N° 8822

EDGEWORTH EQUILIBRIA, FUZZY CORE
AND EQUILIBRIA OF A PRODUCTION ECONOMY
WITHOUT ORDERED PREFERENCES

Monique FLORENZANO
CNRS - CEPREMAP
EQUILIBRES D'EDGEWORTH, COEUR FLOU ET EQUILIBRES D'UNE ECONOMIE DE PRODUCTION DONC LES PREFERENCES NE SONT NI TRANSITIVES, NI COMPLETES

RESUME

Le but de ce papier est d'étendre le théorème de Debreu-Scarf sur la coïncidence, sous des hypothèses appropriées, de l'ensemble des équilibres d'Edgeworth et de l'ensemble des allocations Walrasiennes, à une économie de production, sans préférences ordonnées, définie dans un espace vectoriel topologique séparé.

Nous obtenons trois résultats :
- Des hypothèses faibles garantissent l'existence d'équilibres d'Edgeworth et le coeur flou est non vide sous une hypothèse additionnelle faible de continuité des préférences.
- Quand la dimension de l'espace des biens est finie, l'ensemble des équilibres d'Edgeworth, le coeur flou et l'ensemble des allocations Walrasiennes coïncident.
Si l'espace des biens n'est pas de dimension finie, le même théorème est démontré pour une économie hypothétique dont les équilibres d'Edgeworth peuvent être plongés dans l'ensemble des équilibres d'Edgeworth de l'économie initiale.
- Comme sous-produit, un théorème d'existence des équilibres Walrasiens étend la plupart des résultats récents d'existence de l'équilibre.

Mots clés : Théorème de Debreu-Scarf, coeur flou, préférences non transitives, théorèmes de point fixe, espace de biens de dimension infinie espaces de Riesz.

EDGEOuth EQUILIBRIA, FUZZY CORE AND EQUILIBRIA OF A PRODUCTION ECONOMY WITHOUT ORDERED PREFERENCES

ABSTRACT

The aim of this paper is to extend the Debreu-Scarf theorem on the coincidence, under suitable conditions, between the set of Walrasian allocations and the set of Edgeworth equilibria to production economies without ordered preferences, defined in a Hausdorff linear topological space.

We obtain three results :
- Edgeworth equilibria exist under very mild conditions. Under a weak additional continuity property of preferences, the fuzzy core is also non empty.
- In the finite dimensional case, the set of Edgeworth equilibria, the set of Walrasian allocations and the fuzzy core of a convex economy coincide under standard assumptions.
The same is true in the infinite dimensional case for an hypothetical economy whose Edgeworth equilibria can be embedded in the Edgeworth equilibria of the original economy.
- As a by-result, an existence result for Walrasian equilibria extends most of the recent existence results.

Key words : Debreu-Scarf theorem, fuzzy core, non ordered preferences, fixed-point theorems, infinite dimensional economy, Riesz spaces.

JEL : 020
I - INTRODUCTION

For an economy standardly defined, an Edgeworth equilibrium is an attainable allocation whose r-fold repetition belongs to the core of the r-fold replica of the original economy, for any positive integer r.

If the definition of coalitions is enlarged in order to allow a participation of the agents with a rate belonging to the rational interval $[0,1]$ and if the preferences are convex, an Edgeworth equilibrium can also be defined as an attainable allocation which cannot be blocked by a coalition with rational rates of participation. A fuzzy coalition is a coalition whose rates of participation can take any value in the real interval $[0,1]$. The fuzzy core is the set of all attainable allocations which cannot be blocked by a fuzzy coalition.

The coincidence under suitable conditions between the set of Walrasian allocations and the set of Edgeworth equilibria for an economy with ordered preferences defined in a finite dimensional commodity space is a result by Debreu-Scarf (1963). The aim of this paper is to extend this result to production economies without ordered preferences defined in a Hausdorff linear topological space.

We obtain three results:

- Edgeworth equilibria exist under very mild conditions which are the same in the finite and in the infinite dimensional cases. Under a weak additional continuity property of preferences, the fuzzy core is also non-empty.
In the finite dimensional case, Edgeworth equilibria belong to the fuzzy core and are Walrasian allocations of a convex economy under the classical assumptions of continuity, convexity and local non-satiation of preferences. Added to the first one, this result confirms the existence results for Walrasian equilibria of a production economy without ordered preferences which have developed in the literature around 1975.

In the infinite dimensional case, it is well known that Walrasian equilibria may not exist under the standard assumptions. Here we use an additional assumption which unifies as well the interiority assumptions as the uniform properness assumptions which have been used since 1983 to get the existence of Walrasian equilibria. We define an hypothetical economy, whose Edgeworth equilibria can be embedded in the set of the Edgeworth equilibria of the original economy, and we prove the equivalence between the fuzzy core of this economy and the set of Walrasian equilibria of the original one.

This result contains, as a particular case, an equivalence result of Aliprantis, Brown and Burkinshaw (1987) stated in the ordered case under more restrictive uniform properness assumptions.

- A by-result of the general equivalence theorem is a general existence theorem for Walrasian equilibria in the infinite dimensional case. This general theorem can be applied in all the particular commodity spaces which have been found useful in economic applications and extends most of the recent existence results.

The paper is organized as follows. In section II, we set the main definitions and notations. The non-emptiness theorems are proved in section III, the equivalence theorems in section IV. In the infinite dimensional case, the
equivalence theorem is obtained under an assumption previously formulated by Florenzano (1987). As in this paper, this assumption is proved in section V to be satisfied as well in the context addressed by Duffie or Jones in a locally convex topological vector commodity space as under uniform properness assumptions in a locally convex-solid topological vector lattice. Section VI is devoted to the existence of Walrasian equilibria.

II - CORE, EDGEWORTH EQUILIBRIA AND FUZZY CORE OF A PRIVATE OWNERSHIP ECONOMY

In a Hausdorff linear topological space \((L, \sigma)\) as commodity space, let us consider:

\[\mathcal{E} = \{(X^i, P^i, \omega^i)_{i \in M}, (Y^j)_{j \in N}, (\theta^{ij})_{i \in M, j \in N}\} \]

a private ownership economy with a finite set \(M\) of consumers and a finite set \(N\) of producers, standardly defined.

To each consumer \(i\) is associated a consumption set \(X^i \subset L\), an initial endowment \(\omega^i \in L\) and a preference correspondence \(P^i: \prod_{k \in M} X^k \to X^i\). If \(x = (x^k) \in \prod_{k \in M} X^k\), \(P^i(x)\) is interpreted as the set of the elements of \(X^i\) which are (strictly) preferred by agent \(i\) to \(x^i\) when the consumption of each agent \(k \neq i\) is equal to \(x^k\). To each producer \(j\) is associated a production set \(Y^j \subset L\). For all \(i \in M\) and for all \(j \in N\), \(\theta^{ij} \geq 0\) is a contractual claim of the consumer \(i\) on the profit of the producer \(j\); the \(\theta^{ij}\) are assumed to verify, for every \(j \in N\), \(\sum_{i \in M} \theta^{ij} = 1\).

Let \(X = \prod_{i \in M} X^i\), \(\omega = \sum_{i \in M} \omega^i\) and \(Y = \sum_{j \in N} Y^j\). An allocation \(x = (x^i) \in X\) is said attainable for economy \(\mathcal{E}\) if \(\sum_{i \in M} x^i \in \sum_{i \in M} \omega^i + Y\). We will denote
by \(\hat{X} \) the set of all attainable allocations of the economy. In the following, we will consider also for every \(i \in M \) and for every \(j \in N \)

\[
\hat{X}^i = X^i \cap (w + Y - \sum_{i' \neq i} X^{i'})
\]

the attainable set of consumer \(i \),

\[
\hat{Y}^j = Y^j \cap (\sum_{i \in M} X^i - \sum_{j' \neq i} Y^j - \{w\})
\]

the attainable set of producer \(j \),

and \(\hat{Y} = Y \cap (\sum_{i \in M} X^i - \{w\}) \)

the attainable total production set.

Now let \(M \) be the family of all non-empty subsets of \(M \), ie the family of all coalitions of consumers. In order to define the productive power of each coalition, we assume that a coalition \(B \in M \) owns the technology set \(\sum_{i \in B} \theta^{i,j}y^j \) at his disposal in producer \(j \). This kind of assumption, which can be found in Rader (1964), Nikaido (1968), Hildenbrand (1970), Aliprantis et al (1987), lies on the idea that the relative shares \(\theta^{i,j} \) reflect consumer's stock holdings which represent proprietorships of production possibilities.

