above Proposition 4 that the dynamic evolution 
of price-dispersion will primarily depend on the evolution of Vt which in 
turn is governed by the following lemma 

Lemma 1 

Proof 

~t E {1, ... ,T} , we have 

(*) vt = Vo + f(Vt-1> 
where the function f satisfies the following properties 
(a) f(V) ~ 0 for all V~ 0 
(b} fis concave in V 
(c) fis increasing in V 
(d) f{V)/V tends to O when V tends to + 00. (Figure 6). 

see appendix. 

Insert Figure 6 

We can now characterize the evolution of price-dispersion over time 



. 
I" ·V 
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Proposition 6: 
The sequence Vt is increasing in t, i.e the average degree of 

price-dispersion dT decreases over time T. In the last period, dT O. 

In other words, bath firms start experimenting right away at date 
T = 0, and then, progressively reduce the amount of experimentation 
(measured by dT) as the number of remaining periods over which information 
about 8 can be profitably used, decreases. Obviously, as soon as firms 
happen to learn the exact value of 8 they stop experimenting and play the 
symmetric "informed" Nash equilibrium pA =Pa= 1/8. The probability of 
firms still being uninformed about 8 decreases with T, i.e with the number 
of previous experiments. This, together with Proposition 4, implies that 
the expected amount of price-dispersion will decrease over time [until it 
becomes zero in the last period T = T where bath firms play the myopie 
equilibrium pA= Pa= 1/E(8) if they are still uninformed about 8]. The same 
monotonie evolution of price-dispersion will obtain asymptotically when 
T -+ + oo ( see our remark below) . 

This 
mentionned 
phenomenon 
about the 

dynamics of price-dispersion reflects the fact, already 
in Section 2, that price-experimentation is a disequilibrium 
which tends to vanish over time as firms become better informed 
relevant parameters of demand (or costs). According to our 

approach, price-dispersion cannot be a persistent phenomenon unless the 
economic environment (technologies, tastes) incessantly evolves. 

Proof of Proposition 6: 
From Lemma l(a), we have: f(V0 ) > O. 
Therefore: V1 = V0 + f(V0 ) > V0 • 

Now, assume that for some t, we have Vt-i > Vt_2 • 

Then, from (*) and (c) in Lemma 1 

This establishes Proposition 6 by induction. 
D 

Remark : Note that (b) and (d) in Lemma 1 imply that the whole sequence 
Vt is bounded above by the stationnary point 

V= V0 + f(V). (See Figure 2). 

This implies that when T-+ + oo, the value of information VT at a 
given date T converges to V, and similarly the degree of price-dispersion 
dT converges to some â. The dynamic evolution of price-dispersion is then 
still well defined ; the expected amount of price-dispersion decreases to 
zero as T goes to infinity, but price-dispersion remain constant as long as 
firms are uninformed. 
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V Coordination and the advantage of a myopie behavior 

Information in this model is clearly a public good. As for any 

public good, firms may have the incentive to free-ride on its production.( 20 l 

To illustrate this effect we will now briefly discuss the possibility for 

one firm to behave myopically. 

Contrary to the monopoly case, the myopie duopoly firm turns out to 

do better than a bayesian firm in terms of its expected equilibrium payoff. 

Indeed being myopie amounts to a precommitment net to experiment, which in 

turn induces the other firm to bear all experimentation costs. 

More surprisingly, the bayesian firm does not loose from being 

free-rided. The point is that two bayesian firms face a coordination 

problem as to the optimal choice of their first-period prices.< 21 > Namely, 

each firm seeks to move its price away firm its competitor's price, knowing 

that the competitor follows a similar strategy, Now this coordination 

problem will be overcome if only one firm experiments at a time. This in 

turn will benefit the entire industry. 
In our framework the coordination improvement brought about by the 

myopie firm will compensate the bayesian firm for its increased 

experimentation cost. 

Formally, in the context of the two-period Hotelling model 

introduced in section II, we allow firm A to behave myopically. We shall 

denote by ~(m,b) the equilibrium payoff of firm A when it behaves 

myopically and B behaves non-myopically, and by ~(b,m) the equilibrium 

payoff of firm B. We also denote by ~(b,b} the equilibrium payoff of each 

firm when bath of them are non-myopie. 

For simplicity we shall restrict our analysis to the case where 

(1) 

where V0 is the value 
t:i;) 

positive, and 4' = -
E 

bath firms. 

2 E(8) 
Vo < 64' 

of information which we shall again assume to be 

measures the degree of demand uncertainty faced by 

In appendix A, we show that 
holds, the unique symmetric equilibrium 
firms experiment, involves first-period 

whenever the above inequality (1) 
of the duopoly game where both 

prices Pl and Pii being both 

uniformly distributed on the 
in[terval :( 64' Vo) 

1/E(8) 1 -
2 

, 1/E(8) 



20 

(Second period equilibrium prices are both either equal to 1/9 if firms 
have learned 9 in period 1, or to 1/E{9) if they haven't.) 

The corresponding expected payoff for each firm is then given by 

(2) 1r(b,b) = 
1 

{l+o). 2E( 
&2 'l'2v~ 

+---
8E{9} 

Now suppose that firm A behaves myopically. 

Figure 7 depicts the reaction functions R~(p8 ) and R~(pA) obtained 
in that case: 

Insert Figure 7 

The unique Nash equilibrium of the game defined by R~ and R~ 
involves first-period prices PA and p8 given by 

ana 

1 
PA= E(S) (one-shot Nash equilibrium level) 

( + 
6iv

2

V0 ) 
1/E{9) 1 with probability 1/2 

Pa= 

( -
6iv

2

V0 ) 
1/E(9) 1 with probability 1/2 

The myopie firm A's equilibrium payoff is then equal to 

1T (m,b) 
1 61I' vo 

( 1 Ps - E (~ ) 1) = (l+o}. + E 
2E(9) 2 

1 
&2q,2y2 

(4) 1T {m,b) = (l+o)· 
0 

i.e + 
2E(9) 4E{9} 

We immediately see (comparing (2) and (4)) that: 1r (m,b) > 1T (b,b). 
In words, given that its competitor is already committed to a non-myopie 
behavior, it is strictly profitable for firm A to behave as a myopie firm. 
The reason is that by letting firm B experiment alone, firm A saves on 
experimentation costs. All experimentation costs are incurred by firm B 
whose payoff 1T (b,m} is equal to 

(5) 
E(9) 

,r (b,m) = 1T (m,b) - -
2

- var p8 

1 
= (l+o) 2E( 

&2q,2y~ 61VV~ 1 
+ -4-E(_9_} - -8E_(_9_) = (!+&) 2E(9) + 



fa 
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We therefore obtain: ~(b,m) = ~(b,b) ! Firm B does not loose when 
firm A acts myopically. <22 > The reason is that although firm B's 
experimentation cost increases when firm Ais myopie, this extra cost is 
compensated by an increase in firm B's expected informational gain: this 
gain, proportionna! to the average degree of price-dispersion, is indeed 
reduced when both firms experiment simultaneously, due to the lack of 
coordination between their first-period mixed pricing strategies< 2 3>. Such 
coordination problem is automatically overcome if only one firm 
experiments. 

