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CONSISTENT M-ESTIMATORS IN A SEMI-PARAMETRIC MODEL
C. GOURIEROUX, A. MONFORT, E. RENAULT

ABSTRACT

It is well known that in a fully parametric model maximum 1likelihood
estimation provids asymptotically efficient estimators. However it is in
general difficult to assume that the p.d.f. of the observations belongs to a
given parametric family.

In this paper we consider semi-parametric models with weak distributional
assumptions and we consider M-estimators of the parameter of interest. We
determine the form of the criteria to be optimised in order to obtain
consistent M-estimators. These results are then applied to M-estimation of
parameters appearing in conditional mean, conditional variance, conditional
guantiles... : ’

M-ESTIMATEURS CONVERGENTS DANS UN MODELE SEMI-PARAMETRIQUE

RESUME

L’efficacité asymptotique des estimateurs du maximum de vraisemblance est
traditionnellement invoquée pour justifier leur utilisation dans les modéles
statistiques paramétriques. Mais il est souvent difficile de spécifier un
modéle paramétrique dont on puisse affirmer, sans risque d’erreur, qu’il
contient la vraie distribution de probabilité inconnue des observations.

C’est pourquoi nous considérons dans cet article des modéles semi-
paramétriques pour lesquels les hypothéses distributionnelles sont faibles.
On définit dans ce contexte des M-estimateurs des paramétres d’intérét
obtenus par minimisation de certains critéres et on caractérise les critéres
qui fournissent des M-estimateurs convergents. Ces résultats généraux sont
ensuite appliqués a la M-estimation de paramétres qui interviennent dans une
moyenne conditionnelle, wune variance conditionnelle, des quantiles
conditionnels...

J.E.L. CLASSIFICATION SYSTEM : 210.

KEY WORDS : Asymptotic inference - Robustness - Limited dependent variable
models.

MOTS CLEFS : Inférence asymptotic - Robustesse - Modéles & variables
dépendantes limitées.



1, INTRODUCTION

It 1is well known that in a fully parametric model
maximum likelihood estimation provides asymptotically

efficient estimators. However it 1is, in general, difficult to

assume, as it 1is required 1in parametric models, that the
p.d.f. of the observations belongs to a given parametric
family; moreover, if it 1is not the case, the maximum

likelihood estimator based on this family may have very bad
properties, in particular it may be inconsistent. This is the
reason why the econometricians often prefer to use
semi-parametrib modéls  in which the parameter does not
characterise the probability distribution of the observations
but only defines a set of possible distributions. For

instance, -in the non-linear regression model defined by:

v, =m(>«:t;8)+ut t =1,...T

E(ut | LR .,xT) =0,
the parameter, denoted by 8, characterises the conditional
expectation of the endogenous variables v, given the

exogenous variables %, but does not give any information on
the other features of the conditional distribution: e.g. the

variance, the skewness, the kurtosis...

In a semi-parametric model, the maximum likelihood
estimators are no longer available and important estimators
are the M-estimators obtained by minimising a criterion of

T

the form E: ¢(xt, Yoo 8), where x, (resp. yt) is the tt'?
t=1

observation of the exogenous (resp. endogenous) variables

({see Huber [1981], Burguete-Gallant-Souza [1982]}). In the

non-linear regression . model considered above such an

estimator is the non-linear least squares estimator obtained

by minimising:



T
Z (yt - m(xt, 6))2.
t=1

This particular case has been extensively studied (see
Malinvaud [1970], Jennrich [1969]). More generally,
Gouriéroux-Monfort-Trognon [1984] considered the case where
the parameter of interest appears in the conditional mean
and/or the conditional variance of an endogenous variable and
where the criterion to be minimised is a pséudo likelihood
function, i.e. é likelihood function based on p.d.f. family

which does not necessarily contain the true p.d.f.

In this paper, we are interested 1in the general
probleh of characterising the consistent M-estimators in a
semi-parametric model. In the framework proposed, the
parameter of interest is defined in a fairly general manner
and the criteria -considered are only submitted to mild
regularity restrictions. The usual ways of defining
parameters of interest, through conditional moﬁents or
conditional quantiles, are particular cases of the approaéh
considered here; moreover the criteria to be minimised are
not required a priori to belong to some class, such as the
pseudo~likelihoods class. In this general framework we answer
the following question: for a given kind of parameters of
interest what are the criteria whose minimisation provides
consistent estimators? Then, the characterisation obtained is

applied to various contexts.

In section 2 we propose a general way of defining the
rarameter of interest. In section 3 we define the M-estimator
procedures and we give necessary and sufficient conditions
fér a given criterion to provide a consistent M-estimator. In
section 4 these conditions are used in order to exhibit the
class of criteria providing consistent M-estimators for a

given definition of the parameter of interest. In section 5



this result is applied to the estimation of various
semi-parametric models: M-estimation of a regression
parameter (with or without an assumption of symmetry of the
disturbances, with or without censoring), M—éstimation of
parameters appearing in a conditional mean and a conditional
variance, M-estimation of parameters defined through

conditional quantiles.



2. PARAMETER OF INTEREST

_We observe two sequences of random vectors Xt, Yt.

t=1,...,T. The ranges of Xt and Yt are respectively £ ¢ [Rf
and Y C R?. For expository purposes, we assume that the
(Xt, Yt), t € N, are identically and independently
distributed; however this assumption might be weakened (see,

for instance, Burguete-Gallant-Souza [1982] or White [1982]
[1984]).

Assumption A.1.

i) The observations (Xt, Yt), t=1,...,T, are independent

and have fhe same unknown probability distribution Po'

ii) P0 belongs to a family P of probability distributions on
£ x Y. ’

In a semi-parametric model the parameter of interest

is defined by the set of restrictions it has to verify.

Let us consider some examples, where Y is a one

dimensional random variable.

a) g (Y - 80) = 0 or, equivalently, J (y - 90) dPo(x, v) =0
4] ..
defines the mean of Y.

P

0

b) E |1 - )] = 0, or dP (%, y) = « defines the
( vséo ) Jygeo 0 !

«-quantile of the distribution of Y.



c) E [\ (\ - X'® )] = 0, or J. lxy - '8 ] dP (x, y) = 0
P 0 0 0

0
defines the coefficients in the linear regression of Y on

the components ot X.

d) E {#(XO) Y - m(X.BD]} = 0, or

PO
I @(x)[y-m(x,eo)]dpo{x.y) = 0, for any function ¢ and for a
given function m, defines the parameter appearing in the

conditional mean of Y given X.

X' 6 )] = 0, or J (x v - x ' 8 ) dP (%, y) = O
r e ) 2 271 o °

X;, X; and dim X2 z dim Xl) defines the

e) E [x (Y
p 2
[+]
X.

(where

coefficients in a “structural” relationship between Y and X1

admitting X2 as instrumental variable.

More generally the parameter of interest is defined
from the following assumption.
Assumption A.2

There exist a set ® C R and a familv G of real

functions defined on £ x 4 x &* such that:

i) for any B8 € ® and g € G, (%, v, 8) is integrable with

respect to any P € P;

ii) for any P € P, there exists a unique element of ®%,

called the parameter of interest. satisfving

E g(X, Y, B8) = j g%, v, 8) dP(x, ¥) = 0 vV g € G.
P X

These constraints are called identifying constraints.