If \(x^B = \prod_{i \in B} x^i \), \(x^B \in X^B \) is said to be an attainable assignement for the coalition \(B \) if

\[
\sum_{i \in M} x^{iB} = \sum_{i \in B} \omega^i + \sum_{i \in B} \sum_{j \in N} \theta^{i,j}y^j.
\]

We will denote by \(\hat{X}^B \) the set of all attainable assignements for the coalition \(B \).

For each \(B \in M \), a preference correspondence \(P^B : X \to X^B \) can be defined by:

\[
P^B(x) = \{z^B = (z^{iB}) \in X^B / z^{iB} \in P_i \ (x) \ \forall \ i \in B\}.
\]

\(P^B(x) \) is interpreted as the set of the elements of \(X^B \) which are unanimously preferred to \(x \) by the members of the coalition \(B \).

A coalition \(B \) is said to block an attainable allocation \(x \in \hat{X} \) if there exists \(z^B \in \hat{X}^B \cap P^B(x) \).

The core of \(\mathcal{E} \) is classically defined as the set \(C(\mathcal{E}) \) of all attainable allocations which are blocked by no coalition.

Then let \(r \) be any positive integer. Let us consider the \(r \)-fold
replica of the economy \mathcal{E}, composed of r subeconomies identical to the original \mathcal{E}.

$$\mathcal{E}^r = ((X_{iq}, p_{iq}, \omega_{iq})_{i \in M}, (Y_{ij}^q, Y_{ij}'^q)_{j \in N}, (\theta_{ij}^q)_{i \in M}, j \in N)_{q=1, \ldots, r, q'=1, \ldots, r}$$

is defined as follows: for each $j \in N$, r producers of type j have the same production set $Y_{ij}'^q = Y_j$; for each $i \in M$, r consumers of type i have the same consumption set $X_{iq} = X_i$ and the same initial endowment $\omega_{iq} = \omega_i$. For preferences and ownership of initial holdings and production possibilities, each consumer (i, q) is restricted within his subeconomy:

$$p_{iq} : \prod_{k \in M} X_{kq} \rightarrow X_{iq}$$ is defined by $p_{iq}(x) = P_i(x)$ and

$$\theta_{ij}^q = \begin{cases}
1 & \text{if } q = q' \\
0 & \text{if } q \neq q'
\end{cases}$$

If $\bar{x} \in \hat{X}$, an allocation which assigns the same consumption bundle \bar{x}_i to each consumer (i, q), $q = 1, \ldots, r$, belongs to the core of \mathcal{E}^r if and only if there exist no $S \subset M \times \{1, \ldots, r\}$, $S \neq \emptyset$, and no $x^S \in \prod_{(i, q) \in S} X_{iq}$ such that:

1. $\sum_{(i, q) \in S} x_{iq}^S \in \sum i \omega^i + \sum_i \theta_{ij}^q Y_j$ def
where $S(i) = \{q \in \{1, \ldots, r\} / (i, q) \in S\}$ and card $S(i)$ denotes the number of elements of $S(i)$

2. $x_{iq}^S \in p_{iq}(\bar{x}) \quad \forall (i, q) \in S$

Let us denote by $C^r(\mathcal{E})$ the set of all such $\bar{x} \in \hat{X}$.

Following Aliprantis et al (1987), we will say that $\bar{x} \in \hat{X}$ is an Edgeworth equilibrium if $\bar{x} \in \bigcap_{r \geq 1} C^r(\mathcal{E})$ and we will denote by $C^0(\mathcal{E}) = \bigcap_{r \geq 1} C^r(\mathcal{E})$ the set of all Edgeworth equilibria.

Now let us replace (2) by

(2') $x_{iq}^S \in \text{co } P_i(\bar{x}) \quad \text{(the convex hull of } P_i(\bar{x})) \quad \forall (i, q) \in S$
and denote by $C'^r(\mathcal{E})$ the set of all $\bar{x} \in \hat{X}$ such that there exist no $S \subset M \times \{1, \ldots,\}$, $S \neq \emptyset$ and no $x^S \in \prod_{(i,q) \in S} X^i_q$ satisfying (1) and (2'). Let $C'^e(\mathcal{E}) = \cap_{r \geq 1} C'^r(\mathcal{E})$.

If we assume (this assumption will be made later) that every X^i is convex and if we define $t^i = \frac{\text{card } S(i)}{r}$, $t = (t^i)_{i \in M}$ and for each i such that $t^i > 0$, $x^i t^i = \frac{1}{\text{card } S(i)} \sum_{q \in S(i)} x^i_q$, we can replace (1) and (2') by:

\[(3) \quad \sum_{i \in M} t^i x^i t^i \in \sum_{i \in M} t^i \omega^i + \sum_{i \in M} t^i \sum_{j \in N} \theta^i j^j, \quad t^i > 0 \]

\[(4') \quad x^i t^i \in \text{co } P^i(\bar{x}) \quad \forall i : t^i > 0 \]

while (4) denotes the relation

\[(4) \quad x^i t^i \in \text{P}^i(\bar{x}) \quad \forall i : t^i > 0. \]

Here t^i is a rational number in $[0,1]$ ($t^i \in [0,1] \cap \mathbb{Q}$) which can be understood as the rate of participation of i to the coalition S while $x^i t^i$ is the mean consumption that i achieves by participating to the coalition.

Let $T = [0,1]^M \setminus \{0\}$ and $T_Q = T \cap \mathbb{Q}^M$. Obviously $\bar{x} \in \hat{X}$ belongs to $C'^e(\mathcal{E})$ if and only if there exists no $t = (t^i) \in T_Q$ and no $x^i t^i \in \prod X^i$ satisfying (3) and (4').

Allowing, as Aubin (1979), that the rates of participation take all values in the real interval $[0,1]$, we will say that $\bar{x} \in \hat{X}$ belongs to $C'^f(\mathcal{E})$, the fuzzy core of \mathcal{E}, (resp. to $C'^f(\mathcal{E})$) if there exists no $t = (t^i) \in T$ and no $x^i t^i \in \prod X^i$ satisfying (3) and (4) (resp. (3) and (4')).

Between all the core concepts defined in this section, we have the following relations:

\[C'^f(\mathcal{E}) \subset C'^e(\mathcal{E}) = \cap_{r \geq 1} C'^r(\mathcal{E}) \subset C^e(\mathcal{E}) = \cap_{r \geq 1} C^r(\mathcal{E}) \subset C(\mathcal{E}) \]

\[C'^f(\mathcal{E}) \subset C'^f(\mathcal{E}). \]
In the next section we will prove the non-emptiness of $C^{*}(E)$ under the following assumptions on economy E (provided that X is endowed with the topology induced by the product topology on L^M):

A_1 - \(\forall i \in M, X^i \text{ is convex and } \omega^i \in X^i \)
\[\forall x \in X, x^i \in \text{co } P^i(x) \]
\(P^i \) has \(\sigma^m \)-open lower sections (i.e. for every \(z^i \in X^i \), the set \((P^i)^{-1}(z^i) = \{x \in X / z^i \in P^i(x)\} \) is \(\sigma^m \)-open in \(X \))

A_2 - \(\forall j \in N, 0 \in Y^j \)

A_3 - Y is convex and \hat{X} is \(\sigma^m \)-compact.

Moreover, if τ is a vector space topology on L, not necessarily identical to the initial topology of L, we will prove that $C^{*}(E)$ is non-empty, under the following additional assumption:

A_4 - \(\forall i \in M, \forall x \in X, P^i(x) \text{ is } \tau \)-open in \(X^i \).

III - Non-Emptiness Theorems

For any \(t \in T \), let us define:

\[Y^t = \sum_{i \in M} t^i \sum_{j \in N} \theta^j Y^j \]
\[X^t = \prod_{i \in M} X^i \]
\[\hat{X}^t = \{x^t \in X^t / \sum_{i \in M} t^i x^i \in \sum_{i \in M} t^i \omega^i + Y^t\} \]
\[\text{co } \hat{X}^t \text{, the closed convex hull of } \hat{X}^t \text{, and, if } x \in X \]
\[P^t(x) = \{z^t \in X^t / z^i \in P^i(x) \forall i : t^i > 0\} \]
\[Q^t(x) = \{z^t \in X^t / z^i \in \text{co } P^i(x) \forall i : t^i > 0\} \]

\(Y^t, \hat{X}^t, P^t : X \to X^t \) may be respectively interpreted as theProduction set, the Attainable set and the Preference correspondence of the fuzzy coalition \(t \).
If \(\Delta^T = \{ \lambda = (\lambda_t) \in \mathbb{R}^T \mid \lambda_t = 0 \text{ for almost all indices } t \} \)

and if \(Y \) is convex, we first observe that economy \(E \) satisfies the following balancedness condition:

\[
\lambda \in \Delta^T \Rightarrow \sum_{t \in T} \lambda_t Y_t \subseteq Y.
\]

We will first prove (proposition 1 and proposition 2) that for any \(r \geq 1, C^r(E) \neq \emptyset \). When \(L = \mathbb{R}^d \), the \(d \)-dimensional Euclidian space, in view of the balancedness property of \(E \), the argument is strongly related to the fixed-point argument used in Florenzano (1987) to prove that, under similar assumptions, the core of a balanced coalitional production economy is non-empty. By considering traces of economy \(E \) on finite dimensional subspaces of the commodity space, the result is extended to the infinite dimensional case. Then the non-emptiness of \(C^0(E) \) (proposition 3) and \(C^r(E) \) (proposition 4) are quite straightforward.