VI. Welfare analysis 

In this section we analyse the welfare implications of duopolists 
experimenting through prices. As a benchmark we consider the case where the 
transportation cost (1/8) is publicly announced by a social planner at 
date 1. We then compare the total .aggregate welfare, the total expected 
value of profits, and the total consumers'welfare obtained in that case 
with the corresponding values in the context of our basic two-period model 
where firms experiment in order to acquire information about 8. 

at the 
p = 1/8 

So, let us first 
beginning of the 
in both periods 

at date O before the 
by: 

assume that the true value 8 is publicly announced 
game. The unique PBE is then for both firms to set 
1 and 2. The expected aggregate profits, evaluated 

announcement of 8 by the social planner, are given 

(1) ni= 2 ~i = (1 + 6) E (1/8)< 24 > 

The aggregate consumers' welfare is then obtained by substracting 
to the total discounted reservation value R(l + 6) (= foR(l + 6) ax), first 
the expected aggregate transfer from consumers to firms 
(i.e (1 + 6) E(l/8) = ni) and second the expected discounted sum of 
transportation costs incurred by all consumers : wnen pA= p8 = 1/8, all 
consumers x E [0,1/2) purchase from firm A and the remaining consumers 
purchase from firm B ; by symmetry, the total transportation cost per 

Jl/2 1 1 
period is equal to: 2· 

0 8 · x dx = 48 . Hence the expected discounted 
sum of transportation costs over the two periods is given by: 

(2) 
1 

= 4 (1 + 6) .E(l/8) 

Overall, the expected consumers' welfare when the true value of 8 
is to be publicly announced at date 1 is given by: 

(3) 
1 w1 = R (1 + 6) - n1 - 4 (1 + &} E (1/8) 
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We now corne back to our basic model (introduced in Section 1), 
where for simplicity we shall assume that 

(4) 
2.E(8) Vo < ---

6011' 

where V0 is the value of information and 11' = 
€ 

We know from the previous section (see Appendix for the formal 
proof) that whenever (4) is satisfied, the unique symmetric equilibrium of 
the game G involves first-period prices pt and p~ being both uniformly 

distributed on the same interval [1/E(8} (1 - : Vo), 1/E(8} (1 + 
6 

: Vo)]. 
The corresponding aggregate profits in the duopolistic industry are then 
expressed by: 

(5) 1\ = 2 1f u 

1 6211'2v~ 
= (l + 6 ) E(9) - 12 E(9) 

6211'2v~ 
+---

3 E(9} 

The first term corresponds to the aggregate profits that would be 
realized by the industry if both firms were myopie. These profits are 
obviously made at the expense of consumers. The second term represents the 
total experimentation cost incurred by both firms. The third term is the 
total expected gain from experimentation. These last two terms correspond 
respectively to a positive and a negative transfer to consumers : on the 
one hand, consumers benefit from price-experimentation since with positive 
probability they 

1 
face a first period price below the one-shot 

Nash-equilibrium E(S} ; on the other hand, price-experimentation increases 
the probability of firms becoming informed about 8 which in turn increases 
the expected consumer price in period 2. 

We can now express the aggregate consumers' welfare when firms need 
to price-experiment in order to learn 9 ; we have: 

(6) Wu = R ( 1 + 6} - J\ - Eu (T) 

where Eu(T) is the expected discounted sum of transportation costs incurred 
by all consumers over the two periods of the game. Using the assumption 
that consumers know the true value of 9 in period 1, we have 

where 



T ( p A , Pa , 8 ) = 

Pa- PA 
1/2+--- 8 

2 

0 

23 

X 
-·dx + 
8 

Pa- PA 
1/2+--- 8 

2 

(1-x) 
---·dx 

8 

Using the fact that in equilibrium P! = p~ and that P!, Pii are both 
uniformly distributed on the interval 

(7) 
1 

Eu(T) = 4 (1 + &) E (1/8) 
6 2 '1'2 V~ 

+ --,---
24 E(8) 

Comparing with (2), we 

additional welfare loss (equal 

transportation costs on average. 

see that price-experimentation induces an 

62 '1'2 v2J 
to 24 E(a t for consumers who bear higher 

We can now compare between the aggregate consumers' welfare, 
respectively when 8 is to be publicly announced by the social planner in 
period 1 and when firms have to experiment: 

(8) 
6 '1'2 V~ 

= (Ili - J\) - ---
24 E(8) 

[ 62 
'1'2 V~] 

= (1+6)Vo - 8 E(8) 
6 '1'2 v2 

0 

24 E(8) 

This difference is always positive when condition (4) holds. 

The first term (in brackets) corresponds to the positive 
"price-effect" of firms not being publicly informed in period 1 : consumers 
will then pay lower prices on average. The second term corresponds to the 
negative "transportation cost effect" : due to firms'price-experimentation, 
consumers will on average incur higher transportation costs. Overall, the 
first effect will dominate, i.e the consumers will gain from firms not 
being publicly informed about 8 at date 1. At the opposite, firms will 
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benefit from being initially informed about 8 (IT1 > ~) : they will then 
charge higher prices on average and also save on experimentation costs. 

Finally, a public announcement oÏ 8 in period 1 will increase total 
62 1lJ2 V~ 

welfare (W + IT) by the amount 
24 

E(e) which is nothing but the additional 
transportation cost consumers woula incur if firms had to experiment. Note 
that this gain in total welfare would disappear if firms were myopie : in 
that case, a public announcement of 8 would simply amount to a positive 
transfer from consumers to firms, leaving the sum W + IT unchanged. 

VII. Concluding conunents 

1. The adverse effects of competition on the incentive to learn 

Our analysis so far relied on the value of information being 
positive. However, the strategic interaction (i.e. price competition) 
between the duopoly firms raises also the possibility that more information 
about demand be detrimental to both firms. Such possibility did not exist 
in the previous sections where, due to a high consumers' reservation value 
R, the average degree of market competition was not affected by firms' 
information acquisition.< 2 5- 2 6> 

Now, we can easily construct an example where competition becomes 
tougher (on average) as a result of the transportation cost 1/8 being 
learned by firms A and B. It suffices to choose the reservation value R in 
the middle range where firms actas local monopolies if 8 is known to be 8 
and share the whole market if 8 is known to be ë. 

Consider the fo1lowing example 

qo = 2 ; ~ = 1 ; 8 = 3; RE (3/4,1). 
1 

If firms are uninformed, the equilibrium price is 2 with equilibrium 
1 

profits ~ = 4. If 

in equilibrium and 

firms know that 8 = ë, then they serve the whole market 

_fl - 1 
obtain profits -rri(e) = 6. But if firms know that 8 = ~. 

