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CONSISTENT H-ESTIHATORS IN A SEHI-PARAHETRIC HDDEL 

C. GOURIEROUX, A. MONFORT, E. RENAULT 

ABSTRACT 

It is well known that in a fully parametric model maximum likelihood 
estimation provids asymptotically efficient estimators. However it is in 
general difficult ta assume that the p.d.f. of the observations be longs ta a 
given parametric family. 

In this paper we consider semi-parametric models with weak distributional 
assumpt ions and we cons ider M-est imators of the parameter of interest. We 
determine the form of the criteria ta be optimised in order to obtain 
consistent M-estimators. These results are then applied ta M-estimation of 
parameters appearing in conditional mean, conditional variance, conditional 
quanti les ... 

H-ESTIHATEURS CONVERGENTS DANS UN HODELE SEHI-PARAHETRIQUE 

RESUHE 

L'efficacité asymptotique des estimateurs du maximum de vraisemblance est 
traditionnellement invoquée pour justifier leur utilisation dans les modèles 
statistiques paramétriques. Mais il est souvent difficile de spécifier un 
modèle paramétrique dont on puisse affirmer, sans risque d'erreur, qu'il 
contient la vraie distribution de probabilité inconnue des observations. 

C'est pourquoi nous considérons dans cet article des modèles semi­
paramétriques pour lesquels les hypothèses distributionnelles sont faibles. 
On définit dans ce contexte des M-estimateurs des paramètres d'intérêt 
obtenus par minimisation de certains critères et on caractérise les critères 
qui fournissent des M-estimateurs convergents. Ces résultats généraux sont 
ensuite appliqués à la M-estimation de paramètres qui interviennent dans une 
moyenne conditionnelle, une variance conditionnelle, des quantiles 
conditionnels ... 

J.E.L. CLASSIFICATION SYSTEM : 210. 

KEY WORDS : Asymptotic inference - Robustness - Limited dependent variable 
models. 

HOTS CLEFS : Inférence asymptotic - Robustesse - Modèles à variables 
dépendantes limitées. 
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1. INTRODUCTION 

It is well known that in a fully parametric model 

maximum likelihood estimation provides asymptotically 

efficient estimators. However it is, in general, difficult to 

assume, as it is required in parametric models, that the 

p.d.f. of the observations belongs to a given parametric 

family; moreover, if it is not the case, the maximum 

likelihood estimator based on this family may have very bad 

properties, in particular it may be inconsistent. This is the 

reason why the econometricians often prefer to use 

semi-parametric models in which the parameter does not 

characterise the probability distribution of the observations 

but only defines a set of possible distributions. For 

instance, ·in the non-linear regression mode! defined by: 

{ 

y = m(x; 8) + u 
t t t 

E(u I x , ••• , x ) ) = 0 , 
t 1 T 

t = 1, ••. T 

the parameter, denoted by 8, characterises the conditional 

expectation of the endogenous variables y 
t 

given the 

exogenous variables x, but does not give any information on 
t 

the other features of the conditional distribution: e.g. the 

variance, the skewness, the kurtosis ... 

In a semi-parametric mode!, the maximum likelihood 

estimators are no longer available and important estimators 

are the M-estimators obtained by minimising a criterion of 
T 

the form L 4,(xt, yt, 8), 
t=l 

where x 
t 

(resp. y ) 
t 

is the t th 

observation of the exogenous (resp. endogenous) variables 

(see Huber [1981], Burguete-Gallant-Souza (1982]). In the 

non-linear regression model considered above such an 

estimator is the non-linear least squares estimator obtained 

by minimising: 
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T 

~ (yt - m(x t ' 
8) )2 • 

t=l 

case has been extensively studied (see This particular 

Malinvaud [1970}, Jennrich [1969]), More generally, 

Gouriéroux-Monfort-Trognon [1984] considered the case where 

the parameter of interest appears in the conditional mean 

and/or the conditional variance of an endogenous variable and 

where the criterion to be minimised is a pseudo likelihood 

function, i.e. a likelihood function based on p.d,f. family 

which does not necessarily contain the true p.d,f, 

In this paper, we are interested in the general 

problem of characterising the consistent M-estimators in a 

semi-parametric model. In the framework proposed, the 

parameter of interest is defined in a fairly general manner 

and the criteria -considered are only submitted to mild 

regularity 

parameters 

restrictions. 