The parameter of interest corresponding to a

distribution P is denoted by g(P); we also introduce the

notations:

(2.1) ® = { 8(P), P € P}

(2.1) Po = (P EP: B(P) =0}
={P€:?:gg(x.8)=0, Vgeg}

Thus, ® is the set of the possible values of the parameter of
interest, and the uniqueness condition of A.2.ii) means that
‘any value 6 € ® of this parameter is identifiable. Since the
true probability distribution P0 is assumed to belong to P
(see A.l1.ii)), it 1is possible to associate with Po a unique
value Bo of the parameter and this value 60 is called the
true value of the parameter of interest. Also note that 53 is
not, in general, reduced to one element; this means that B8
does not characterise, in general, one probability
distribution and this is the semi-parametric feature of the

model.



3. THE M-ESTIMATORS

3.a. Definition

. In order to estimate 80 we minimise a c¢riterion of
T
the form «u (X , YQJ 9).
t=1

. Definition 3.1

4 M-estimator of 8 associated with the criterion &

where « is a real function defined on X x 3 x ®, is a local
T

N
~

minimum BT of 4L ¢(Xt. Yt, 8).
t=1

In fact we consider the M-estimators which satisfy

the following régularity condition.

Definition 3.2

A M-estimator 1is said to be Eo asymptotically
separated if there exists a set Q of sequences
w = (xt, yt), t € N satisfying PO(Q) > 0, an integer To

and a positive scalar € such that:

v e®, vT = To' VvV w €

T
||8-§T|| <_€=Z__¢(xts ylv é\t]\< ¢(K.Y,9)
t=1



This conditions means that §r provides a global

) ~
minimum of the c¢riterion on an open ball centered in BT and
whose radius € does not depend on T = T0 and on w € ), We

also impose a weak condition on @,

Assumption A.3
)
The interior 8 of 8 is not empty.

Moreover, in order to obtain M-estimators with
satisfactory asymptotic properties we have to impose some

regularity conditions on <.

Assumption A.4

& Is a real function defined on £ x4 x & satisfving

the following conditions:

O .
i) v 8 € ® d(x, v, B) is integrable with respect to any P € 9,
i.e. belongs to El(?).

o)
ii) v 80 €6, Vv € Py, + there exists a neighborhood Ve of

0 (]

P

[¢]

T

| - 2

80 such that — ¢(Xt, Yt, 8) converges Po a.s., uniformly
T

onV, , toE &(X, Y, 8) = I b, y, 8) dP (%, y).
P XxY o

[}

iii) v 08 € ®, & 1is continuous with respect to B8; ¢ 1is
differentiable with respect to 8 except on a set whose
Lebesgue measure is equal to 0; moreover ¢ is everywhere

right differentiable i.e.:



if LARRRER op are positive scalars, there exists a p

dimensional vector function Dd{x, y, 0) such that:

4-’(){, vV, 6 + t‘l}) - ‘l-’(-w-y Y. 9)
lim = Dd(x, v, B8)'v;

£40 t

0 .
ivi ¥ 8 € ®, Dbix, v, 8) is integrable with respect to any
P € P, i.e. belongs to ﬁl(?).

o)
vl ¥y PEF, VvOB €8, $(X, Y, 8)% is differentiable with
gespect to 6 and its gradient vector is such that
— E &(X, Y, 8) = E D&(X, Y, 0).
o8 P P

A.d4.11) is a classical condition implying that a

M-estimator exists asymptotically and converges to some limit
8: (not necessarily equal to the true value 90). Assumptions
A.d4.i11) iv) v) allow to consider first order conditions of
an. asymptotic minimisation problem. Moreover A.4.iii) is
compatible with non differentiable criteria such the ones

appearing in least absolute deviation methods.

3.b. Necessary condition for the consistency of an

M-estimator

Property 3.3

Under the assumptions A.1 to A.4, if the true value 60

QO -~
belongs to ® and if there exists an M-estimator 81 which

converges Po 3.8. to 80 and which 1is Po asymptotically
separated, then: g De(X, Y, 80) = 0.
o .

Proof: see appendix 1.
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Thus, a necessary  condition for the existence of a
consistent M-estimator 1is that the true value of the
parameter satisfies the first order condition of the

asymptotic minimisation problem.

3.c. Necessary and sufficient condition for the consistency

of an M-estimator

Let us introduce another regularity condition.

Assumption A.5

0
ve e€®d, vrPeP, , EdX, Y, 8) is twice continu-
‘ 0 P

ously differentiable with respect to 8 in a neighborhood of

3 E & (X, Y, 8 )
P [
80 and the Hessian matrix is positive

0808

definite.

We are now able to show that the previous necessary
condition for the consistency of an M-estimator is also

sufficient.

Property 3.4

Under the assumptions A.l1 to A.5, if the true value

O
8o belongs to ® and if g D(X, Y, 80) = 0, there exists a
4]

M-estimator which converges P0 a.s. to 80 and which is

Po-asymptotically separated.

Proof: see appendix 2.
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4. CHARACTERISATION OF THE CRITERIA PROVIDING CONSISTENT
M~ESTIMATORS

4.a. The Basic Result

Properties (3.3) and (3.3) can be put together in
order to give 'a first characterisation of the criteria ¢

providing consistent M-estimators.

Property 4.1

Under the assumptiohs A.l to A.5, there exists, for
~ o)
any P € P . such that 8(P) € 8, a M-estimator converging P a.s.
to 8(P) and P asymptotically separated if and only if:

O

veE B {PefP : E g(X,7,08)=0, Vgeg} c {Peﬂ’ P E D¢(X.Y',6)=O}.

This property clearly shows that the class of the
suitable ¢ criteria depends on the class § involved in the
restrictions defining the parameter of interest. We are now
going to make more explicit this dependence and in order to
do that we need a “"Farkas type" lemma (see, for instance,

Mangasarian [1969]).

4.b. A "Farkas type” lemma

The integral g g(xX, Y, 8) = gix, y, 8) dP(x, y) can
be seen as a bilinear form with respect to g and P and can

be denoted by «<g, P>. With this notation property 4.1 becomes

{PE€P: <g, P>» =20, ge Ggrc{PeP: <D, P> =01}
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this looks like the familiar Farkas assumption

{ve R:<h , v> = 0, k:l,...,k}c{ve R:<h  , v> = o} ,

K
which implies hx+1 = 2: Ak hx’ for some Ak € R, k=1,...,K.
, k=1 .
However, we cannot directly apply classical Farkas lemma to

our context, in particular because P is not a vector space.
So we first give a 1lemma which is adapted +to the present

situation.