Let \(Y' \subset L \) be such that \(Y \subset Y' \) and define:

\[
\hat{X}' = \{ x = (x^i)_{i \in M} \in X \mid \sum_{i \in M} x^i \in Y' \).
\]

In proposition 1, we replace the assumption \(A_3 \) by:

- \(A_3' \): \(Y' \) is convex and \(\hat{X}' \) is compact.

Proposition 1. Assume \(A_1, A_2, A_3' \) and that \(L = \mathbb{R}^d \). Then if \(r \)

is any positive integer and if

\[
T_r = \{ t = (t^i)_{i \in M} \in T \mid rt^i \in \{0, 1, \ldots, r\} \forall i \in M \},
\]

there exists \(\bar{x} \in \hat{X}' \) such that \(\hat{X}' \cap Q^t(\bar{x}) = \emptyset \forall t \in T_r \).

Proof
Let $\Delta^r = \{ \lambda = (\lambda_t) \in \mathbb{R}^r / \lambda_t \geq 0 \ \forall \ t \in T_r \ \text{and} \ \sum_{t \in T_r} \lambda_t t^t = 1 \ \forall i \in M \}$

For each $(x, z, \lambda) \in \hat{x}' \times \prod_{t \in T_r} \text{co } \hat{x}^t \times \Delta^r$, let us define:

$I(x) = \{ t \in T_r / \ \hat{x}^t \cap Q^t(x) \neq \emptyset \}$

and $\theta(z, \lambda) = (x^i_1)_{i \in M}$ with for each $i \in M, x^i_1 = \sum_{t \in T_r} \lambda_t t^t z^i_t$

$- \varphi(x) = (\varphi^t(x))_{t \in T_r}$ with for each $t \in T_r, \varphi^t(x) = \text{co } \hat{x}^t \cap Q^t(x)$

$- \psi(x, \lambda) = \begin{cases}
\bigcap_{I(x)} \{ \mu \in \Delta^r / \mu_t > \lambda_i \} & \text{if } I(x) \neq \emptyset \\
\emptyset & \text{if } I(x) = \emptyset
\end{cases}$

It is easily seen that Δ^r is a non-empty, convex and compact subset of \mathbb{R}^r, that \hat{x}' is non-empty and convex and that each \hat{x}^t is non-empty and relatively compact. Hence for each $t \in T_r, \text{co } \hat{x}^t$ is compact and $\hat{x}' \times \prod_{t \in T_r} \text{co } \hat{x}^t \times \Delta^r$ is a non-empty, convex and compact subset of some finite dimensional Euclidian space. It follows from the convexity of X^i for each $i \in M$, the convexity of Y' and the balancedness condition that $\theta(\Delta^r \times \prod_{t \in T_r} \text{co } \hat{x}^t) \subset \hat{x}'$. Since \hat{x}' is compact and θ is continuous, $\theta(\Delta^r \times \prod_{t \in T_r} \text{co } \hat{x}^t) \subset \hat{x}'$. It can be shown, exactly as in Florenzano (1987), that there exists

$(\bar{x}, \bar{z}, \bar{\lambda}) \in \hat{x}' \times \prod_{t \in T_r} \text{co } \hat{x}^t \times \Delta^r$ such that

(1) $\bar{x} = \theta(\bar{z}, \bar{\lambda})$

(2) $\forall t \in T_r, \ \bar{z}^t \in \text{co } \hat{x}^t \cap Q^t(\bar{x})$ or $\text{co } \hat{x}^t \cap Q^t(\bar{x}) = \emptyset$

(3) $\psi(\bar{x}, \bar{\lambda}) = \emptyset$

To complete the proof, we show by contraposition that $I(\bar{x}) = \emptyset$.

If not, by a classical separation argument, it follows from (3) that there exists $\bar{p} = (\bar{p}_t) \in \mathbb{R}^r \setminus \{0\}, \bar{p}_t = 0 \ \forall \ t \notin I(\bar{x})$, such that

$\bar{\lambda}$ is a solution of the linear programming problem:
\[
\max \sum_{t \in T_r} p_t \mu_t = 1 \quad \forall i \in M \quad \text{and} \quad \mu_t \geq 0 \quad \forall t \in T_r.
\]

Let \(\mu^i, i \in M \) and \(\alpha_t \geq 0, t \in T_r \) be a system of multipliers for the first order conditions:

\[
(4) \quad p_t = -\alpha_t + \sum_{i \in M} \mu^i_t \quad \alpha_t \lambda_t = 0 \quad \forall t \in T_r.
\]

For each \(i \in M \), setting \(t = \epsilon^i \), the \(i \)th vector of the natural basis of \(\mathbb{R}^M \), we get \(\epsilon^i \geq 0 \). Then let \(t \) be such that \(p > 0 \), which implies \(\epsilon^i > 0 \), and let \(i_0 \) be such that \(\epsilon_0^i > 0 \). From (1), we deduce:

\[
\sum_{i \in M} \epsilon^i t_i > 0 \quad \text{and} \quad \lambda_t t_i > 0 \Rightarrow -p_t = \sum_{i \in M} \mu^i_t \Rightarrow t \in I(\tilde{x}) \Rightarrow \tilde{z}^t \epsilon Q^t(\tilde{x}).
\]

Then \(\tilde{x}_0^i \in \text{co} P^{i_0}(\tilde{x}) \), which contradicts assumption A.1.

Proposition 2. Assume A_1, A_2, A_3. Then if \(r \) is any positive integer, \(C^r(\mathcal{E}) \neq \emptyset \).

Proof

Let \(\mathcal{F} \) be the collection of all finite dimensional subspaces of \(\mathbb{L} \) containing \(\omega^i, i \in M \). For each \(F \in \mathcal{F} \), we set:

\[
X = \prod_{i \in M} X^i \quad \text{if} \quad x \in X, \quad p^i(x) = p^i(x) \cap X^i \quad \text{and} \quad \mu^i = \mu^i \cap F.
\]

and we consider the economy

\[
\mathcal{E}_F = \{(X^i_F, P^i_F, \omega^i)_{i \in M}, (Y^i_F)_{i \in N}, (\theta_{i,j}^i)_{i \in M, j \in N}\}.
\]

Note that \(\hat{x}_F = \hat{x} \cap F^M \). If \(F \) is endowed with the topology induced by the topology of \(\mathbb{L} \), it is easily checked that \(\mathcal{E}_F \) satisfies assumptions A_1, A_2, A_3'. As \(F \) is finite dimensional, it follows from proposition 1 that there exists \(\bar{x}_F \in \hat{x} \cap F^M \) such that
Now the collection \mathcal{F}, ordered by inclusion, is directed. Since \hat{x} is σ^α-compact, by passing to subnets if necessary, we can assume $x_t \to \bar{x} \in \hat{x}$. If $t \in T_\tau$ and $x_t \in \hat{x} \cap Q_\tau (\bar{x})$, there exists F_0 such that $F \supset F_0 \Rightarrow x_t \in \hat{x} \cap Q_\tau (\bar{x})$ which yields a contradiction.

Proposition 3 Assume $A_1 - A_3$. Then $C'(\mathcal{E}) \neq \emptyset$

Proof

From the definition, it is easily seen that for every positive integer r, $C'^r(\mathcal{E})$ is a closed subset of \hat{x}. On the other hand, if $r > r'$, $t' = \frac{r}{r'} t \in T_{\tau}$, with $Y_t' = \frac{r}{r'} Y_t$, $\hat{x}_t' = \hat{x}_t$, so that $C'^{r'}(\mathcal{E}) \subset C'^r(\mathcal{E})$. Then the non-emptiness of $\bigcap_{r > 0} C'^r(\mathcal{E})$ follows from the compactness of \hat{x}.