of interest, 

The usual ways of defining 

through conditional moments or 

conditional quantiles, are particular cases of the approach 

considered here; moreover the criteria to be minimised are 

not required a priori to belong to some class, such as the 

pseudo-likelihoods class. In this general framework we answer 

the following question: for a given kind of parameters of 

interest what are the criteria whose minimisation provides 

consistent estimators? Then, the characterisation obtained is 

applied to various contexts. 

In section 2 we propose a general way of defining the 

parameter of interest. In section 3 we define the M-estimator 

procedures and we give necessary and sufficient conditions 

for a given criterion to provide a consistent M-estimator. In 

section 4 these conditions are used in order to exhibit the 

class of criteria providing consistent M-estimators for a 

given definition of the parameter of interest. In section 5 



this result is 

semi-parametric 

parameter (with 
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applied to the estimation of various 

models: M-estimation of a regression 

or without an assurnption of symrnetry of the 

disturbances, with or without censoring), M-estirnation of 

pararneters appearing in a conditional mean and a conditional 

variance, M-estimation of parameters defined through 

conditional quantiles, 
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2. PARAMETER OF INTEREST 

We observe two sequences of random vectors X, Y, 
t t 

The ranges of X and Y 
t t 

t = 1, .•. , T. are respectively ~ c ~r 

and ~ C ~q. For expository purposes, we assume that the 

independently 

weakened (see, 

( X , Y ) , t E IN*, are identically and t t 

distributed; however this assumption might be 

for instance, Burguete-Gallant-Souza (1982] or White (1982] 
[1984]). 

Assumption A.l. 

i) The observations ( X , Y ) , t = 1, ••• , T, are independent 
t t 

and hal?e the same unlmown probabilit,v distribution P • 
0 

ii) P belongs to a famil,v ~ of probability distributions on 
0 

In a semi-parametric model the parameter of interest 
is defined by the set of restrictions it has to verify. 

Let us consider some examples, where Y is a one 
dimensional random variable. 

a) E (Y - 8 ) = 0 or, p 0 
0 

defines the mean of Y. 

equivalently, J (Y - 8 ) dP (x, y) = 0 
0 0 

or J dP (x, y) = œ, defines the 
y~0 0 

0 

œ-quantile of the distribution of Y. 
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~ l X (y - X ' 8 0 ) ] = 0 , 
0 

C) 

defines the coefficients 

or J [ xy - >ü<' 0 
0 
l dP 

O 
( x, y) = 0 

in the linear regression of Y on 

the components of X. 

d) E {(f>(X) [Y - m(X,0 )} = 0, or 
p 0 

0 

J ~(x)[y-m(x,8 ) )dP lx,y) = 0, for any function ~ and for a 
0 0 

given function m, defines the parameter appearing in the 

conditional mean of Y given X. 

e} ~ [ X2 (Y - x; 8 0 }] = O, or 
0 

(where x· = (x· x·) l 2 2 
and dim X 

X X' 
2 1 

'.::- dim X ) 
1 

dP
0

(x, y) = 0 

defines the 

coefficients in a "structural" relationship between Y and X 
1 

admitting X as instrumental variable. 
2 

~ore generally the parameter of interest is defined 

from the following assumption. 

Assumption A.2 

There e:,dst a set ®* c IRP and a fami 1,v Ë, of real 

functions defined on~ A~ x ®* such that: 

i) for any 0 E @* and g E Ë,, A(x, y, 8) is integrable with 

respect to any P E ~; 

ii) for any PEP, there exists a unique element of®*, 

called the parameter of interest. satisf:ving 

E g(X, Y, 8) = J g(x, y, 0) dP(x, y) = 0 
p ~X~ 

'fi g E g, 

These constra'ints are called identif,ving· constraints. 
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The parameter of interest corresponding to a 

distribution P is denoted by Î(P); we also introduce the 

notations: 