‘Lemma 4.2 (Generalised Farkas lemma)

Let ? be a convex family of probability distributions

on a space %5, and hk, k=1,...,K, K real functions defined on

% and integrable with respect to any P € § (i.e. belonging to
ﬁl(ﬁ)) . Suppose (condition C) that, for any k, there exist

two elements P‘k and P_k of § such that:

E h >0 ' E h =0 ’ vV i#k
P k P i ‘

+ Kk +k

E k <0 R . h =0 ' Vi#k
P k 2 i

-k -k

Then, for any function h of £1(§), a necessary and sufficient

condition for

{Pe?:Eh=o, k=1,...,K}c{Pe§:Eh=o}
p k P
is that there exist K scalars Al,..., Ak such that:
K.
Eh—Z?\khk-O.VP€§.
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Proof: see appendix 3.

Condition (C) which appears in the previous lemma can

be shown to have an equivalent form.

Property 4.3

Condition {(C) 1is ‘equivalent to the following
condition: the convex cone spanned by the subset of
R¥ {[E h ., k:l,...,K], P € ?} is equal to RF.

P

Proof: see appendix 4.

4.c. Application to the Characterisation of Consistent

M-Estimators in Conditional Models

In order to deal with the usual econometric situation
where f\'t is an exogenous variable and where the parameter of
interest is defined only'through the conditional distribution
of Y; given Xt, we introduce two assumptions on the families

¥ and &S.

We assume that the probability distributions in P can
be described by choosing independently a marginal probability
distribution for Xt in a family ?‘ and a conditional
probability distribution of Yt given Xt in a family ﬁz/x.
Note that an element of ?v/x' denoted by Py/x. is a set of
probability distributions Py/” indexed by x € X. So we have:
(4.4) P o= ?x x ?Y/x
This assumption, saying that the choice of Px in ?x does not
give any additional information on Pv/x’ is usually made in

the econometric models.
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It is also. convenient to introduce the following &
family. Let v be any real function defined on X and
hl,.... hK K real functions defined on £ x § x @, we consider
the family defined by:

(4.5) & = { =2(x, ¥, 8) = T(w) hk(x. v, 8), k=1,...,K }

In the previous definition 7 is allowed to vary arbitrarily,

2

the only constraints being that the functions g of G must

satisfy the assumptions previously introduced.

As seen below, the parameter of interest associated
with & given in (4.5} 1is in fact defined @ through the
conditional distribution of Yt given Xt. To show this result,
it is wuseful to introduce the following simplifying

assumption.

Assumption A.6

If, for some P € P and k € {1,...,K} the equality
E { E [h (X, Y, 8) / X]}’ = 0 holds, it implies
P P

E [h (X, Y, 8) /X = x] = E h (x, Y, 8) =0 , ¥v x € X
P k P/ k
v

This assumption is verified for instance if X is countable

and if all the points of ¥ have a strictly positive

probability; it is also satisfied if X is some open set of
R*, if the distributions of ?1 have a strictly positive

density with respect to the Lebesgue measure on £ and if
E hk(x. Y, B8) 1is right continuous with respect to x, for
l?’Y/,c

any Py/x € ?v/x'

We can now show the following property.
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Property 4.6

In the semi-parametric model satisfying (4.1) and
(4.5} and if A.6 is satisfied. the parameter of interest 8 is

equivalently defined by

(4.6) E [h (X, Y, 8) /X .V x € XK.

1
5
i
]
=
"
[a—y
>

Proof:

If E [hk(X, Y, 8 /X = %] =0 k=1,...,K , ¥V x € %,
P . i

we have, for any function 7 such that the integral exists:
E [7(X) h (X, Y, 8)] = E {T(X) E [h (X, Y, 6) /X]} = 0
P .k P P k

Therefore the restrictions associated with &, defined by

{4.5), are satisfied.

Conversely, suppose that the restrictions implied by

G are satisfied.

E [v(X) hk(X, Y, 8)] =0 ' k=1,...,K.
P

These restrictions can be written

E {T(X) E [h (X, Y, 8) / X]} =0 , k=1,....,K
P P k

and choosing successively T(X) = E [hk(X.Y,G)/X] , k=1,...,K,

we have:

t
c

1] k‘-]..-uo,K

E {E [h (X, Y, 8) / X]}2
p \p k

and, from A.6:

g [hk(X, Y, 8) /X = x] =0 . k=1,...,K , ¥ x € X.
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It is now possible to characterise the < criteria
whose minimisation provides a consistent estimator of a

pafameter defined by
E [hk(X, Y, 8) /X =x] =0 ' k=1,...,K , ¥ « € X.
P
This characterisation rests upon lemma 4.2 applied to
any family ?Y/x of possible conditional distributions of Y

when X is equal to a given x. In order to apply this lemma we

introduce the following assumptions.

Assumption A.7

i) E D¢(X; Y, 8) = 0 WP € ?e == g [Db(X, Y, 8) / X = x] =0
P
v P € Po , ¥V w € X,

ii) ?Y/x is convex for any = &€ X.

iii) For any € £, k € {1,...,K} and 8 € 8, there exist two

distributions P*%'® and P-% °® such that:
l/'ﬁ y/x

E h (%, Y, 8) > 0 E h (%, Y, 8) = 0 J=k,
P*k’e k P+k,8 4

Y/x Y/x

E h (%, Y, 8) «0 E h (x, Y, 8) = 0 j=k.
P+kye k P+kte 4

Y /> y/)c
Assumptions A.7.i) means that 5& must be sufficiently large

and that ?Y/u and ¢ have to satisfy regularity conditions.
Assumptions A.7.ii) and iii) imply that the families ?}/x
must be sufficiently large. These requirements on the

dimensions of families %  and ?;/” seem natural in a semi

parametric context in wh;ch we do not want to restrict too
much  the probability distributions. If assumption A.7.ii) is
not satisfied, it is possible to consider the convex set ?t/x
spanned by any ?;/x; in this case, however, it should be

verify that the assumptions previously made on P = ?x X ?v/x
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remain valid on P* = ?X X ﬁi/x where ﬁt/x is the set whose

typical element is a class of Py/u € ﬁﬁ/x, »x € X.
We can now show the main general result.

Property 4.7

Let wus consider a semi parametric model defined by a
family of probability distributions satisfying (4.4) and by a
parameter of interest defined by the restrictions associated
with @ satisfying (4.5). Under assumptions A.l1 to A.7 the
parameter of interest 1is also defined by (4.6) and the
.M-estimatqrs which are consistent and asymptotically

separated are associated with criteria satisfying

K
Y .
Dd(x, ¥y, 8) = Lu A, 8) h (%, v, 8)
k=1
where Ak, k=1,...,K are p-dimensional vectors.

Proof: see appendix 5.

Note that the p-dimensional functions Ak appearing in
the previous property have to be compatible with the
assumptions previously introduced on «¢. 1In particular we
shall see in the examples considered hereafter that
assumption A.5 on the Hessian matrix of g $(X, Y, 80) will

’

induce restrictions on these Ak S.
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5. APPLICATIONS

Now, we are going to discuss various applications of

theorem 4.7.