Proposition 4 Assume $A_1 - A_4$. Then $C'f(\mathcal{E}) \neq \emptyset$

Proof

For each $j \in N$, set $Y^j = \co Y^j$. Let \mathcal{E}' be the private ownership economy $\mathcal{E}' = (\{X^i, P^i, \omega^i\}_{i \in M}, \{Y^j\}_{j \in N}, \{\theta^i j\}_{i \in M, j \in N})$.

Since Y is convex, \mathcal{E} and \mathcal{E}' have the same attainable allocations ; hence \mathcal{E}' satisfies $A_1 - A_3$ and it follows from proposition 3 that $C'^e(\mathcal{E}') \neq \emptyset$. We show now that $C'^e(\mathcal{E}') \subset C'f(\mathcal{E})$. Indeed let $\bar{x} \in C'^e(\mathcal{E}')$. If $\bar{x} \notin C'f(\mathcal{E})$, there exists $t \in T$ and

\[
x^t \in \Pi_i X^i \text{ such that } \begin{align*}
\sum_{t^i > 0} t^i x^{i,t} & \in \sum_{i \in M} t^i \omega^i + \sum_{i \in M} \sum_{j \in N} \theta^i j Y^j \\
\sum_{t^i > 0} x^{i,t} & \in \co P^i(\bar{x}) \forall i : t^i > 0.
\end{align*}
\]
By A-4, for every i, co $P^i (\bar{x})$ is τ-open in X^i.
Then let $\varepsilon > 0$ be such that
$$1 - \varepsilon < \lambda < 1 \Rightarrow \lambda x^i + (1 - \lambda) \omega^i \in \text{co} P^i (\bar{x}) \quad \forall i : t^i > 0.$$
Let $s \in T_\mathcal{Q} = T \cap Q^M$ be such that $t^i = 0 \Rightarrow s^i = 0$ and
$$t^i > 0 \Rightarrow 1 - \varepsilon < \frac{t^i}{s^i} < 1.$$
Set, for each $i : t^i > 0$,
$$x^{i,s} = \frac{t^i}{s^i} x^i + (1 - \frac{t^i}{s^i}) \omega^i$$
and $x^s = (x^{i,s}) \in \prod_{s^i > 0} X^i$.

$$\sum_{s^i > 0} s^i x^{i,s} \in \sum_{i \in M} s^i \omega^i + \sum_{i \in M} s^i \sum_{j \in N} t^i \Theta^{ij} \frac{t^i}{s^i} Y^j \subset \sum_{i \in M} s^i \omega^i + \sum_{i \in M} s^i \sum_{j \in N} \Theta^{ij} Y^j$$
and $x^{i,s} \in \text{co} P^i (\bar{x}) \quad \forall i : s^i > 0$, which contradicts $\bar{x} \in C^s (\mathcal{E}')$.

\[\square\]

Proposition 3 extends the theorem 4.7 of Aliprantis et al (1987) at several instances; in particular, the preferences are not assumed to be transitive or complete. The definition given in section II for the fuzzy core of E extends to the non-ordered case the similar definition given by Aubin (1979) for the fuzzy core of an appropriated economy and proposition 4 extends at several instances the non-emptiness results which can be deduced from the non-emptiness theorems of the fuzzy core of a balanced game.

IV - EQUIVALENCE THEOREMS

Let us denote now by τ the vector space topology considered on L. Let L' be the conjugate space of (L, τ). For each p of L', consider the functions:
\[\forall j \in N, \quad \pi^j(p) = \sup p \cdot Y^j \]

and the correspondences:

\[\forall i \in M, \quad \gamma^i(p) = \{x^i \in X^i \mid p \cdot x^i \leq p \cdot \omega^i + \sum_{j \neq i} \theta^{ij} \pi^j(p)\} \]
\[\delta^i(p) = \{x^i \in X^i \mid p \cdot x^i < p \cdot \omega^i + \sum_{j \neq i} \theta^{ij} \pi^j(p)\} \]

A quasi-equilibrium of \(E \) is a point \((\tilde{x}, \tilde{y}, \tilde{p}) \in \prod_{i \in M} X^i \times \prod_{j \in N} Y^j \times L' \backslash \{0\}\) such that:

1. \(\forall i \in M, \quad \tilde{x}^i \in \gamma^i(\tilde{p}) \) and \(P^i(\tilde{x}) \cap \delta^i(\tilde{p}) = \emptyset \)
2. \(\forall j \in N, \quad \tilde{p} \cdot \tilde{y}^j = \pi^j(\tilde{p}) \)
3. \(\sum_{i \in M} \tilde{x}^i = \sum_{j \in N} \tilde{y}^j + \sum_{i \in M} \omega^i \)

An equilibrium of \(E \) is a quasi-equilibrium \((\tilde{x}, \tilde{y}, \tilde{p})\) such that

\[\forall i \in M, \quad P^i(\tilde{x}) \cap \gamma^i(\tilde{p}) = \emptyset \]. In this case, \(\tilde{x} \) is said to be a Walrasian allocation of \(E \).

It is easily seen that every Walrasian allocation of \(E \) belongs to \(C^f(E) \). The purpose of this section is to prove some converse statements under the following assumptions:

\[B_1 - \forall i \in M, \quad X^i \text{ is convex} \]
\[\forall x \in X, \quad P^i(x) \text{ is } \tau \text{-open in } X^i, \text{ convex and } x^i \in P^i(x) \]
\[B_2 - \forall j \in N, \quad Y^j \text{ is convex and } 0 \in Y^j \]
\[B_3 - \text{If } x \in \hat{X} \text{ then } x^i \in P^i(x) \text{ (the } \tau \text{-closure of } P^i(x) \text{) for every } i \]

and an additional assumption, to be specified later, in the infinite dimensional case.

Let us first remark that under \(B_1, B_2, B_3 \), \(C^f(E) \) and \(C^e(E) \) the fuzzy core of \(E \) and the set of Edgeworth equilibria, coincide (see the proof of proposition 4).

If \(L \) is \(\mathbb{R}^l \), the \(l \)-dimensional Euclidian space, we have the following result, the proof of which does not differ from the proof given in the ordered case.
Proposition 5 Assume B₁, B₂, B₃ and that \(L = \mathbb{R}^l \). Then if \(\bar{x} \in C^f(\mathcal{E}) \), there exists \(\bar{y} \in \prod_{j \in \mathbb{N}} Y^j \) and \(\bar{p} \in \mathbb{R}^l \) such that \((\bar{x}, \bar{y}, \bar{p}) \) is a quasi-equilibrium of \(\mathcal{E} \). Moreover \((\bar{x}, \bar{y}, \bar{p}) \) is an equilibrium provided that \(\bar{p} \omega^j + \sum_j \theta^{ij} \bar{p} \tilde{y}^j > \inf \bar{p} \cdot X^i \quad \forall i \in M \).

Proof

Let \(G = co(\bigcup_{i \in M} (P^i(\bar{x}) - \sum_j \theta^{ij} Y^j - \omega^i)) \). \(G \) is well-defined since \(\bar{x} \in \bar{X} \) and assumption B₃ imply that \(P^i(\bar{x}) \neq \emptyset \quad \forall i \in M \). We first prove that \(0 \notin G \). Indeed if not, there exists \(\lambda = (\lambda_i)_{i \in M} \) such that \(\lambda_i > 0 \quad \forall i \in M \), \(\sum_{i \in M} \lambda_i = 1 \) and \(x \in \prod_{i \in M} X^i \) such that:

\[
\sum_{i \in M} \lambda_i x^i \in \sum_{i \in M} \lambda_i \omega^i + \sum_{i \in M} \sum_{j \in \mathbb{N}} \theta^{ij} Y^j
\]

\[
x^i \in P^i(\bar{x}) \quad \forall i : \lambda_i > 0.
\]

Thus the fuzzy coalition \(\lambda \) blocks \(\bar{x} \), which contradicts \(\bar{x} \in C^f(\mathcal{E}) \).

Then let \(\bar{p} \in \mathbb{R}^l \setminus \{0\} \) be such that \(\bar{p} \cdot g \geq 0 \quad \forall g \in G \). For each \(i \in M \), for every \(j \in \mathbb{N} \),

\[
x^i \in P^i(\bar{x}) \quad \text{and} \quad y^j \in Y^j \Rightarrow \bar{p} \cdot x^i \geq \bar{p} \cdot \omega^i + \sum_j \theta^{ij} \bar{p} \cdot y^j.
\]

Since \(\bar{x} \in \bar{X} \), let \(\bar{y} \in \prod_{j \in \mathbb{N}} Y^j \) be such that \(\sum_{i \in M} \bar{x}^i = \sum_{j \in \mathbb{N}} \bar{y}^j = \sum_{i \in M} \omega^i \).