R 
they actas local monopolists and charge PA= p8 = 2 with corresponding 

R2 
profits 11(~) = 4 . The value of information in the last period of the game 
is then negative: 

V O = E 11 (8) - ~ = 

One implication of the value of information V0 being negative is 
the multiplicity of symmetric equilibria, which in turn guarantees the 
existence of collusive symmetric PBE à La Benoit-Krishna. Such equilibria 
may be criticized on the basis of renegotiation-proofness arguments. In 
appendix D, we concentrate on a particular type of renegotiation-proof 
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equilibrium na.mely, the Pareto-dominant Markov Perfect Bayesian 
Equilibrium (MPBE)< 27 >, where pricing strategies at date T only depend on 
the information available at that date, with the self-enforcing threat for 
a deviating firm to learn the detrimental information 0. 

It is shown in appendix D that in a T-period ga.me the 
Pareto-dominant MPBE is symmetric with both firm setting a sa.me price pT at 
each date T, Moreover the equilibrium sequence of prices verifies 

1 
pT > pT+l > ••• > pT = E(

0
) . Intuitively, the more periods remain to be 

played, the more costly it becomes for each firm to deviate from the 
diagonal PA= Pa and thereby reveal the detrimental information about 0 ; 
therefore the easier it becomes for both firms to "collude" on higher 
prices. As it appears, when the value of information is negative, the 
possibility of experimentation leads to an equilibrium outcome similar to 
collusion although not based on any threat of retaliation from one player 
to another. 

2. On the dynamic evolution of the value of information 

Our dyna.mic results on the value of information (which we showed to 
be monotonically decreasing when V0 > 0 and monotonically increasing when 
V0 < O) relied heavily on having selected one particular type of 
equilibrium. For exa.mple in the T-period ga.me with V0 > 0 (Section IV 
above) we disregarded the asymmetric eguilibria. However such equilibria 
might be quite useful as potential threats in order to sustain collusive 
outcomes, in the spirit of Benoit-Krishna (1985) : the idea is to punish 
any deviating firm in period 1 by playing the worst asymmetric equilibrium 
for that firm in period 2. [Such threat is credible since the worst 
asymmetric equilibrium for one firm (say A} is also the best asymmetric 
equilibrium for the other firm B]. To the extent that a collusive strategy 
PA= Pa= pc could be sustained in equilibrium at the early stages of the 
game, the value of information at date T = 1 might well be negative equal 
to ( 1r1 - ,rC) , [ where 1r1 is the informed equilibrium payoff E ( 1/0) ( 1-+o+ · · · ) 

and ,rC is the collusive payoff] even though the value of information ends 
up being positive equal to V0 > 0 at date T = T-1. In appendix D we 
construct an exa.mple of a 3-period Hotelling game where the value of 
information V2 at the beginning of the game is negative even though 
V1 and V0 are positive. One might then reproduce the analysis developed 
above and show the existence of a "collusive-type" equilibrium where the 
average price level starts decreasing up to T = T-2 and then increases. 

The reverse phenomenon when V0 < 0 may also occur. 
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3. Value of information and Price discrimination< 28 > 

As we shall now argue, analyzing the value of price-discrimination 
in oligopoly games is formally equivalent to analyzing the value of 
information along the lines followed throughout this paper. 

Consider first the one-period duopoly game with incomplete information 
defined by the demand curves: DA= D {pA, p8 , 8) for firm A 

D8 = D {p8 , PA, 8) for firm B, 
where 8 E <~• e} and q = pr {~) is the prior probability distribution on 0. 

If firms remain uninformed about 8, they will play the duopoly game 
with payoff function: PA(q D{pA, p8 , ~) + {1-q) D(pA, p8 , e)) for firm A, 
and symmetrically for firm B. Let ~u denote the {unique} equilibrium payoff 
of that "uninformed" game. 

Now suppose that firms receive a signal s of the unknown parameter 
0, with q{s) = proba {~ls) ; we denote by H{s) the c.d.f. of s. 

Firms will then play the duopoly game G{s) with payoff function 

PA ( q { s) D {PA , p8 , ~) + { 1 - q { s) ) D (PA , p8 , 8)) for firm A 

and symmetrically for firm B. If ~{s) denotes the equilibrium payoff of 
that game, the ex-ante value of informations is simply given by: 

J ~{s) dH{s) - ~u = V{s) 

Consider now the game with complete information where a fraction q 
of consumers have demand D {pA, p8 , ~) and a fraction {1 - q) have demand 
D {pA, p8 , ~) for firm A's product. {Symmetrically for firm B's product). 
If firms are not allowed to price-discriminate, their payoff functions will 
look identical to the uninformed case described above. Suppose now that 
firms are allowed to price-discriminate on the basis of some signal s such 
that: 

• among the set of consumers with signal s, a fraction q{s) is 
of type~. 

•sis distributed according the c.d.f. H(s) within the entire 
population. 

The value of price-discrimination will thus be equal to 

J ~{s) dH{s) - ~ = V{s) u 
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More generally, price-discrimination will be profitable precisely 
in those situations where, having reinterpreted the duopoly modelas one 
with incomplete information about 0, the value of information is positive, 
so that non-myopie firms would price-experiment in equilibrium. 

Now, as the previous comment suggests, evaluating whether the value 
of information will be positive or negative in a general context turns out 
to be a difficult task which goes beyond the scope of this paper. 
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FOOTNOTES 

(1) M. Rothschild (1973) "Models of market organization with imperfect 
information: a survey", Journal of Political Economy, 81, pp 1283-1308. 

(2) Significant progress has been made toward a "satisfactory" theory of 
price adjustment by a monopoly, based on price experimentation (See 
Rothschild (1974), Mc Lennan (1984), Easley-Kiefer (1988) and Aghion, 
Bolton, Harris, Jullien (1990)). 

(3) Another weakness of this approach 
settings, the set of Nash-equilibria 
super-game is typically very large. 

is 
in 

that in infinite 
the appropriately 

horizon 
defined 

(4) In an analysis of the 1981. Vancouver gasoline market, M. Slade 
(1986,1989) established that following a major change in US-Canadian 
gasoline relative price, the market displayed a large degree of 
price-volatility and price-dispersion for about one year before stabilizing 
to a situation without dispersion. Our analysis provides a convincing 
explanation for this phenomenon. 