For each application, we define the semi-parametric
model of interest and then we derive the criteria leading to
consistent M-estimators. While the consistency cqnditioh
stated in property 4.7 concerns the derivative of ¢, we
prefer to integrate the relation in order to make clear the
expression of ¢. To perform this integration, we need some
additional restrictions, depending on the semi-parametric
model considered. However, to keep the length of this section
within reasonable limits, these restrictions are not

systematically detailed.

5.a. M-Estimation of a Regression Parameter : .

We study this classical example in the one-dimensional
case. However, it is easy to generalise the results obtained

to the multivariate case.
The regression equation is:
Y@ = m(X!, 8) + u, .
where u, is a scalar error term.
There are no a priori constraints on the probability
distribution of u, except the nullity of the conditional mean
E(ut i Xt) and the restrictions implied by assumptions A.1 to

A.7. Under these regularity conditions, the appropriate

criteria are such that:
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(5.1) . Ddix, ¥, 8) = ANx, 8) (y - m(x, 6)),
since the identifying constraint is:
E [Y - m(x, 8) | X] = 0.
For convenience, we restrict ourselves to functions ¢ which

are continuously differentiable with respect to 8. For any

pair (yl, yz) of values of Y, we have:

Db(x, v , 8) = Mox, 8) [y - mix, 8)]

D%, ¥, 8) = Ak, 8) [y, - mix, 8)]

Therefore, A(x, 8) is given by:

Dd(x, ¥,, 8)) - Db(x, ¥ , 8)

AMx, 8) = ;
¥ - Y
2 1
in particular A(x, 8) is continuous with respect to 6.
Moreover, Aflx, 8) m{x, 0) which 1is equal to A(x, 8) y -
Dd(x, ¥y, B8) 1is also continuous with respect to 8. Thus, by

integrating (5.1) with respect to 6 in an open connected set,

we obtain the necessary form for ¢:
dx, ¥, B8) = A(x, 8) y + B(x, 8) + C(x, ¥),
with:
oB

JA ,
—_— (%, B8) + — (%, B8) m(x, 8) = 0.
00 o6

So, the consistent M-estimators are solutions of minimisation

problems of the following type:
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T
Min 2; [A¢x , B)Y ¥y + B(»x , B8) + C((x , ¥y )]
(5'2) e t=1 t t t t t
J JA v
with — (%, 8) + — (%, B8) m{(x, 8) = 0O
o8 08
Remark 5.3: Gouriéroux-Monfort-Trognon [1984] proposed, in

this context, to estimate the parameter 8 by a pseudo-maximum
likelihood procedure. The main idea is to affect to the
dependent variable Yt a pseudo family of p.d.f. £(Yt, m)
indexed by the mean m and then to estimate the parameter 0 by
the maximum likelihood method after replacement of m by
m(xt, 8). Of course, if the family e(yt, m) is arbitrarily
chosen, it does not contain the true p.d.f. and the maximum
-likelihood procedure does not provide in general a consistent
estimator - of the true parameter 90. However, the
pseudo-maximum likelihood estimator is consistent for well
chosen families. This approach is based on criteria of the

form:

T
N°
e

t=1

- Log E[yt, m(xt, 8)] ;

comparing with (5.2), we conclude that the consistent
pseudo-maximum likelihcod procedures are based on families
such that:

Log £(y, m) = A*(m) y + B¥*(m) + C(y)
< £(y, m) = exp [A*{(m) y + B*(m) + C(Y)]
These are the linear exponential families (see also

McCullagh-Nelder [1983] for the wuse of these families in

statistical theory).
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5.b. M-Estimation of a Regression Parameter with Symmetri-

cally Distributed Disturbances:

We consider the model:
Xt :m(}st.B)+ut s
where the disturbance u, is symmetrically distributed
conditionally to the exogenous variables. There are no other
a priori restrictions on the probability distribution of u;,
except those implied by assumptions A.1-A.7. Since this

family of probability distributions is smaller than the one

studied in 5.a; the set of suitable criteria mav be larger.
The identifying constraints are:
E [h(Y - (X, 8)) | X = x] = 0
P
for any »« in ¥ and any odd function h.

Property 4.7 cannot be directly applied since there

is an infinite mnumber of odd functions h defining the

identifying constraints. However, from property 4.1 we know
that:

E Dd(X,Y, B8) = E D&(X, m{(X, 8) + u, 8) = 0,

P P

for any probability distribution P such that the conditional

p.d.f. of a given X is symmetric.

Taking into account the symmetry property of the

distribution, we deduce:

g [DH(X, m(X, 8) + u, 8) + DI(X, m(X, 8) - u, 6)] = 0.
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Thus, if % is large enough for assumption A.7.i) to be

satisfied, we conclude:

E [Dd(x, m(x, 8) + u, 8) + DP(x, m(x, 6) - u, 8) | X = x] = O
P .
for any x in X and any symmetric conditional probability
distribution belonging to ?Y'n' Thus, if ?},x is large enough

(for instance if ?Y,; contains all the symmetric dichotomous

probability distributions for the error term), we have:
Ddb{x, mf{x, B) + u, 68) + D(x, m(x, 8) - u, 83 = 0

for any x and u.

Property 5.4

Under the aésumption of symmetric distribution of the
disturbances, the criteria ¢ providing consistent

M-estimators of regression parameters are such that:
Dd(x, v, B8) = ®(x, ¥y - m(x%x, 8), 8) ,
where ¢{x, u, 68) is. an odd function of u.

Clearly, we have not used the generalised Farkas
lemma proved for a finite number of constraints. In the
present context, the same type of result has been obtained by
a direct proof. The derivative D¢ belongs to the vector space
spanned by the functions defining the identifying

constraints.

Remark 5.5: For this- semi-parametric model we could also

restrict ourselves to pseudo-maximum likelihood estimators,

i.e. to the solutions of:
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T

Max :: Log e(yt. m(xt. 8)y ,
8 t=1

where £(y, m) is a family of p.d.f. indexed by the mean m.

These procedures are consistent if:

D Log £ om
—— (¥, mlx, B8)) — (%, B8) = ¢(x, ¥y - m(x, 8), 8) ,
Dm J0
D Log £
where P(%, u, 68) is an odd function of u and-—:;———— is the
m
right derivative of the pseudo-likelihood function.
Theref;re. the family of p.d.f. must Dbe such that
D Log : :
{u + m, m) is an odd function of u. Kafaei-Schmidt

Dm
[1984] proposed to estimate the parameters of such a model by
a pseudo-maximum likelihood procedure based on the Sargan's

family (Missiakoulis [1983]) given by:
o
Ly, m, «) = I [1 +« ] v-m])lexp {[-a]y-m]|].
We have:

Log £(y, m, &) = Log @« - Log 4 + Log [l+a |y-m|] - «]ly-m],

and the right-derivative of this function with respect to m

is given by:

D Log £(y, m, &) 1 1 N @ ]
= - =1 . - af.
Dm m 2y m <y 1+ a§ | v = m |
We verify that it is an odd function of u = y - m. This
explains why the associated ' pseudo-maximum likelihood

procedure provides a consistent estimator.



24

5.c. M-Estimation of a regression Parameter with
Symmetrically Distributed Disturbances and Censored
Observations

"Property 5.4 may be directly applied to the case of a
Tobit model: .