From B₃, one deduces \(\bar{p} \cdot \bar{x}^i = \sum_j \theta^{ij} \bar{p} \cdot \bar{y}^j + \bar{p} \cdot \omega^i \geq \sum_j \theta^{ij} \bar{p} \cdot \bar{y}^j \quad \forall y^j \in Y^j \) and \(\forall j \in \mathbb{N} \). Then \((\bar{x}, \bar{y}, \bar{p}) \) is a quasi-equilibrium of \(\mathcal{E} \).

If \(\bar{p} \cdot \omega^j + \sum_j \theta^{ij} \bar{p} \cdot \bar{y}^j > \inf \bar{p} \cdot X^i \quad \forall i \in M \), it follows from the openness of \(P^i(\bar{x}) \) in \(X^i \) for every \(i \in M \) that \((\bar{x}, \bar{y}, \bar{p}) \) is an equilibrium of \(\mathcal{E} \).

\(\square \)

If \((L, \tau) \) is any Hausdorff linear topological space, we need an interiority assumption in order to apply a separation argument as in the proof of proposition 5.

Let us first define the correspondences \(P : X \to X \) and \(R : X \to X \) by \(P(x) = \{ x \in X \mid x^i \in P^i(x) \quad \forall i \in M \} \)}
\[R(x) = \{ x \in X / x^i \in R^i(x^i) \ \forall i \in M \}. \]

Note that the definition of \(R \) does not imply by itself any transitivity property on the preference correspondences. In the transitive case, i.e. if for each \(i \) \(P^i \) can be identified to the asymmetric part of a complete preorder \(R^i \) on \(X^i \), then
\[R(x) = \{ x \in X / x^i \in R^i(x^i) \ \forall i \in M \}. \]

We posit the following assumption:

\[C \quad \text{There exists a convex cone } Z(\text{with vertex } 0), \text{ non equal to } L, \]
\[\quad \text{with a non-empty } \tau \text{-interior } i(Z), \text{ such that:} \]
\[\text{either } 1 - x \in \prod_{i \in M} X^i \text{ and } \sum_{i \in M} x^i \in \omega \cdot Y + Z \Rightarrow R(x) \cap \hat{X} \neq \emptyset \]
\[\text{or } 2 - x \in \prod_{i \in M} X^i \text{ and } \sum_{i \in M} x^i \in \omega \cdot Y + Z \Rightarrow (P(x) \cup \{ x \}) \cap \hat{X} \neq \emptyset. \]

Now let us consider the economy \(\mathcal{E}_Z \) deduced from \(\mathcal{E} \) by the addition of a fictitious producer which has \(Z \) as production set; we assume also that \(\theta^{iz} = \frac{1}{\text{card } M} \forall i \in M. \)
\[\mathcal{E}_Z = ((X^i, P^i, \omega^i)_{i \in M}, (Y^j)_{j \in N^i}, Z, (\theta^{ij})_{i \in M, j \in N}, (\theta^{iz})_{i \in M}). \]

Obviously if \(\bar{x} \in C(\mathcal{E}_Z) \) (resp. \(C^f(\mathcal{E}_Z) \)), then, under assumption \(C_1 \), \(\bar{x} \in R(\bar{x}) \cap \hat{X} \) belongs to \(C(\mathcal{E}) \) (resp. \(C^f(\mathcal{E}) \)) ; under assumption \(C_2 \), \(C(\mathcal{E}_Z) \subset C(\mathcal{E}) \) and \(C^f(\mathcal{E}_Z) \subset C^f(\mathcal{E}) \).

If \((\bar{x}, \bar{y}, \bar{z}, \bar{p}) \) is an equilibrium of \(\mathcal{E}_Z \), then under \(C_1 \) there exists \(\bar{y} \in R(\bar{x}) \cap \hat{X} \) and \(\bar{y} \in \prod_{j \in N^i} Y^j \) such that \((\bar{x}, \bar{y}, \bar{p}) \) is an equilibrium of \(\mathcal{E} \); under \(C_2 \), \((\bar{x}, \bar{y}, \bar{p}) \) is an equilibrium of \(\mathcal{E} \).

The next proposition gives an infinite dimensional analogue of proposition 5.

Proposition 6 Assume \(B_1, B_2, B_3 \) and let \(\bar{x} \in C^f(\mathcal{E}_Z) \).

Then, under \(C_1 \), there exist \(\bar{x} \in R(\bar{x}) \cap \hat{X} \), \(\bar{y} \in \prod_{j \in N^i} Y^j \) and
\[p \in L' \setminus \{0\} \] such that \((\bar{x}, \bar{y}, \bar{p}) \) is a quasi-equilibrium of \(E \).

Under \(C_2 \), there exist \(\bar{y} \in \prod_{j \in \mathbb{N}} Y^j \) and \(\bar{p} \in L' \setminus \{0\} \) such that
\[
(\bar{x}, \bar{y}, \bar{p}) \text{ is a quasi-equilibrium of } E.
\]

In the both cases, the quasi-equilibrium of \(E \) is an equilibrium of \(E \) provided that \(\bar{p} \omega^i + \sum_{j \in \mathbb{N}} \Theta^{ij} \pi^j(p) > \inf_{j \in \mathbb{N}} \bar{p} \cdot X^i \quad \forall i \in M. \)

Proof

Let \(\bar{x} \in C^f(E_Z) \) and let \(G = \text{co}(\bigcup_{i \in \mathbb{N}} (P^i(\bar{x}) - \sum_{j \in \mathbb{N}} \Theta^{ij} Y^j - Z - \omega^i)) \)

Using the fact that \(Z \) is a convex cone, one sees as in the proof of proposition 5 that \(0 \notin G. \) Since \(G \) has a non-empty \(\tau \)-interior, there exists \(\bar{p} \in L' \setminus \{0\} \) such that \(\bar{p} g \geq 0 \quad \forall g \in G. \)

Under \(C_1 \), let \(\bar{x} \in R(\bar{x}) \) and let \(\bar{y} \in \prod_{j \in \mathbb{N}} Y^j \) be such that
\[
\sum_{i \in \mathbb{N}} \bar{x}^i = \sum_{i \in \mathbb{N}} \omega^i + \sum_{j \in \mathbb{N}} \bar{y}^j.
\]

Then for each \(i \in \mathbb{N} \) and for every \(j \in \mathbb{N}, \)
\[
x^i \in P^i(\bar{x}), \quad y^j \in Y^j, \quad z \in Z \Rightarrow x^i \in P^i(\bar{x}) \quad \text{and} \quad \bar{p} \cdot x^i \geq \bar{p} \cdot \omega^i + \sum_{j \in \mathbb{N}} \Theta^{ij} \bar{p} \cdot y^j + \bar{p} \cdot z.
\]

Since \(\sum_{i \in \mathbb{N}} \bar{x}^i = \sum_{i \in \mathbb{N}} \omega^i + \sum_{j \in \mathbb{N}} \bar{y}^j \) and \(0 \in Z, \) one deduces from \(B_3 \) that
\((\bar{x}, \bar{y}, \bar{p}) \) is a quasi-equilibrium of \(E. \)

Under \(C_2, \) let \(\bar{x} \in (P(\bar{x}) \cap \{\bar{x}\}) \cap \hat{X}. \) Since \(\bar{x} \in C^f(E_Z), \) \(\bar{x} = \bar{x} \) and \(\bar{x} \in \hat{X}. \) Then let \(\bar{y} \in \prod_{j \in \mathbb{N}} Y^j \) be such that \(\sum_{j \in \mathbb{N}} \bar{x}^i = \sum_{j \in \mathbb{N}} \bar{y}^j + \sum_{i \in \mathbb{N}} \omega^i. \) As previously, one sees that \((\bar{x}, \bar{y}, \bar{p}) \) is a quasi-equilibrium of \(E. \)

In the both cases, it should be noticed that \(\bar{p} \cdot z \leq 0 \quad \forall z \in Z. \)

If \(\bar{p} \cdot \omega^i + \sum_{j \in \mathbb{N}} \Theta^{ij} \pi^j(p) > \inf_{j \in \mathbb{N}} \bar{p} \cdot X^i \quad \forall i \in M, \) it follows from the \(\tau \)-openness of \(P^i(\bar{x}) \) in \(X^i \) for every \(i \in \mathbb{N} \) that the quasi-equilibrium is an equilibrium.