(5) Other explanations of price-dispersion have been developed, which all 
view price-dispersion as 
explanations are based 

a long-run equilibrium phenomenon. Most of these 
on the existence of search costs. A noticeable 

difference between the search models and the one developed in this paper is 
that the former do not exclude the existence of a symmetric equilibrium 
where all firms set the same price (See Salop-Stiglitz (1977), Burdett and 
Judd (1983), Butters (1977) ... ). By contrast, our approach excludes the 
existence of a symmetric equilibrium and therefore can predict price 
dispersion without any ambiguity. Furthermore, the alternative theories of 
price-dispersion rely either on ex-ante asymmetries among consumers (for 
example, on heterogeneous search costs as in Salop-Stiglitz (1977), on 
different propensities to search as in Wild and Schwartz (1975), or on an 
unequal access to price ads as in Butters (1977)) ; or they do rely, as in 
Reinganum (1979), upon assuming a heterogeneous marginal cost structure 
across firms. Our approach, instead, does not rely on any asymmetry 
(ex-ante or ex-post) on the consumers'side or on the firms'side. 

(6) This free rider aspect has been emphasized by R. Rob (1988) in a 
sequential model of entry. 

(7) See Aumann and Maschler (1967) and Ponssard (1979) who bath emphasize 
the possibility of a negative social value of information in games. 

(8) We should not a priori exclude the possibility for consumers to 
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communicate the true value of 8 to the firms from which they purchase. 
This, however, cannot be incentive-compatible if the mill-price set by each 
firm is independant of consumers'announcements, as we assume throughout 
this paper. 

(9) The assumption 8 ~ 2 8 is made for the purpose of simplification, see 

footnote (5). 

(10) In Section 3 below we shall extend our analysis to the general case 
where aggregate demand is also random. 

(11) In this Hotelling duopoly mode! where aggregate demand is fixed, it 

is equivalent to assume that both firms observe both XA and Xa· However our 
main result will be extended to the N-firms case where each oligopolist 
only observes its own volume of sales xi. 

(12) This claim is not straightforward because a firm can ignore the 
possibility that 8 = ë and try to make profits only when 8 = ~ by charging 
a high price. The best response curve of Ais 

if Pa > inf J~. ¼- ~} 
~- 8 

otherwise 

which reduces to PA=½~(~)+ Pa) if 8 ~ 2 8. If: is very large, there 

exist no pure strategy symmetric equilibrium. 
We thank one referee for pointing this out. 

(13) See below for a generalization to the 
distributed according to a joint density function µ 

case where (Ê a , Ê 
5

) are 

(Êa, Ê5 ) • 

(14) learning 
pA+ Pa 

considerations actually tend to move the average price level --- in 
2 

first-period equilibrium away from the one-shot Nash level and in the 

In Aghion-Espinoza-Jullien (1988) we show that 

direction in which the distance between the two aggregate demand functions 
D (p, p, ~) and D (p, p, ë) increases. 

(15) Assume that for any posterior q, the second period game has a unique 
symmetric equilibrium with equilibrium payoff ~(q) for both firms. Then one 
can easily show that in order for any information about 8 to have a 
positive value it is neccessary and sufficient that ~ be convex. Under such 



property, the 
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criterion (*} garantees that a small amount of 
increases expected second-period payoffs compared to no 

1 (P n -1 + Pn +1 _ ) 
(16) More precisely, Dn(p1 ,.,., PN, 8) = N + 8 l- 2 Pn · 

-(17} Had the size of the noise E been kept independant of N(e.g equal to E 

instead of Ë/N}, the deterministic part of each firm's demand would become 
proportionally negligible as N-+ oo, i.e the demand faced by each firm 
would become entirely random asymptotically. Then, ·not surprisingly, 
price-dispersion would bring no information as N-+ oo, However such 
conclusion seems rather uninteresting and in particular it does not answer 
the above conjecture. 

(18} If duopolists know 8 at the beginning of period T, they obviously play 
the unique "informed" equilibrium P!= p;= 1/8. 

(19) This proposition implies that all continuation subgames of GT(even 
those which are off-the-equilibrium-path} have a unique symmetric Nash 
equilibrium. However, these games also have asymmetric equilibria (in pure 
strategies}, the multiplicity of which raises the issues of coordination or 
collusion between the two experimenting firms. We refer to the concluding 
section for a discussion of these issues. 

(20) A similar free-rider situation has been analyzed by R. Rob [1988] : he 
considers a sequential model of entry into a new industry whose total 
demand is unknown initially. Information about the size of that demand is 
revealed over time as new firms enter the market. Early entrants exert a 
positive informational externality on late entrants so that each potential 
entrant has an incentive to delay entry. This results in a sub-optimal rate 
of entry. 

(21) Indeed, when both firms experiment simultaneously, the unique 
symmetric Nash equilibrium involves both firms setting first-period prices 
which are almost equal (and therefore uninformative} with positive 
probability. The probability of such lack of coordination becomes zero if 
only one firm experiments. Another aspect of this coordination problem is 
the existence of three equilibria (including two asymmetric equilibria) 
when both firms experiment, and only one when one firm experiments. A 
similar coordination problem has been printed out in a non-bayesian context 
by Kirman (1986). 

(22) One may imagine a preliminary game where firms choose whether to 
behave myopically or non-myopically. This game would have two asymmetric 
pure strategy equilibria where one of the firm chooses to behave myopically 
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fld one mixed strategy equilibrium where each firm chooses with probability 

2 to behave myopically. 

6211'2v~ 
(23) From 6 E(e 
experiments. ~e 

s211'2v2 
0 

case is: 24 E(e) 

6211'2v~ 
when bath firms experiment, to ---4 E(8) 
experimentation cost incurred by each 

when only one firm 
firm in the former 

(24) There are two firms, each of them with the same expected payoff in 
equilibrium. 

(25) More precisely, the aggregate demand remained constant at XA+ X8 = 1 

PA+ PB 
and so did the average price level --- _ 1/E{8). 

2 

(26) The reader is referred to Section VII.2 for an example where the value 
of information is negative in a three-period version of the Hotelling game, 
even though the reservation value Ris high. 

(27) We thank an anonymous referee for painting out that some theoretical 
difficulties with the concept of MPBE still remain unsolved. These 
difficulties appear mainly in situations where agents are indifferent 
between two continuation equilibria at some point in the course of the 
game. Such non-generic situations do not occur in our model. On the other 
hand,our conclusion about the existence of high priced collusive equilibria 
would only be reinforced if we considered all PBE and then combine the 
threat of learning 8 with the threat of playing a low .payoff uninformative 
equilibrium. The latter threat relies on the multiplicity of symmetric PBE 
that arises when the value of information v0 is negative. 

(28) We thank an anonymous referee for suggesting this comment. 



32 

REFERENCES 

Aghion, P., Bolton, P., Harris, C. and B. Jullien (1990), "Optimal Learning 
by Experimentation, 11 Mimeo Nuffield College. 

Aumann, R. and M. Maschler (1967), "Repeated 
Information : A Survey of Recent Results," 
Contrai and Disarmament Agency, Washington, DC. 

Games with Incomplete 
Report of the U.S. Arms 

Burdett, K. and. Judd {1983), "Equilibrium Price-Dispersion," Econometrica 
51, n· 4, 955-969. 