Y , if Y =20 ,
t ot
Y¥ =
t
. 0 , otherwise ,
where: Yt = m(Xt, 8) + u and u, is symmetrically
distributed.

We have td look for criteria
Db(x, v, 6) = $(x, v - mi{x, 8), 68),

where $(x, u, 0) is an odd function of u and Dd(x, ¥y, 8)

depends on y through the censored observation y*.

Therefore we can define a function D$(x, v¥, 8) such

that Db(x, v 1 5 . 8) = Db(x, v, 8) = #(x, ¥ - mix, 8), 8).
This function has two different forms depending on the sign

of the latent variable:

+ DB(x, v, 6) 1 5 .

v <0 y %0

DE(x, v & o , 8) = DI(x ; 0, 8) 1

v %o
Now let us apply the transformation y - - y + 2m(x, 8) and

use the property of ¢ to be an odd function. We obtain:

v<o * DO v 8 s,

Dd(x, 0, 8) 1

DO(x, -y+2m(x, 8), 8) 1

v 2wl %, 9) yS2m( %, 8) '

= - Dbix , 0, 8) 1

Then two cases have to be distinguished.
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i) If m(%x, 8) < 0, the previous equality implies:
Do(x, 0, 8) = - Db(x, 0, 8) & DP(v, .0, 8) = 0

and, since the real line is the union of J-®o, O[ and ]2m, +ow[,

we have Dg(x, vy*, 8) = 0 everywhere.
ii}) If m(%, 8) = 0, we obtain the following form of the
criterion:

DICx, v U0 80 D b, 0, 8) (A -1 ]

‘y>2zm( %, 8)

+ 1 P(x, ¥y - m{x, 8), 8) ,

oéyéz n( %, 8)

where ¢ is an odd function.

In summary we have the following property:

Property 5.6

In the case of a censored model and of a symmetric
distribution of the disturbance, the criterion giving
consistent M-estimators of the parameters of the conditional
median are such that:

D& (x, ¥*, 8) = 1 {D § e 0, e)[n , -1

.8y =
m( % F) 20 y =0 y*>z-(*:9)]

+ 1 P(x, v* - m(x, 6), e)}

o<y‘$2m( x, 8)

where $(x, u, 8) is an odd function of u.

In particular we can see that to obtain a consistent
M-estimator from censored observations, it is necessary to
drop a part of the observations associated with negative

values of m{(x, 08).
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Remark 6§5.7: A possible choice consists in taking for ¢ the

function used in 0O.L.S. procedure, i.e., ®(x, u, 8) = 2 ux
and to fix Dd(x, 0, 8) by continuity:
D&H(x, 0, 8) = - 2m(x%, B)x.The criterion is such that:

DP (x, y¥, 8) = 2 1 Iy - m(x, 8)] 1

m( %, 8) Zo 0SSy <2 m( %, 0)

- m(x, 8) I + mix, 8) 1

} x

y>2m( %, 6)
=2 nn(x. 9)}0 {Min [Y*’ 2m(x, 68)] - m(x, 9)} »

This is exactly the criterion proposed by Powell [1986]
{formula 2.8).

However, it has to be noted that property 5.6 gives a
number of others possible criteria. In particular another
natural one would be based on function ¢ associated with

L,A.D. estimation method.

5.d. M-Estimation of a Conditional Median

Let us now assume that the parameter 8 is introduced

through a conditional median. The semi-parametric model is:

Yt = m(Xt, 8) + u, , t = 1,..., T,
where the conditional probability distribution of u given X'

has a strictly positive density function and a zero median.

Since this model implies less restrictions than 5.b
on the probability distribution of the error term we should
obtain a smaller class of criteria providing consistent

M-estimators.
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The identifyving constraints are:

1
E [ My-mx,0050) ~ 5 | ¥ 7O
The condition on the criterion is:
1
(5.81 DbOey v, 8) = 206 81| Miyomix,8050) 7 5 |

Let us restrict ourselves to the wusual case where the

criterion depends on x and 8 through m(x, 8):
dbix, v, 8) = ¢y, mi{x, 8)).

We assume that P(v, m) is continuous and differentiable with
respect to m (except on a set of Lebesgue measure zero) and m

is differentiable with respect to 8. Then, we have:

IP(y, m(x, B8)) omix, 8)

D, v, B) = .
om o8
for any (%, 8) such that ®(y,-) is differentiable at m{(x, 8).
Comparing with (5.8}, we conclude that, for almost

every m, 9 has a partial derivative of the form:

IP - 1
5; (v, m) = p(m) n[y—mso] - E .

To obtain the expression of the c¢riterion ¢, we have to
integrate the previous relation. It is first interesting to
note that, urnder some weak regularity conditions {see
Appendix 6) the function u can be considered to be positive.
So, we shall study criteria that are associated to functions

¥ such that:
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_ : Dy(y, m) _ 1
(5.9 om = im) ﬁy»—mi:o - Z).
with p(m) > 0 for any m in M.
Ift M=4 = Ja, bl, we can integrate with respect to m

the above relation:

| _ m _ 1
"P()' m) - "P(" ¥y) = H'(m) ﬂ'V-Il\’SO - E dm.
Y

If A(m) is an indefinite integral of p(m), we obtain:

( 1
E [Atm) - A(y)] , if m 2y,

Yy, m) - $(y, v) = )

1 .
- E [Alm) - A(y)] if m € y.

Since A has a positive derivative, it 1is an increasing
continuous function; it can be interpreted as a c.d.f. of an
absolutely continuous measure with positive density .
Therefore, ¢ has the following form:

F(y, m) = | A(m) - A(y) | + C(y)

[ 2N I

The previous discussion is summarised 1in the following

property:
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Property 5.10
Let m(x, 8) be the conditional median of Y.
Under regularity conditions and if
4 =M= Ja, b[ ,
$(x, ¥y, B) = @(y, m(x, 8)) ,

then, the criteria which lead to consistent M-estimators of B

have the following form:
T £

1
:: — | A(m{> , 8)) - A(y ) | + C(v, )
t=1 2 t t t

or, equivalently,

T
D
Lo

t

| A(m(x ,8)) - A(y )|
1

where A is the c.d.f. of a measure on la, b[ with a positive

density.

Remark 5.11. The fact that the above c¢criteria yield

consistent M-estimators is rather intuitive. It is well-known
(see e.g2. Koenker-Bassett [1978]), that a consistent
M-estimator of the median is the least absolute deviation

estimator obtained from:

T

Min 4w |m (xt, 8) - v
8 t=1

|

t



30

This procedure belongs to the above class of M-estimation
procedures if we take A(m) = m, i.e. the cumulative function
of the Lebesgue measure on R. Moreover, it is clear that the

initial model:

= »
v, m(‘,6)+ut.

where the error term has a null conditional median, can be

defined in equivalent ways. Let us consider increasing

functions A; if m(x, Bo) is the median of Y, K(m(x, Go)) is

the median of K(Y) and an equivalent model is given by:
Ay, ) = A(m(x ,8) + v ,
where v, is an error term with a null condidtional median.