To end this section, let us remark that proposition 6 is not *stricto sensu* an equivalence theorem between the fuzzy core and the set of walrasian allocations of the economy \(E. \)

Actually, in the infinite dimensional case, proposition 6 proves
that some allocations in $C^f(\mathcal{E})$, but not necessarily all of them, can be decentralized by a price system as competitive equilibria of \mathcal{E}. However, it will be seen later that, in some applications, $C^f(\mathcal{E}_Z)$ coincides with $C^f(\mathcal{E})$.

V - APPLICATIONS

Proposition 6 can be applied as well to economies which satisfy some interiority assumption à la Duffie (1986) as to economies which satisfy some uniform properness assumption à la Mas-Colell (1986).

More precisely, let A_Y and, for every j, A_Y^j denote the asymptotic cones of Y and Y^j; if, for each i, P^i can be identified to the asymmetric part of a complete preorder R^i on X^i, let D be the preference generated set defined as in Debreu (1962):

$$D = \left\{ \sum_{i \in M} x^i - \sum_{i \in M} \omega^i / x^i \in P^i (\tilde{x}) \quad \forall \ i \in M \right\}$$

and D the cone (with vertex 0) generated by D.

Proposition 7 If A_Y has a non-empty τ-interior, assumption C_1 of proposition 6 can be satisfied with $Z=A_Y$ (or any convex cone with a non-empty τ-interior contained in A_Y). In the transitive case, if (A_Y-D) has a non-empty τ-interior, assumption C_1 of proposition 6 can be satisfied with $Z=A_Y-D$ (or any convex cone with a non-empty τ-interior contained in A_Y-D). Moreover in this last case, if $\sum_{j \in N} A_Y^j-D$ has a non-empty τ-interior, then $C^f(\mathcal{E}_Z)$ coincides with $C^f(\mathcal{E})$.

Proof

The easy proof of the two first statements of proposition 7, which is given in Florenzano (1987), is omitted.

If $Z = \sum_{j \in N} A_Y^j-D$ has a non-empty τ-interior, we show that
$C^f(\mathcal{E}) \subset C^f(\mathcal{E}_z)$. Let $\bar{x} \in C^f(\mathcal{E})$.

If there exists $t \in T$ and $x^i \in \prod X^i$ such that $t^i > 0$

\[\sum_{i \in M} t^i x^i \in \sum_{i \in M} t^i \omega^i + \sum_{j \in N} \sum_{i \in M} t^i \theta^i j Y^j + \sum_{j \in N} AY^j - D \]

\[x^i \in P^i(\bar{x}) \quad \forall i : t^i > 0 \]

then let $\lambda \geq 0$ and, for each i, $x'^i \in P^i(\bar{x})$ be such that

\[\sum_{i \in M} (t^i x^i + \lambda x'^i) \in \sum_{i \in M} (t^i + \lambda) \omega^i + \sum_{j \in N} \sum_{i \in M} t^i \theta^i \omega^j + \sum_{j \in N} AY^j. \]

Using the assumption B_1 and B_2, an easy calculation shows that if $t'^i = \frac{t^i + \lambda}{\sum_{i \in M} (t^i + \lambda)}$, the fuzzy coalition $t' = (t'^i)_{i \in M}$ blocks \bar{x} in economy \mathcal{E}, which contradicts $\bar{x} \in C^f(\mathcal{E})$.

Assume now that the commodity space (L, τ) is a locally convex-solid topological vector lattice (we use here the terminology of Aliprantis and Burkinshaw (1978)). We write \leq the order relation on L, $<$ the associated strict relation, \wedge and \vee the classical lattices notations for infimum and supremum. As usually, for an element x of L, x^+, x^- and $|x|$ denote respectively the positive part, the negative part, and the absolute value of x; L^+ is the positive cone of L.

Let $\mathcal{V}_\tau(0)$ be a basis of convex and solid σ-neighborhoods. We give here two slightly different formulations for uniform properness of preferences in the transitive case and in the general case.

In the transitive case, we say that preferences are uniformly proper if the following assumption is satisfied:

\[D_1 - \quad \forall i \in M, X^i = L^+, \omega^i \in X^i \text{ and there exists } \nu^i > 0 \]

and $\nu^i \in \mathcal{V}_\tau(0)$ such that for all $x^i \in X^i$ and $\lambda > 0$

\[X^i \cap (\{x^i\} + \lambda(\{v^i\} + \nu^i)) \subset R^i(x^i) \]

In the general case, we follow Zame (1987) and say that
preferences are uniformly proper if the following assumption is satisfied:

\[D_2 - \forall i \in M, x^i = L^i, \omega^i \in X^i \text{ and there exists } v^i > 0 \]
and \(V^i \subseteq \mathcal{V}_\tau(0) \) such that for all \(x \in \prod_{i \in M} X^i \) and \(\lambda > 0 \)
\[X^i \cap \left(\{x^i\} + \lambda (\{v^i\} + V^i) \right) \subseteq P^i(x) \]

\(v^i \) is then interpreted as a direction of strict desirability for \(i \).

For uniform properness of production, we follow Richard (1986) and say that each production set is uniformly proper if the following assumption is satisfied:

\[D_3 - \forall j \in N, \text{ there exist } v^j > 0 \text{ and } V^j \subseteq \mathcal{V}_\tau(0) \]
such that for all \(y^j \in Y^j \), \(\lambda \geq 0 \) and \(u \in V^j \)
\[(y^j - \lambda v^j + \lambda u)^* \leq y^j \Rightarrow y^j - \lambda v^j + \lambda u \in Y^j \]
(or, equivalently, \(\lambda u^* \leq y^j - \lambda v^j \Rightarrow y^j - \lambda v^j + \lambda u \in Y^j \))

But uniform properness of production can also be stated for the total production set \(Y \) in the assumption:

\[D_4 - \text{There exists } v^Y > 0 \text{ and } V^Y \subseteq \mathcal{V}_\tau(0) \text{ such that} \]
for all \(y \in Y \), \(\lambda \geq 0 \) and \(u \in V^Y \)
\[(y - \lambda v^Y + \lambda u)^* \leq y^* \Rightarrow y - \lambda v^Y + \lambda u \in Y. \]
(or, equivalently, \(\lambda u^* \leq y^* + \lambda v^Y \Rightarrow y - \lambda v^Y + \lambda u \in Y). \]

Assumption \(D_3 \) (resp \(D_4 \)) means that each \(Y^j \) (resp. \(Y \)) has an almost asymptotic cone with a non-empty \(\tau \)-interior: every point of \(Y^j \) (resp. \(Y \)) is the vertex of a \(\tau \)-open cone, the points of which can be produced as far as they correspond to a least output than the initial point.

Obviously \(D_3 \) implies \(D_4 \) with \(v^Y = \sum_{j \in N} v^j \) and \(V^Y = \bigcap_{j \in N} V^j \).
Indeed let \(y \in Y, \lambda \geq 0 \) and \(u \in \bigcap_{j \in \mathbb{N}} V^j \); if \(\lambda u^* \leq y^* + \lambda v^* \leq \sum_{j \in \mathbb{N}} (y^j - \lambda v^j) \), it follows from the decomposition property of vector lattices that \(\lambda u^* = \sum_{j \in \mathbb{N}} w^j \) with \(0 \leq w^j \leq y^j - \lambda v^j \) \(\forall j \in \mathbb{N} \).

Then, for \(j = 1 \), \(|w^1 - \lambda u^*| \leq w^1 \leq \lambda u^* \leq \lambda |u^*| \) and \(w^1 - \lambda u^* \in \lambda V^1 \).

As \((w^1 - \lambda u^*)^* \leq w^1 \leq y^1 - \lambda v^1\), it follows from \(D_3 \) that \(y^1 - \lambda v^1 + w^1 - \lambda u^* \in Y^1 \).

For \(j \neq 1 \), it follows from \(D_3 \) that \(y^j - \lambda v^j + w^j \in Y^j \).

By summation, \(y - \lambda v^Y + \lambda u \in Y \).

Proposition 8 in the analogue of proposition 7. Its proof uses extensively the decomposition property of vector lattices.

Proposition 8 Assume \(D_1 \) and \(D_4 \) in the transitive case, \(D_2 \) and \(D_4 \) in the general case. Then the assumptions \(C_1 \) in the transitive case, \(C_2 \) in the general case of Proposition 6 can be satisfied with

\[
Z = \{ \lambda(-v+u)/\lambda \geq 0, u \in V \}, \quad v = v^Y + \sum_{i \in \mathbb{M}} v^i, \quad V \subset V^Y \cap (\bigcap_{i \in \mathbb{M}} V^i),
\]

\(V \in \Psi_\tau (0) \) such that \(v \notin V \).