Butters G. (1977), "Equilibrium Distributions of Sales and Advertising 
Prices," Review of Economie Studies, XLIV, 465-491. 

Grawford, V.P. and H. Haller {1990), "Learning How to Cooperate: Optimal 
Play in Repeated Coordination Games", forthcoming, Econometrica. 

Cyert, R. and M. DeGroot, "Interim Learning and the Kinked Demand Curve," 
Journal of Economie Theory, III (1971), 272-287, 

Easley, D. and N. Kiefer (1988), "Controlling a Stochastic Process with 
Unknown Parameters", Econometrica 56, n° 5, pp. 1045-1064. 

Kirman, A. (1985), "On Mistaken Beliefs and Resultant Equiliria", in 
Individuai forecasting and aggegrate outcomes, edited by Frydman R. 
and E. Phelps, pp 147-168. Cambridge University Press. 

McLennan, A. (1984), "Price Dispersion and Incomplete Learning in the Long 
Run," Journal of Economie Dynamics and Contrai 7, 331-347. 

Ponssard, J.P., "The Strategic Role of Information on Demand Function in an 
Oligopolistic Market," Management Science, XXV (1979), 243-250, 

Reinganum, J., "A Simple Madel of Equilibrium Price Dispersion," Journal of 
Politicai Economy, XXCVII (1979), 851-858. 

Riordan, M., "Imperfect Information and Dynamic conjectural Variations," 
Rand Journal of Economies, XVI (1985), 41-50. 

Salop, S. and J. Stiglitz, 
Monopolistically Competitive 
Studies, XXIV {1977), 493-510. 

"Bargains and Ripoffs A Mode! of 
Price Dispersion," Review of Economie 

Rothschild, M. {1973), "Models of Market Organization with Imperfect 



33 

Information. A Survey," Journal of Political Economy, 81, 1283-1308. 

Rothschild, M. (1974), "A Two-Armed Bandit Theory of Market Pricing", 
Journal of Economie Theory, 9, 185-202. 

Slade, M.E. (1986), "Conjectures, Firm Characteristics, and Market 
Structure An Empirical Assessment," International Journal of 
Industrial Organization, 4, 347-369. 

Slade, M.E. (1989), tl Learning Through Price Wars An exercise in 
Uncovering Supergame Strategies", 
Columbia. 

Mimeo, University of British 

Wilde, L. and A. Schwartz, "Equilibrium Comparison Shopping," Review of 
Economie Studies, (1979), 543-553. 



34 

Appendix A (Section II}. 

A.1 Reaction correspondance of firm A. 

. E(8) (_1 
Profits are -

2
- PAlE{ë'f + Pa 

DB 
where \JI= - • e 

Define PA (Pa) = ~(p + 2 a E(~)) 

p~ (Pa) = PA (Pa) -
oV\Jf 

2E(8) 

p~ • (pa) 
_ 6V\Jf 

= pA(Pa) + 2E(8) 

The best response is : 

if it is fully informative, 
4 ~-. 
\JI 

1 
Otherwhise A plays when Pa> E(e)· 

if lp* - p 1 < ~ 
A a \JI 

1 6V\Jf 
or Pa~ E(8) - 2E(8) 

2 
Pa - if not. 

\JI 
1 

and A plays when Pa< E(e) 

therefore if IPA - Pal 

4 
+ -

2 
~ - or 

\JI 

2 
1 P ~ • - Pa 1 < \JI 

1 
or Pa~ -- + 

E(8) 

6V\Jf 

2E(8) 

4 
\JI 

At 

Pa + 

if not. 

1 
Pa = ' 

A is indifferent between 
2 

E(8) 
2 

\JI' Pa - - otherwhise. 
\JI 

A.2 Proof of proposition 2 

To simplify notations let us define 

À = 
6V 

E(8) 
' .,. = ,x 

1 
= PA - E(8) 

• and Pt PA 
4 oV\Jf 

if - > --- and 
\JI 2E (8) 

1 
' y = Pa - E(8). 
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With these notations the payoff of firm Ais given by 

1T ( X y) = 1 + !..2 + 61Tu + E ( e ) {- x22 + x. !..2 + À min {1 ' 1 X ~ y 1 }} 
A ' 2E(8) 

Let us consider a symmetric equilibrium where x and y have cumulative 
F, then: 

Lemma A.1 : Fis continuous. 

Proof : Let 1r(x) = J 1rA(x,y} dF(y). Then a necessary condition for F to be 
an equilibrium distribution is that for all x in the support of F: 
1r~(x) ~ 0 ~ 1r:(x). This writes as 
À 
- {2F (x) - F (x-T) - F (x+T)} ~ x 
T + + + 

But then pr{x} - pr(x-T) ~ pr(x+T) 

E{y) À 
- -

2
-~ :;:-{2F-{x)-F_(x-T}-F_{x+T)}. 

- pr(x), 
which is only possible if pr(x+T) = pr(x-T) = pr(x) = 0 

Q.E.D. 

Lemma A.2: The support of F 
support [k1 ,k2] is such 
equilibrium distribution. 

is an interval [k1 ,k2]. Moreover if F with 
that 1r'(x) = 0 on the support, Fis an 

Proof --
with 
and 

E(y) À 
1r' (x) = - x + -- + -{2F(x) 

2 T 
F(x) = F(z). If 1r'(x) = 0, 

F{x-T) ~ F{z-T). Similarly 

- F(x-T) - F(x+T)} . Consider x < z 
then 1r'(z) < 0 since F(x+T) ~ F(z+T) 
if 1r'(z) = 0, then 1r'(x) > O. This 

shows first that if x and z are in the support of F, no 
between can be outside the support. In addition if 
x E Supp F = [k1 ,k2], 1r'(x) = 0, then 1r'(z} > 0 for z < 
1r'(z) < 0 for z > k2 which shows that Fis an equilibrium. 