This shows that the consistent M-estimation
procedures proposed in property 5.8 can be interpreted as
least absolute deviation methods applied to transformed

models.

Remark 5.12. Considering some classical continuous

distributions, we obtain the following examples of criteria:

Lebesgue measure:

T
Min Z by, = m(x , 8)]
0 t=1
Logistic distribution:
T -
1 1

Min -
8 t=1 1 + exp(- y‘) 1 + exp (—m(xt, 6))
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Weibull distribution:

Min

T
N
| exp(—exp(—yt)) - exp(-exp(—m(x{, 8))) |

8 t=

1

Logarithm function (on R:):

T
Min 4u | Log vy, - Log m(x , 8) |
B8 t=1

Remark 5.13. It is worth trying to evaluate the limitations

impiied on the criteria by the regularity assumptions we have
made. Among the usual consistent procedures, the maximum
score procedure (see Cosslett [1983], Manski [1975], [1985])
is the only one which is not compatible with property 5.8. At
thic level, we have tc recall that this estimation method is
only consistent wunder some additional conditions on the
distribution of the exogenous variable. Nevertheless, it is
easily seen that the maximum score method appears as a limit
case of our c¢lass of criteria. If we consider the c.d.f.
function of the unit mass at zero A(y) = ﬂvko’ the associated

criterion is:

T
N
o

t

H
ot
-

The minimisation of this function is equivalent to:

T

Min 2 [‘ﬂv 50 1 sy <o TN,
t

ge® t=1

which provides the criterion of the maximum score procedure.
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5.e. M-Estimation of a Parameter Appearing in a Conditional

Mean and a Conditional Variance:

A second order econometric model is:
[ = m(X +
Xt ¢ t ] ) Y, !

where the conditional probability distribution of u, has a

zero mean and a variance denoted by:
V(u, I X,) = cz(xt, 8).
In this cgse, the identifying constraints are:
E[Y - m(X, 6) } 0] = 0O ,
E[Y? - ©2(X, B8) - m* (X, 8) j X] = 0.
The application of property 4.7 leads to criteria saﬁiéfyigg:
Db(x, v, 8) = A(x, 8) (y - m(x,lﬂ))

+ pix, 8) (¥ - o¥(x, 8) - m?*(x, 0))

Remark 5.14: If we restrict ourselves to pseudo-maximum

likelihood estimators, the optimisation problem is:
T
Max 2: Log e[yt, m(xt, 8) , dz(xt, x)]

8 t=1

where £(y, m, o%) is a family of p.d.f. indexed by the mean m
and the variance o?. The previous condition shows that these

procedures are consistent if:



33

o Log £ly, m, o%)

= A (m, 23y - m) + A (m, %) (y2- o%- m?)
J(m, o) ' ’

After integration, we see that the family of p.d.f. has the

following form:
e(yy m, 0/2) = exp [A(m’ o v + B(m, o? )y2 + C(mv 0—2) + D(y)]

This is an expeonential family whose canonical sufficient

statistic is (Y, Y?) (guadratic exponential families).

The usual example of such a family is the normal one.

Remark 5.15: It is easy to extend the result to the case of a

multivariate dependent variable Y. Thus, we can see that the
family of multivariate normal distributions can be used as a
family of pseudo-probability distributions (see Gouriéroux-
Monfort-Trognon [19841). This is the reason why
pseudo-maximum likelihood procedures based on the gaussian
distribution provide consistent estimators in the context of
simultaneous-equation models or in the context of time series

{see Hannan [1970G]).

5.f. M~Estimation of a Parameter Defined Through Conditional

Quantiles:

Let us consider a parameter 8  appearing in K
conditional ®-quantiles, k=1,...,K, E R S N SR S We

assume that the respective shapes of these quantiles are

mk(x. 8), k=1,...,K, m < m, L oo, X m and the identifying

constraints are:
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E [ n'.v"imk(,\"i") - % =0 k=1,...,k

The relevant objective functions among those depending on x

and 8 through mk(x, 8), k=1,...,K are such that:

K
D¢
— {y, mj) = z D (m) (.ﬂy’gmk —O‘k ]
Dm k=1 -
L <a, "%
= N(m) : for any m.
ﬂyﬁm ~ %y

It can be shown (see appendix 7) that A(m) has the following

form:

o

{m) ]

Alm) = o with ?\k(m) > 0, k=1l,....,.K.
9] A (m)

This implies:

D¢ i
D_n;: (y' m) - )\k(m) [1‘}'<mk - \xk] y l\-l'tun'Ko

Integrating the previous equations we obtain the

following result:
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Property 5.16

The criteria which lead to consistent M-estimators of

a parameter 9 defined through ak—quantiles mk(x. 8),
k=1,...,Kk have the following form:
ly, m (¢, B8)y.0y m (x, 8)]

K
= B(y) +z {(1 —ock)(Ak[mk_(x. 8)] —Ak(y))ﬁy<m %, 8y
=1 k ’

- ak[Ak[mk(K. 8)] - Ak(y)] “y’?’mk(”oe) }

where the Ak functions are c.d.f. of measures with positive

densities.
Proof: see appendix 8.

Since Bi(y. mi) is a criterion providing a consistent
M-estimation of a ai—quantile, we have shown that the
criterion < is obtained by adding criteria corresponding to

each quantile.
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6. CONCLUSION

In this paper we have delt with the consistency of an
M-estimator. This problem has been treated at a high level of
generality since, under weak regularity assumptions, we have
derived a characterisation of the M-estimators which
consistently estimate a given parameter of interest. A
natural next step would be a general study of the asymptotic
distributions of the consistent M-estimators, of the
existence of lower bhounds for the asymptotic coQariance
matrices and the reachability of these bounds; this kind of
study should be linked with similar works (Newey [1986],
Chamberlain [1987]).



37

REFERENCES

Amemiya, T (1985), Advanced Econometrics, Harvard, Harvard

University Press.

Burguete, J., R. Gallant and G. Souza (1982), On Unification
of the Asymptotic Theory of Nonlinear Econometric Methods,

Econometric Review, 1, 151-180.

Chamberlain, G. (1987), Asymptotic Efficiency in Estimation
with Conditional Moment Restrictions, Journal of

Econometrics, 34, 305-334.

Cosslett, . S. (1981), Maximum Likelihood Estimator for Choice
Based Samples, Econometrica, 49, 1289-1316.

Cosslett, S. (1983), Distribution Free Maximum Likelihood
Estimator of the Binary Choice Model, Econometrica, 51,
765-782.

Gouriéroux, C. A. Monfort and A. Trognon (1984), Pseudo
Maximum Likelihood Methods: Theory, Econometrica, 52,
681-700.

Gouriéroux, C., A. Monfort and A. Trognon (1984), Pseudo
Maximum Likelihood Methods: Application to Poisson Models,

Econometrica, 52, 700-720.
Hannan, E. (1970), Multiple Time Series, New York, J. Wiley.
Huber, P.J. (1965, The Behavior of M&Ximum Likelihood

Estimators Under Nonstandard Conditions, Proc. Fifth Berkeley
Symp., Math. Stat. Prob, 1, 221-233.