Moreover assume \(D_1 \) and \(D_3 \) in the transitive case. If

\[
Z = \{ \lambda(-v+u)/\lambda \geq 0, u \in V \} \text{ with } v = \sum_{i \in \mathbb{M}} v^j + \sum_{i \in \mathbb{M}} v^i, \quad V \subset (\bigcap_{i \in \mathbb{M}} V^j) \cap (\bigcap_{i \in \mathbb{M}} V^i)
\]

\(V \in \Psi_\tau (0) \) such that \(v \notin V \), then \(C^f (E) \) coincide with \(C^f (E_z) \).

Proof

Let \(x \in \bigcap_{i \in \mathbb{M}} X^i \) be such that \(\sum_{i \in \mathbb{M}} x^i = \omega + y - \lambda v + \lambda u \) with \(y \in Y, u \in V, \lambda > 0 \).

If \(\lambda > 0 \), \(\lambda u^* \leq \sum_{i \in \mathbb{M}} (x^i + \lambda v^i) + y^* + \lambda v^y \) and it follows from the decomposition property that \(\lambda u^* = \sum_{i \in \mathbb{M}} s^i + s^y \) with for each \(i \in \mathbb{M} \)

\[
0 \leq s^i \leq x^i + \lambda v^i \quad \text{and} \quad 0 \leq s^y \leq y^* + \lambda v^y .
\]

For each \(i \in \mathbb{M}, x^i + \lambda v^i - s^i \in X^i \) and \(\sum_{i \in \mathbb{M}} (x^i + \lambda v^i - s^i) = \omega + y - \lambda v^Y + s^Y - \lambda u^- \).

Since \(|s^y - \lambda u^-| \leq |s^y| \leq y^* + \lambda v^*. \) For the other hand, \((s^y - \lambda u^-)^* \leq |s^y| \leq y^* + \lambda v^*. \)

It follows from assumption \(D_4 \) that \(y - \lambda v^Y + s^Y - \lambda u^- \in Y \).
In the transitive case, it follows from D_1 that $x_i^t + v_i^t - s_i^t \in R^i(x^t)$ for all $i \in M$ and $\tilde{x} \cap R(x) \neq \emptyset$.

In the general case, it follows from D_2 that $x_i^t + v_i^t - s_i^t \in P^i(x)$ for all $i \in M$ and $\tilde{x} \cap P(x) \neq \emptyset$.

Now assume D_1 and D_3 in the transitive case and that Z is defined as in the last statement of proposition 8. Let $\tilde{x} \in C^f(\tilde{E})$. If

$$\sum_{i \in M} t_i^i x_i^i = \sum_{i \in M} t_i^i \omega^i + \sum_{i \in M} t_i^i y_j^j + \lambda (-v + u)$$

with $\lambda > 0$, $x_i^t \in X_i^1$ for all $i \in M$, $y_j^j \in Y_j^j$, $x_i^t \in P_i^t(\tilde{x})$ for all $i : t_i^i > 0$, then, as previously,

$$\lambda u^* \leq \sum_{i \in M} t_i^i (x_i^i + \frac{\lambda}{t_i^i} v_i^i) + \sum_{i \in M} \sum_{j \in N} t_i^i \Theta_j^1 (y_j^j + \frac{\lambda}{mt_i^i \Theta_j^1} v_j^j)$$

with $m = \text{card } M$.

$$\lambda u^* = \sum_{t_i^i > 0} s_i^t + \sum_{t_i^i > 0} s_i^t$$

with $0 \leq s_i^t \leq t_i^i (x_i^t + \frac{\lambda}{t_i^i} v_i^t)$ for all $i : t_i^i > 0$.

From D_1 one deduces:

$$x_i^t + \frac{\lambda}{t_i^i} v_i^t - s_i^t \in R^i(x_i^t) \subset P^i(\tilde{x}) \quad \forall i : t_i^i > 0.$$

On the other hand

$$\sum_{i \in M} t_i^i (x_i^t + \frac{\lambda}{t_i^i} v_i^t - \frac{\lambda}{t_i^i} s_i^t) = \sum_{i \in M} t_i^i \omega^i + \sum_{i \in M} t_i^i [\Theta_i^1 (y_i^t - \frac{\lambda}{mt_i^i \Theta_i^1} v_i^t + \frac{s_i^t - \lambda u_i^t}{mt_i^i \Theta_i^1}) + \sum_{j \neq 1} \Theta_j^1 (y_j^t - \frac{\lambda}{mt_i^i \Theta_j^1} v_j^t + \frac{s_j^t}{mt_i^i \Theta_j^1})]$$

From D_3 it follows that

$$y_i^t - \frac{\lambda}{mt_i^i \Theta_i^1} v_i^t + \frac{s_i^t - \lambda u_i^t}{mt_i^i \Theta_i^1} \in Y_i^t$$

and

$$y_j^t - \frac{\lambda}{mt_i^i \Theta_j^1} v_j^t + \frac{s_j^t}{mt_i^i \Theta_j^1} \in Y_j^t \quad \forall j > 2.$$

By addition, one gets
Let us now consider simultaneously the two vector space topologies \(\sigma \) and \(\tau \) on the commodity space \(L \).

Under \(C_1 \), if \(C_1^f (L) \) coincide with \(C_1^f (E) \), the addition of assumptions \(A_1, A_2, A_3 \) (written for \(L \) endowed with \(\sigma \)) with \(B_1, B_2, B_3 \) (written for \(L \) endowed with \(\tau \)) guarantees the existence of quasi-equilibria for economy \(E \). We saw in the previous section that this condition is satisfied in the transitive case if \(Z = \sum_{j \in \mathbb{N}} AY_j - D \) has a non-empty \(\tau \)-interior or, when \((L, \tau) \) is a locally convex topological vector lattice, under uniform properness assumptions \(D_1 \) on preferences and uniform properness assumptions \(D_3 \) on each production set. This last case was addressed in Aliprantis et al (1987) who obtain in theorem 5.10 the same existence theorem as Richard (1986).

In all the other cases, let us formulate the following assumptions on economy \(E \):

\[A'_1 - \forall i \in M, X_i \text{ is convex, } \sigma \text{-closed and } \omega_i \in X_i \]
\[\forall x \in X, x \in C^i (x) \]
\[P_i^i \text{ has } \sigma^m \text{-open lower sections and } \tau \text{-open upper sections} \]

\[A'_2 - \forall j \in N, Y_j \text{ is convex, } \sigma \text{-closed and } 0 \in Y_j \]
A^1_j - \hat{X} is σ^m-compact

A^2_j - $\forall j \in N$, \hat{Y}^j is σ-compact

B' - If $x \in \hat{X}$, then $x^i \in \text{co} P^i(x)$ (the τ-closure of $\text{co} P^i(x)$) for every $i \in M$

C' - There exists a σ-closed convex cone Z (with vertex 0) with a non-empty τ-interior $i(Z)$ such that

either 1) $x \in X$ and $\sum_{i \in M} x^i \in \omega + Y + Z \Rightarrow R(x) \cap \hat{X} \neq \emptyset$

or 2) $x \in X$ and $\sum_{i \in M} x^i \in \omega + Y + Z \Rightarrow (P(x) \cup \{x\}) \cap \hat{X} \neq \emptyset$

We first prove a non-emptiness theorem which has as corollaries several existence theorems.

Proposition 9 Assume $A^1_j - A^2_j$ and C^1_j or C^2_j and A^3_j. Then $C^f (E_Z)$ is non-empty.

Proof

Let \mathcal{K} be the collection of the convex and σ-compact subsets K of L containing 0, each \hat{X}^i and each \hat{Y}^j in case of assumption A''^3.

For each $K \in \mathcal{K}$, if $x \in \prod_{i \in M} (X^i \cap K)$, we set $P^{1k}(x) = P^i(x) \cap K$ and we consider the economy:

$$E^k_Z = \left\{ ((X^i \cap K, P^{1k}, \omega^i)_{i \in M}, (Y^j \cap K)_{j \in N}, Z, (\theta^{1j})_{i \in M}, (\theta^{1z})_{i \in M}) \right\}.$$

It is easily seen that \hat{X}^k_Z is σ^m-closed, hence σ^m-compact. Thus it follows from proposition 4 that $C^f (E^k_Z) \neq \emptyset$. Then let $\tilde{x}^k \in C^f (E^k_Z)$.