_ ti(x _ E(y)) n(n+l} n(n+l} (n-1)} 
F ( xn ) = ( n + 1 } F ( x0 } ~ 0 2 

) 
2 

+ T 
6 

· 

Proof: this follows by solving the system 
T T E(y) 

F{x1) - F(xo) = F(xo) - À xo - À -2-

T T 
F(xn) - F(xn-1) = F(xn-1) - F(xn-2) - À xn-1 + À E(y}/2 

which expresses 1r'(x~} = 0 fort= O ... n-1. 
Q.E.D. 

point in 
for all 
k1 and 
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(N+l) (N+2) ( 3a::) À Let (a::,N) be defined by ----- N + - T = - , 0 ~ a:: < T. 
12 T T 

Proposition: There is a unique symmetric equilibrium given by 
N a:: 

k = - k = K = - T + -2 1 2 2 . 
if x € ]k1 + nT, k 1 + nT + a::[ where O ~ n ~ N, then 

T 
F'(x) = -(n+l)(N+l-n) 

2).. 
if x € ]k1 + nT + a::, k 1 + (n+l) T[ where O ~ n < N, then 

T 
F' (x) = 

2
À (n+1) (N-n) 

Proof Let k 2 = k 1 +NT+ a:: for some 
x E [k1 ,k1 +a::] and apply lemma 
F(z) = 1 if z ~ k2 , this leads to 

N ~ 0, 0 ~a::< T. Let 
3 to n = N+l using 

F(x) = - 1- + ~+l (x - E(y)) + ~ N(N+l)}. 
N+2 :xc2 2 J 6 

Let x E [k1 +a::,k1 +T] and apply lemma 3 ton= N: 

F(x) 
1 

= -- + 
N+l 

TfN( E(y)) T } W x - -
2

- + 6(N-l)N 

E(y) 
2 

2À 1 
T (N+l) (N+2) 

N 
-T-3' 

Equalizing the two formulas for x = k1 + a:: leads to 

4>,. 1 N 
ex = 

(N+l)(N+2) 
- T - which 

T 
(N+~) (N+2) ( '¼) T N + -

12 T 
Given the formula of ex, we obtain 

E(y) NT ex 
kl = ---

2 2 2 
(A.1) 

E(y) NT (X 

k2 = --+ -+ 
2 2 2 

Let us now compute the densities. 
For x E]k1 ,k1 +a::[ the density is 

T N+l 
= ---

À 2 
F' (x) 

For x e]k1 + a::, k1 + T[, the density is 
T N 

F' (x) = Î 2 

is 
À 

= - . 
T 

T n(n+l) 
From lemma 3 : F' (x + nT) = (n+l)F' (x) - Î 

2 

equivalent to 

Applying these formulas to x E]k1 ,k1 + a::[ and x e]k1 + a::, k1 + T[, gives the 
densities in the proposition. 
In thus just remains to compute E(y). Notice that the distribution is such 
that 



It follows immediatly that 

37 

k1+ k2 E(y) 
E(y) = --- = --

2 2 
This is only possible if E(y} = 0 which complete the proof. 

Q.E.D. 

6V 
Obviously K is increasing with À = E(8). Now K is continuous with 

2e 
T = t:JJ. 

NT 2.>.. 
Moreover K = - + 

3 T(N+l) (N+2). 
N(N+l) (N+2} >,. (N+l) (N+2) (N+3) 

Consider T such that 
12 

< T
2 

< 
12 

, then 

dK = 2 [N(N+l} (N+2} _ ~1 
dT (N+l}(N+2) 6 T2 

(N+1}(N+2)(N+3) N(N+1)(N+2) dK 
If N :;;;ii, 3, then ------- ~ ----- and - > 0 this corresponds to 12 6 dT 
the case T&mall. 
If N = 0, - is negative. 

dT 
1 >,. 

For the case -
2 

> -, then N = 0 so that the equilibrium is given by 
T2 

[ 
1 6V t:JJ 1 

PA, PB uniform on E(8) - 2E(8) €' E(8} + 
6V t:JJ] 

2E(8) e 
In the example of section II 

3 6 
T = 4 ' À = 16 ' 

6Vt:JJ 
---= 
2E(8)e 

6 

12 

A.3 Asymmetric pure stragegy equilibria 

As long as E~~) < 3(!)' the reaction curves cross at two points 

1 &vw 1 &vw 
2pA = E(8) + PB - E(8) 2pB = E(8) + PA + E(8) 

1 1 6V t:JJ 
PA = E(8) - 3 E(8) e 

or 
1 1 6V t:JJ 

PB = -- + E(8) 
----

3 E(8) e 
And the symmetric equilibrium 

1 1 6V t:JJ 
p = --+ -----

A E(8) 3 E(8) e 

1 1 6V t:JJ 
PB = E ( 8 ) - 3 E ( 8 ) T 

1 6V t:JJ 6 
In the example.of section II 3 E(e) e = 18 . 
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Appendix B (Section III.a} 

Proof of proposition 3 

1 
We assume l.o.g. that q0 = 2 to simplify notations. Let us denote 

{ 

~ = t>flA + t>flB 

y = ti,l)A - ti,l)a 

When PA= Pa, lyl is at its minimal value y= 0 while for PA~ Pa but close, 
y is different then O but close. The posterior probability of 9 = 9 when 
the firms observe 

is given by q = 
µ(x,y} 

µ(x,y}+µ(x-x,y-y} 

Consider a convex function ~ and note ;(y) = E{~(q) lx,y} 

;(y) = fx sy ~(q) {µ(x,y) + µ(x-x,y-y)}dydx 

By symmetry: i(y) = i(-y). 

When differentiÏting 
i(y) = f J -- µ (x-x,y-y){~(q) - q~'(q)}dydx 

X y 2 2 

f J 1 d - -
= x y - 2 dy(~(q}{µ(x,y} + µ(x-x,y-y}}}dydx 

+ fx Jy µ2 (x,y}{~(q} + (1-q}~'(q)}dydx 
We denote g(q) = ~(q) + (1-q}~'(q), then 

Asµ is symmetric with y and µ2 (x,y} is antisymmetric: 

-, (-} I I ( >{ [ µ(x,y) ] [ µ(x,y} ]~ d ~ Y = µ2 X,y g - g y X 
X y>O µ(x,y}+µ(x-x,y-y} µ(x,y)+µ(x-x,y+y) 

- - -Consider y> 0 and y> 0, as -y-y< y-y< y+y and µ is symmetric 
quasi-concave with y: 

µ(x-x,y-y) ~ µ(x-x,y+y) 
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As gis increasing and µ2 (x,y) ~ 0 for y> 0 we obtain 
i'(y) ~ 0 for y> 0 

When (x,O) 

µ2 (x,y) 7 0 
fully informative, µ(x-x,y-y) 7 µ(x-x,y+y) and 

must occur on a set of positive measure so that i(y) is at a 
is not 

strict minimum at y= O. 
Q.E.D. 

Appendix B {Section 111.b} 

The N-firms case 

The basic payoff of firm n is 

[
1 ~n-1 + Pn+ 1 ) ] -+8 ------p p 
N 2 n n where Pn-l and Pn+l are adjacent firms' prices 

and Pn is firm n price. 

By a reasoning similar to the reasoning in section II firm n learn the 

value of 8 with probability "',, = min{l, N ~ 1 Pn-i
2

• Pn - Pn 1} when its 

immediate rivals have set prices p 1 and p 1 in stage 1 and firm n has· n- n+ 
set Pn· Notice that since the noises are independant the events {n learn 8} 
and {m learn 8} are independant for two firms m and n. It follows that firm 
n relevant information in period 2 consists in its own information about 8 
and œ = {œ1 .•. ~} the probabilities that each firm learn 8. 