38

Huber, P.J. (1972), Robust Statistics, The Annals of
Mathematical Statistics, 13, 1041-1067.

Huber, P.J. (1981), Robust Statistics, New York, J. Wiley.

Jennrich, R. {(1969), Asymptotic Properties of Nonlinear Least
Squares Estimators, The Annals of Mathematical Statistics,
40, 633-643.

Kafaei, M., and P. Schmidt {(1984), On the Adequacy of the
Sargan Distribution as an Approximation to the Normal,

Detroit, Michigan State University, D.P.

Koenker, R., and G. Bassett (1978), Regression Quantiles,

-Econometrica, 46, 33-50.

Mc Cullagh, P., and J.A. Nelder (1983), Generalized Linear

Models, London, Chapman and Hall.

Malinvaud, E. (1970), The Consistency of Nonlinear
Regressions, The Annals of Mathematical Statistics, 41,
956-969. '

Mangasarian, O. (1969), Nonlinear Programming, New York, Mac
Graw-Hill.

Manski, C. (1975), Maximum Score Estimation of the Stochastic

Utility of Choice, Journal of Econometrics, 3, 205-228.

Manski, C. (1985), Semi-Parametric Analysis of Discrete
Response Asymptotic Properties of the Maximum Score

Estimator, Journal of Econometrics, 27, 313-333.

Missiakoulis, S. (1983), Sargan Densities: Which One?,
Journal of Econometrics, 23, 223-234.

Newey, W.K. {1986), Efficient Estimation of Models with
Conditional Moment Restrictions, Princeton, Princeton

University, D.P.



39

Powell, J.L. (1984), Least Absolute Deviations Estimation for
the Censored Regression Model, Journal of Econometrics, 25,

303-325.

Powell, J.L. (1986), <C(ensored Regression Quantiles, Journal

of Econometrics, 32, 143-155.

Powell, J.L. (1986), Symmetrically Trimmed Least Squares

Estimation for Tobit Models, Econometrica, 54, 1435-1460.

White, H. (1982), Maximum Likelihood Estimation of

Misspecified Models, Econometrica, 50, 1-25.

White, H. (19841), Asymptotic Theory for Econometricians,

‘'New York, Academic Press.



40

Appendix 1

Proof of Property 3.3

i) The condition A.4.ii) of uniform convergence implies that:

T
1 E: ~
— $fX , Y , B converges P a.s to E (X, Y, 8 )
T t t T 0 P 1)

t=1 0
ii) Since §r is Po—asymptotically separated and converges Po
a.s. to 80, there exists a set Q of sequences
w = (xt, y‘), te N* satisfying PO(Q) > 0, an integer To

and a positive scalar € such that:

T

T T
16 -8 1l <e= X cp(xt. Y, é‘r)s‘z PO 0 ¥, 0 8)
t=1 t=

jii) Considering one of these sequences for which:

T
1 o
- E: $fx , Y , B converges P a.s. to E &(X, Y, 8 )
T t t T 0 P (1]
t=1 0
and
T
1
; 2: ¢(Xt, Yt. 8) converges Po a.s. to g (X, Y, 8)
t=1 0

for any 8 such that || 8 - 80 | <« € (see A.4.1ii)) we have:



41

VG«HB-B “‘:E 1 E ‘b(xﬁ Y'e)gg “"(X' Y, e)

[ P 0
(1] 0

iii) Applying assumptions A.4.iii), iv), v), we deduce the

necessary condition:

J
— E $(X, Y, 9) = E D¢ (X, Y, 8
8 P, P
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Appendix 2

Proof of Property 3.4

i) This result 1is a consequence of the proof proposed by
Jennrich [1969] in the non linear least squares context.,
Following the same approach, it can be seen that there exists
a M-estimator which is Po asymptotically separated and which

converges tc a solution of the limit problem:

Min E $(X, Y, 0)
P

-7 0
8(:\e
]

where ge' is a compact neighborhood of 80 arbitrarily chosen
’ 0

-~

in order to have a well-defined estimator BT.

ii) Assumption A.5 ensures that the mapping 8 — E &(X, Y, 8)
P

0 )
is locally strictly convex. Therefore, it is possible to

choose the neighborhood Ge in such a way that the limit

0

problem Min E ¢(X, Y, 8) admits 80 as its unique
~ P
Y 0
Bev,
0
solution. This provides the sequence of M-estimators

converging Po a.s. to 80.
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Appendix 3

Proof of the Generalised Farkas Lemma 4.2

The condition 1is obviously sufficient and the

following proof concerns the necessary part.

i) Let P be any element of the family ?. Let € be the binary

variable equal to "-", if E h =# 0, and to "+"; if E h < O.
p p K

We are going to show that there exists a probability

K
vdistribution Q € ? satisfying: Q@ = 2; o P, AR P .,
’ ' k=1 koo
with:
’&k = 0 . k=0,1,...,K
4 kK
E: &, = 1
\k=0
and such that E hk = 0 k=1,2,...K.
Q
The requested form of Q implies:
g hk = o P E hk + o g hk = 0 k=1,2,...K,
e 'k .
k
and:
E h
Qk P k
— = N k=1,2,.-quo
® E h
0 P
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From the definition of € all these ratios are positive.
These equations, for k=1,2,...,K and the condition

k% F 1 uniquely define (K + 1) real numbers

G Xy with I 0. The probability distribution Q

Sy

which is so defined belongs to $, since this family is

convex.
ii) By assumption, we know that E hk =0 k:l.....K‘implies
E h = 0, This can be written:
Q
K
Eh:()zz & E h + « E h
Q -1 =P P
- € .k
k
K K E h
~ « < Pek.k
= E h = - o — E h = o Ehk
P k=1 %% Pe .« k=1 P 7 E by
k € Lk
"
E h
P
Ek.k
iii) It remains to show that the ratio: Ak = —_—,
b E hk
€ kK

does not depend on €, i.e.:

E h E h
P P

+ k -k
PE hk PE hk
+k -k

In order to do so, let us define:

By definition of P“k and P_k, we have:
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Moreover, if we choose:

E h
P
-k
® = -
E h - E h
P k P k
+k -k
« is a positive scalar smaller than 1 such that E hk = 0.