It follows from C' (resp. C' and A'') that there exists $\tilde{x}^k \in R(\tilde{x}^k) \cup \hat{X}^1$ (resp that $\tilde{x}^k \in \hat{X}$). Now the collection \mathcal{K} is directed by set-inclusion.

Since \hat{X} is σ^m-compact, we can assume, by passing to subnets if necessary, that $\tilde{x}^k \to \bar{x} \in \hat{X}$ (resp. that $\tilde{x}^k \to \bar{x} \in \hat{X}$). It is easy
to see that if $\tilde{x} \in C'f(\mathcal{E}_Z)$, then there exists K_0 such that $K \ni K_0 \Rightarrow \tilde{x}^k \in C'f(\mathcal{E}_Z^k)$, which yields a contradiction.

\[\square \]

Corollary 1 Assume $A'_1 = A'_3$, B' and C'_1 or C'_2 and A''_3. Then \mathcal{E} has a quasi-equilibrium.

The proof is an immediate consequence of proposition 6.

Note that under C'_1, the assumption that each Y^j is convex and σ-closed can be replaced by: Y is convex and σ-closed.

We have in particular:

Corollary 2 If Y is convex and σ-closed and if AY has a non-empty τ-interior, \mathcal{E} has a quasi-equilibrium under A'_1, A'_2, A'_3 and B'.

\[\square \]

To go further, we need to make an assumption on the commodity space L, which connects the topologies τ and σ considered on L. We set:

$E_1 - (L, \tau)$ is a Hausdorff locally convex topological vector space and τ has a basis $\Psi_\tau(0)$ of convex, circled and σ-closed σ-neighborhoods V whose gauge p_V is a norm.

$E_2 - (L, \tau)$ is a Hausdorff locally convex-solid topological vector lattice and τ has has a basis $\Psi_\tau(0)$ of convex, solid and σ-closed σ-neighborhoods V whose gauge p_V is a norm.

Under these two assumptions if $V \in \Psi_\tau(0)$ and if $v \notin V$, the convex cone generated by $\{v\} + V$ is σ-closed. In view of propositions 7 and 8, proposition 9 has the following corollaries:
Corollary 3 Assume E_1, $A_1' - A_3'$ and B'. Then if $(AY-D)$ has a non-empty τ-interior, E has a quasi-equilibrium.

If $\omega \in \sum_{i \in M} X^i - i(AY-D)$, then under an irreducibility assumption on economy E, this quasi-equilibrium is an equilibrium.

Proof
The first statement follows from E_1, proposition 7 and corollary 1 (of proposition 9) since if $v \in i(AY-D)$, $v \neq 0$. Then if $V \in V_\tau(0)$ is such that $v \notin V$ and $\{v\} + V \subset AY-D$, the convex cone generated by $\{v\} + V$ is σ-closed and contained in $AY-D$, hence satisfies C_i.

If $\omega \in \sum_{i \in M} X^i - i(AY-D)$, v can be chosen in $\sum_{i \in M} X^i - \omega$.

Let $(\tilde{x}, \tilde{y}, \tilde{p})$ be the quasi-equilibrium of E. $\tilde{p}.v < 0$ and $\tilde{p}.\omega^i + \sum_{i \in M} \theta^{ij} \tilde{p}.y^j > \tilde{p}.\omega^i > \inf_{i \in M} \tilde{p}.X^i$ for some $i \in M$. Then the irreducibility assumption guarantees that $\tilde{p}.\omega^i + \sum_{i \in M} \theta^{ij} \tilde{p}.y^j > \inf_{i \in M} \tilde{p}.X^i$ for every $i \in M$.

Corollary 4 Assume E_2, $A_1' - A_3'$ and B'. Then under D_1 and D_4 in the transitive case, D_2, D_4 and A_3' in the general case, E has a quasi-equilibrium.

If, in the uniform properness assumptions, each v^i and v^Y can be chosen such that $v^i \leq \omega \quad \forall i \in M$ and $v^Y < \omega$, then under an irreducibility assumption on E, this quasi-equilibrium is an equilibrium.

Proof
The first statement is a consequence of E_2, proposition 8 and corollary 1 of proposition 9.

Let $(\tilde{x}, \tilde{y}, \tilde{p})$ be the quasi-equilibrium of E. If $v \leq (m+1) \omega$, it follows from $\tilde{p}.v > 0$ that $\tilde{p}.\omega^i + \sum_{i \in M} \theta^{ij} \tilde{p}.y^j > \tilde{p}.\omega^i > \inf_{i \in M} \tilde{p}.X^i$.
for some $i \in M$. Then, as previously, $\tilde{p}_i \omega^i + \sum_{i \in M} \theta^i \tilde{p}_i \gamma^i > \inf_{i \in M} \tilde{p}_i x^i$

for every $i \in M$.

As irreducibility assumption we propose the following:

For every x in \hat{X} and for any proper and non-empty subset J of M, there exist $x' \in X$ and a set of real numbers $\theta^i > 1$, $i \in M$ satisfying:

1. $x' \in P^i(x)$ for $i \in J$ with $x'^o \in P^o(x)$ for some $i_o \in J$
2. $\sum_{i \in M} \theta^i (x'^i - \omega^i) \in Y$.

It can easily be checked that some definitions of irreducibility, given in the infinite dimensional setting (see Jones (1987), Zame (1987)) are more restrictive.

The remainder of this section is devoted to a short discussion on the admissible commodity spaces in corollary 3 and corollary 4 in relation with the choice of σ.

If $\sigma = \sigma(L, L')$, any Hausdorff locally convex topological vector space L whose the topology τ is generated by a family of norms satisfies assumption E_1. Note that such a space is not necessarily normed. In view of the convexity assumptions, the σ-closedness requirements for each production set and each consumption set can be written for τ; it is the same for the σ-openness of the lower sections of each P^l if the preferences are convex, transitive and complete. But the $\sigma(L, L')$-compactness of the attainable sets may be a strong assumption except if L is semi-reflexive; in this last case, boundedness assumptions guarantee the relative (and thus the) $\sigma(L, L')$-compactness of the attainable sets. This case covers L_p, $p > 1$ but also Q_1 the space of real functions indefinitely differentiable on $[0,1]$.

If \((L, \tau)\) is a normed space, the conjugate space of some other normed space \(M\), and if the norm on \(L\) is the dual norm of the norm on \(M\), then \((L, \tau)\) satisfies assumption \(E_1\) with \(\sigma = \sigma(L, M)\). In this case, norm-boundedness assumptions guarantee the relative compactness of the attainable sets. But if \(L \neq M\), the \(\sigma\)-closedness requirements for each consumption and production set and the \(\sigma\)-openness of the lower sections for preference correspondences may be strong assumptions which have natural economic interpretations in commodity spaces of economic interest as \(L^\infty\) or \(ca(K)\) (see Bewley (1972), Brown-Lewis (1981), Jones (1986).

In the same way if \(\sigma = \sigma(L, L')\), any Hausdorff locally convex solid topological vector lattice \(L\) whose the topology \(\tau\) can be generated by a family of Riesz norms satisfies assumption \(E_2\). If \(L\) is a Dedekind complete Lebesgue space, order-boundedness assumptions guarantee the relative \(\sigma(L, L')\) - compactness of the attainable sets. This case covers in particular the spaces \(L_p, p \geq 1\).

If \(L\) is a normed Riesz space with the Fatou property (in particular if \(L\) is the dual of some normed Riesz space \(M\)), let \(L_n^\sim\) be the order-continuous dual of \(L\) and \(L_n = L' \cap L_n^\sim\). Then if \(L_n'\) separates the points of \(L\), \(L\) satisfies assumption \(E_2\) for \(\sigma = \sigma(L, L_n')\). If, in addition, \(L\) is Dedekind-complete, order-boundedness assumptions guarantee the \(\sigma(L, L_n')\) - compactness of the attainable sets. And the relation in \(L\): \(x^\sim \uparrow x \Rightarrow x^\sim \sigma \Rightarrow x\) gives rise to natural interpretations of the \(\sigma\)-openness of the lower section of preferences correspondences.
REFERENCES

M. DEGHDAK, Equilibre et coeur d'une économie dans un lattice de Banach qui a un pré-dual - thèse 3ème cycle en Mathématiques - Université de Paris VII, 1987.

M. FLORENZANO, On the non-emptiness of the core of a coalitional production

M. FLORENZANO, Equilibrium in a production economy on an infinite dimensional commodity space. A unifying approach, Working-Paper CEPREMAP N° 8740.