The period 2 equilibrium will consist in 3 sets of prices, function 
of œ : 

{ P. (cxl price of firm n if it knows 8 = 8 
E (œ} price of firm n if it knows 8 = 8 

n 
Pn (œ) price of firm n if it does not know 8. 

These prices must verify 

Pn (œ) 
1 1 ¼ E{pn-1+ œ}. = --+ Pn+l 18 = 8, 

2N e 
1 1 1 

E (œ) = --+ 4 E{pn-1+ Pn+l 18 = ~.œ} 
n 2N 8 

1 1 1 
Pn (œ) = ---+ 4 E{pn-1+ Pn+ 1 lœ} 2N E(8) 
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Let p = {i,n} • E = {E} p = {pn} ' 
and denote MN (ex) the matrix 

n 

0 ex2 0 Q:1 

exl 0 

MN(ex) = 0 

0 

0 ~-1 

~· .. 0 ••• ~-1 0 

and eN the unit vector, MN= MN(eN). 

Then the equilibrium condition writes as a vectorial relation 

P (ex) 
1 1 

= --e 
2N - N 8 

1 1 
+ 4 MN(ex) p(ex) + ~MN- MN(ex)]p(ex) 

1 1 
= --e 

2N 8 N 

1 1 
+ 4 MN(cx) E(ex) + ~MN- MN(ex)]p(cx) 

Combining the first two equations we obtain 
q0~E(cx) + (1-q0 )8p(ex) 

E(8) 
= p(ex) 

1 eN 
Therefore p(ex) = ---- This gives immediatly 

E(8) N 

P (ex) = (rdN 
MN(ctr (1 1 ) 

4 2ë - 2E(8) 

E (ex) = (rdN 
MN(ctr (1 1 ) 

- 4 2~ - 2E(8) 

eN 
-+ 
N 

eN 
-+ 
N 

1 eN 
----E(8) N 

1 eN 
----E(8} N 

Now let ~(ex) be the expected profits of firm n conditional on the event 
that firm n learn 8. 

Similarly let ~(ex) be the expected profits of firm n conditional on n 
does not learn 8. 

1 1 
We see immediatly that ~ (ex) = N2 E(e) = 1ru. 

Now ~(ex) is given by ~(ex) = q0~ E (ex) 2 + (1-q0 }8 pn(cx) 2 
n 

[ 
MN(()(.)1-1 

Let v(cx) be the vector IdN - 4 eN. 
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Then ~(tt) = q 0 !!{Eta) • (~ - 2E~a)) vn (tt) }' :, 

+ (l-qo) e{E(~) + (ie -2E~8il vn {tt) r :, 
This selves as 

V.: (œ) 

Lemma B.1 

Proof This 

v(œ) = io ~t)r 
as v(œ) = 

MN (œ) 

4 

amounts to show 

1 - -eN, v ~ 1 + - v or v ~ 2. 
2 

that 

Q.E.D. 

We can now go back to the period 1 game. Reduced payoff of firm n is 

Let us denote Yn = N Pn· Then the payoff is 

1 { (:'n-1 + Yn+l )} ( 
N

2 
Yn 1 + E{8}El-

2 
- Yn + 6 E œn v_;(œ) 

{ 
N3 Yn-1 + Yn+ 1 } 

œn = min 1 - 1 ------ - y 1 , - 2 n . 
é 

1 

+ 6 1T u 

But 

Let F be a distribution symmetric around E(S) , then the best response set 
1 

of firm n when all other firms play according to Fis symmetric around E(S) 
1 1 

since PA= E(S) - é and PA= E8 + é leads to the same payoff. It follows 
from this symmetry property an~ from the continuity of the payof\ function 

that there exists an equilibrium whose law is symmetric around E(e)· (The 
1 

correspondance which associate to F symmetric around E{S} the set of best 
1 

response distribution symmetric around E{S} is non-empty convex valued 
with closed graph). 
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oo rN(œhs 
Let F be this equilibrium distribution. Notice that as v(œ) = L 4 J eN, 

s=O 

dit; ( ex)· dv(œ) 
--- > 0 for all n and therefore --- > 0 for œm < 1. 

dœn dœm 
Now suppose that F has a mass point at some point y. Discontinuities in the 

derivative 

Yn-2 + Y 

of E œn (it; (œ) - 1rJ comes from the 
Yn-1 + Yn+l 

events ------=y, 
2 

2 
= Yn-l and 

2 
= Yn+l which occur with positive probability. 

In any of these events both an increase of Yn from Yn = y and a decrease in 
Yn would lead to an increase in œn, œn-l or œn+l and therefore an increase 
in œn[it;(œn) - 1ru]. Therefore the right derivative of firm n payoff at 
Yn = y must be higher than the left derivative which is impossible if Fis 
an equilibrium. We conclude that the symmetric equilibrium distribution is 
continuous. 

Let [E(~) - K(N), E(~) + K(N)] be its support. From the lemma B.1 the 
payoff ,rn when n plays Yn verifies 

6V 6 6 
y {2 - E(0)y} + -4 E(œ) + --~ N2,r (y)~ {2 - E(0)y} + 6V E(œ) + n n n E(0) n n n n E(0} 

Suppose that K(N) is very small. Then the equilibrium payoff 1rnfu(~)) 
verifies 

N21r (~) ~ - 1
-(1+6) + 6V !!:fJ K(N) 

n Œ(0) E(0} Ë 

1 e 
Suppose the firm deviates to K(N} ~ y - -- ~ - , then the payoff it can 

E(0) !!:fJ 
obtain verifies for the right choice of y: 

N2,rn (y) ~ max y {2 - E(0}y} + 64V ~ {y - Et0)} + Et0) 
Y e 

We see that if K(N) is too small, N21rn(y) > N21rn~(~)) which is impossible. 
Therefore there exists K > 0 such that K(N} ~ K for all N. 



43 

Appendix C (section IV). 

Proof of proposition 5 

Suppose that the game Gt-l has a unique symmetric equilibrium. Let us 
denote ,rt-l 

u the equilibrium profits in this game and 

1rr- 1 = ½ E (¼) ( 1 + 6 + . • • . + 6 t ) the expected profits of firms if they 
learn 8 before the game Gt-l starts. The value of information at date T is 
Vt-l = 1r1- 1 

- 1r!- 1 
• Suppose that Vt-l > 0, then the game Gt has a unique 

equilibrium obtained by applying the results of appendix A.2. This 
equilibrium depends on fixed parameters and Vt-i· If we can show that 
Vt > 0 when Vt-l > 0 the proposition will be proved. 
With the notations of appendix A.2, the equilibrium profits can be 
calculated at x = -K. We then obtain: 

,r = l + 61r + E(8){- K
2 

+ À E min {1, 
2E(8) u 2 

A direct computation shows that: 

y:K}} 

11' = 2E~e) + 61ru + 6V + E(8){~ - T; N{N+2) - 7{N+2)} 

Let us denote f(V) = E(8){- œ; + ~ N(N+2) + 7(N+2)}. 