Q

Therefore, since Q@ belongs to the convex family ?, we

get E h = 0, 1.e.:

Q
A E h + (1 - &) E h =20
P P
+k -k
E h E hk
P_k & P_h
> - = = - .
E h 1 - « E h
P p k
+ K + Kk
iv) Therefore we have found K scalars Al...., AK such that,
for P € ﬁ:
K
E th - z: A h = 0
P =1
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Appendix 4

Proof of Property 4.3

We denote by (& the subset of [R¥

{[E hk, k=1,...,K} ., P € ? and by CONE(i2) the (convex) cone
|2
spanned by 5. We know that CONE(() is the set of vectors of

R¥ with components:

E h , k=1,...,K , Pe?® , a=zo.
Pk

)‘;k = &
The set CONE(() is equal to R*¥ if and only if it contains the
2K  vectors e, and e_ k=1,..+,K, where e, is the vector of
R¥ whose components are all equal to zero, except the k'™ one
which 1is equal to one. But, it is straightforward to

establish the following equivalences:

e € CONE(G) <> 3P € F ., A0 : [E h | = re |,
k + .k P i k
+k
- e € CONE(() & F P € ? . A >0 [ E h = - Ae .
Kk : -k P i k

These conditions vield condition (C).
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Appendix 5

Proof of Property 4.7

From assumption A.7.1), we know that

EDd(X, Y, 8) =0 , VPEeF
P

e E [Dd(X, Y, 8) | X = w] = 0O , ¥ P € ?9 . vV e X.
P

Therefore, for any fixed x in X, it is possible to apply the
property 4.1 and the generalised Farkas lemma 4.2 in the
~conditional model defined by §}|x, Then we get K scalars

Al...., AK which are independent of Y (but may depend on x,

B8) and are such that:

K
5
i
k=1

Dbi{x, v, 8) = kk(x, 8) hk(x, vy, 8).
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Appendix 6

Proof of formula (5.9)

We have to prove that, under some weak regularity
conditions, the function i can be considered to be positive.
These conditions are essentially about the commutability of
the differential and integral operators. For instance, we

need the following relation:

3? g $(xX, Y, 8)

J6 98

n
@
(-3

8

We shall also use assumptions about the
differentiability of , the double differentiability‘of m
with respect to 8 and the fact that the family of p.d.f. P is

large.

In a first step, we deduce from A5 that:’

J
55 E D'$(X, Y, 6)] is positive definite and we use the
P
©:-9

0

form of D'¥(X, Y, 8) to compute:

a v am(X98) - :
a_eg ___p,[m()&, G)Jny__m(]_,e)<0 Y

0
— E [D'¥(X,Y,8))
36 P 36" 2

We denote by Fx the conditional distribution function of u
given X and by fx its density function. The conditional
probability distribution of Y given X can be obtained from

that of u by translation of m(X, 80). We have:
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o
— E [D'$(X, Y, 8)]
d8 P
d om i 1
= — E — (X, 8) p{m(X, 8Y]) {F  (m(X, 8) - m(X, 8 }) - -
o8 P “n X 0 2
X o0
J [om o ] ‘ 1]
= E —— (X, 0) p(m(X, 8))|}F. (m(X, 8) - m(X,0 1)) - —
P\ dB aen b 0 2

1 om
+ E — (X, 8) — (X, 8) p{m!X, 8)] £ [m(X,8) - m(X, 8 )]

, we obtain for 8 = 80.

(S

Then, since FX(O) =

om(X,8 om(X,8)
E pim(X, 8)] £ _(0)
P X
)

0
'[— E D'¢(X, Y, e)l =
36 P , . a8 50"

0

Since we have assumed that fx is positive, the above matrix
will be positive detinite for any probability distribution P‘
of the family ?x if w is positive. This sufficient condition

will be also necessary if the family ?x is large enough.
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Appendix 7

Form of the Matrix A(m) (8 5.f.)

If we denote by Fo the true c¢.d.f. of Y and

m?..... mz the true values of m yee.s mo We have:

r tm } - F (m?)
Dq) 0 1 V]
—_ (X, lll) - ;'\(m)
0 Dm
Fo(m ) - F (m%)
-So, we have:
o0 D
— E — (Y, m)
om 0 Dm' )
m-mo
(m ) - F (m®) :

& 0 1 0 1

- A{m)

om

{m ) - F (m%)
( o K 0 K
m:mo
f ‘m?) o
= S{m )
(4]
o} f (m%)
4] K

This matrix must be positive definite for any possible value

of the parameters m® and for any possible density function fo

{whose quantiles are m?,..., mﬁ), i.e. for any possible value

of £ (m*>),..., fo(mi). In particular, the symmetry condition

gives:

- 0 4% al [+
A glm) fo(mpy = A, tm o) £ (w0
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for anv f (m%) and f (m?).
0 ¢ 0 k

Thus: Am ) = A, dm )= 0 for any £ and k€.

So, the matrix A(mo) must be diagonal and, since its product
f (m%) 0
] 1
by K must be positive definite, the
0 £ (m®)
(1] K

diagonal coefficients of A(mo) must be positive. So:

A (m) O

Alm) = . with Ak(m) > 0.
0O A (m)
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Appendix 8

Form of the Criterion & in 8§ 5.f.

For expository purposes we only consider the case K = 2.

We have to integrate the following equations:

[ D¢
— {y, m) = A {m , m_) |1 . -
Dm1 ! 1 2 I yﬁpl 1
9
D¢
— (y, m) = A (m , m )} |1 _ - o
sz 2 i 2 i v <m 2 2

Let us beéin with the integrability conditions:

D*Pp(y, m) DZd(y, m)

Dm- Dm Dm Dm
1 2 1

We obtain, for ¥y < m < m

1 2
DA, DA,
E(m" mz) (1 - f.ul): o (ml, mz) (1 - az)
2 1
and for m o <m < ¥
D?\1 DA2
— (m , m ) (- &) = — (m v m ) (- )
2 1

Since « < o, we can conclude that:

DRL ' DA
(mvm2)=0 and

Dm ! - Dm L z
2 1

So, we have:
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/ D¢ .
g;j (yo m) = A (m ) ﬁy(ml - le . Ax > 0
<
Dd -
—_— (y, m) = A (m )y [T _ - @ . A >0
Dm 2 2 v m 2 2
\

- Computation of ¢ on the Set y < mL < m

We have:

“‘)((‘"1 m,v mz) - “b(}"v Vo ‘r)

[b(yy m o m )= &y, ¥, m o))+ [y, yoom ) - by, vy v}

m m
kl(u) du(l - al) + Az(u) du(l - «2)

v Yy

I1f we denote by Al and Az some indefinite integrals of Al and

hz, we obtain:
$(y, m . m ) = ({1 = e ) (A (m ) - A (y))

+ (1 - az) (Az(mz) - Az(y)) + $(y, v, ¥)

. Computation of ¢ on the Set m <y < m‘:

4)()’, m]. mz) - Ply, v, V)

il

[¢(yy m , m ) - bly, v, m ]+ [Py, v, m ) - by, v, v

ml m2
Al(u)(- al) du + Az(u) (1 - az) du

y Jv
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= -« [Al(ml) - Al(y)] + (1 - az) [Az(mz) - Az(y)]

« Computation of ¢ on the Set y > mL > mL.
The same type of_computation leads to:
‘b(Yv ml' mz) - 4".‘7! Y. V)

= - @ [Ax‘mx) - Al(y)] -, {Aztmz) - Az(Y)]

. Synthetic expression of the objective function ('R

If we summarize the above results, we can write:
Py, m o om ) = @y, ¥, V) + (1 -« ) (A (m) - A (¥)) L.

- o gAl(ml) - A,(y)) “vbnl

-+

<m

(1 - «) (A, (m ) - .—\'2(3’)) ﬂY ,

2 Ed
2

- (A (m ) - A (V) ﬂy-