1 
Then 11' = 2E{e) + 61ru + 6V - f(V). 
Applying th1s formula to our problem we obtain 

1 
,rt = --- + 61rt-1 + 6V - f(Vt-1) 

u 2E(8} u t-1 
and Vt = V0 + 61rr- 1 - 61r~-l - 6Vt-l + f(Vt_ 1 ) 
or Vt = V0 + f(Vt_ 1 ). 

The fact that Vt > 0 when Vt-l > 0 follows from lemma 1. 

Proof of lemma 1 

. 6VN _ 2 N(N+l) (N+2) 
then for i) f(v) is C1 

VN<V<VN+l' 
Let VN be def1ned by E(e) - T 12 , 

the equilibrium is obtained at N and 

f' (V) = {~4 (N+2) - ~4}· 46 
T(N+l)(N+2) 

46 2 1 
f"{V} = - -- ------- < 0 

E(e) (T(N+l)(N+2)) 2 

Thus fis C1 , concave on any interval ]VN, VN+l[ 
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lim 
V-+V 

N 

{
T2 T2 - T82} f(V) = E(8) 8 (N-1} (N+l) + 4 (N+1} 

lim 
V-+V 

N+ 

T2 
= E(8) 8 N(N+2} 

T2 
f(V) = E(8} B N(N+2) 

So fis continuous. 
lim f' (V} = {i(N+l) 

V-+V 

T} 46 6 
- 4 .T(N+l)N = N+l 

N-

lim 
V-+V 

N+ 

T 46 
f'(V) = 4(N+2) T(N+l)(N+2) 

So fis C1 , concave, increasing. 

6 
=-

N+l 

For V very small, N = 0 and f(V) = E(e>{"; - œ;} which leads to 

f(v) 6v (6V)2 h. h . . . 
= - 2E(e) w 1c 1s pos1t1ve. 

T2 N(N+l)(N+2} E(8) 
Finally f(V)/V ~ E(8) -

8 
(N+2) 2 /V as V;;;.,----- -- T we have 

12 6 
12 N+2 

f (V) /V ~ -8 6 ( ) -- 0. N N+l V-++oo 
Q.E.D. 
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Appendix D (section VII) 

Section VII.1 

Let the value of information V0 be negative. Consider first a 
two-period game. The reduced expected payoff of firm A in the first period 
is : 

and PA & + Pa - PA) + 6 ~ otherwhise. One 

P E (!_ - ~IV 1 !_ + ~IV 1 ] the bes t f a 
2 - o ,

2 _ 0 response o 
é é 

can easily 

symmetric equilibria consists in all equilibria 

show that for 

set of 

where 

P E (!_ - ~IV I !_ + ~IV I] Among 2 - 0 '2 - 0 • these equilibria the best equilibrium for 
é é 

1 . 1 1 6 
firms is PA= Pa= p where p = 2 +::-IV0 1. 

é 

6 
Profits are then n1 = (1+6)~ + -1v0 1. The value of information in 

u u -
é 

the two-period game if firms play p1 when uninformed is then 

V1 = (1+6)V0 - }1v0 1 = (1+6 + })v0 < V0 < o. 
We can now extend this result for a T-period game. 

Consider date T where there remain t+l periods to be played. 
Suppose that Vt_ 2 is negative. Then at date T+l there is a continuum of 

MPBE PA= Pa= p where p E [½ - }1vt_ 2 1, ½ + }1vt_ 2 1]. For each of these 

equilibria, the value of information at date T+l is 
1 6 

p/2 - n6 + 6 Vt_ 2 = Vt-i· The best MPBE at date T+l is pT+l = 2 +::-1Vt_ 2 1. 
é 

The best symmetric MPBE at date Tif the equilibrium is pat date T+l is 

[. 
PT 1 6 

= -+ ::-1 V t _ 1 1 if vt-1 < 0 
2 é 

unique symmetric equilibrium if vt-1 > 0 

1 6 
Date T profits are maximized when pT+l = - + ::-1Vt_ 2 1 which maximizes 

2 é 

IVt-l 1. As this maximizes also period T+l profits, this shows that the best 
symmetric MPBE of the T-period game is at each date T: 
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p'T" 1 6 
PA = Pa = = -+ =-1 V t _ 1 1 and 

2 e 

vt = (1+6 + ~) vt-1 < vt-1 < 0 

This remainr true as long as the whole market is served at each 
date, or p1 < R - - which we assume. For the T-period game, the best 

2 
symmetric MPBE is therefore characterized by a sequence of prices : 

1 'T" T l p > .•. >p •.. > p = 2 

Section VII. 2 

Consider th~following example 
E(0) = 1 ; 6 = 1 ; -::- = 2 ; Va > 0 bUt small. The two period game has two 

e 
asymmetric equilibria 

equilibrium a 

equilibrium b 

Profits for firm A are 

and 

~ = a 1 + 

Va 
ir.\:1--+ 

b 3 
symmetrically for firm B. 

PA 

PA 

8 2 -V 9 a 

8 2 -V 9 a 

= 

= 

2Va 2Va 
1 - Pa = 1 + 

3 3 

2Va 2Va 
1 + Pa = 1 -

3 3 

at the equilibrium a 

at the equilibrium b 

Expected informed profits for the 2-period game are: 
,ri = 1 + 2 Va 

Consider now a 3-period game, then there is a collusive equilibrium as 
follows 

Whenever firms are informed they play Pl 1 
= p; = 0 at date T, 

otherwhise, at date T = 1 Pi= Pii= PC 

at date T = 2, if Pi = Pii = PC ni 1 
and ~- equilibrium a A 2 

Pi Pii PC ni 1 
if = = and > equilibrium b A 2 
if Pii = PC' Pi ~ PC equilibrium b 
if Pi = Pc, Pii ~ PC equilibrium a 
if Pi ~ Pc, Pii ~ PC symmetric equilibrium 
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Profits at date T = 1 for firm A when firm B plays p~ = pc are 
then 

8 
P! 

1 
if = PC - PC+ 1 + - y2 

2 9 0 

if P! ~ PC P!{½ + ~(pc _ Pl)} + (,ri - ~) min {1, lp!-pc 1} + ~ 2 A 

Whenever V0 

equilibrium value. 

~ 14 16 2 pc = 1 + 2 ~3 v0 - - V + - V 
h 

. 3 0 • ~. b ~ 9 0 
at t is equ1r1 rium are 

,rC = ~ + J~ V - '!.._ V 
2 3 0 3 0 

is small, 
Profits 

16 2 
+ 9Vo. 

Informed profits for the three-period game are 1Tj 

small enough we obtain ,rC > ,rj and v3 < O. 

is an 
then 