(2.1)@ = { Î(P), P E ~} 

( 2. 1 ) ~ 8 = { P E ~: Î(P) = 8} 

= { p E ~ E g(X, 8) = 0, 
p 

Thus,® is the set of the possible values of the parameter of 

interest, and the uniqueness condition of A.2.ii) means that 

any value 8 E ® of this parameter is identifiable. Since the 

true pro~ability distribution P is assumed to belong to f 
0 

(see A.1.ii)), it is possible to associate with 

value 8 of the parameter and this value 8 is 
0 0 

true value of the parameter of interest, Also note 

P a unique 
0 

called. the 

that f
8 

is 

not, in general, reduced to one element; this means that 8 

does not characterise, in general, one probability 

distribution and this is the semi-parametric feature of ~he 

model. 
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3. THE M-ESTIMATORS 

3.a. Definition 

In order to estimate 8 
0 

we minimise a criterion of 

T 

"-, 
the form ~ tl->(X, , Yt , 8 ), 

t=l 

Def ini tion 3 .• 1 

A ~-estimator of 8 associated with the criterion tJ.> 

r.,rhere ip is a real function defined on l: x ~ x ®, is a local 
T 

minimum ê 
1 

•.v(X , Y , 8), 
t t 

In fact we consider the M-estimators which satisfy 

the following regularity condition. 

Definition 3,2 

A H-estimator 

separated if there 

E Rf} w = { ( xt , y t ) , t 

and a positive scalar € 

V 8 E ~) t V T J; T 0 • V w 

T 

E 

is said to be 

exists a set 

satisfyin.g· P (.0.) 
0 

such that: 

Q 

p 
-lL 

Q 

> o. 

T 

asymptotically 

of sequences 

an integ·er T 
0 

" ~ t1->(xt êt) 2: 118 - 8 
T Il <. 1:. ~ yt :C tl->(x ' yt . 8) • ' "' t 

t=l t=l 



This conditions means that ~ r 

8 

provides a global 

minimum of the criterion on an open ball centered in~ and 
r 

whose radius e does not depend on T ~ T and on w En. We 
0 

also impose a weak condition on®· 

Assumption A.3 

() 

The interior ® of® is not empty. 

Moreover, in order to obtain M-estimators with 

satisfactory asymptotic properties we have ta impose some 

regularity conditions on~. 

Assumption A.4 

-!> is a rea-1 function defined on l'. x ~ x ® satisf:ving 

the following conditions: 

0 

i) V 8 E @) ~( x, y, 8) is i.ntegrable i,-ith respect to an,v P E ;P, 

i.e. belongfs to (
1 

(;P). 

0 
ii) V 8 E ®, V P 

0 0 

0 such that 
0 

1 

T 

T 

t=l 

E ;fa 

~(X 

0 

t t 

on V 8 
0 

to E ~(X, Y, 8) = 
p 

0 

0 

there exists a neighborhood V 
8 

0 

of 

Y , 8) converJfes P 
t 0 

a.s., uniformly 

I ~(x, y, 8) dP (x, y), 
3;:x~ o 

iii) V 8 E ®, ~ is continuous with respect to 8; ~ is 

differentiable with respect to B except on a set whose 

Lebesgue measure is êqual 

right differentiable i.e.: 

ta O; moreover ..i, i s ever.vwhere 
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if ~, ... , ~ are positive scalars, there exists a p 
1 p 

dimensio11al vector function D4>(x, y, 0) such that: 

lim 
tio 

~(X, y, 8 + t~) - ~(K, y, 8) 

t 

0 

= D<i>(x, y, 8)'1'; 

iv) V 8 E ®, D4>(x, y, 8> is integrable with respect to any 

P E f, i.e. belongs to [
1 
(fl, 

0 
l,') V p E j:O, V e E ®· ~(X, Y; 8)E is differentiable with 

p 
respect to 8 and its gradient vector is such that 
d 

E -V (X' Y, 8) = E D~(X, Y, 8). 
J0 p p 

A,4.iil is a classical condition implying that a 

M-estimator exists asymptotically 

8* ( not necessari ly equal to the 
0 

and converges to some limit 

true value 8 ), Assumptions 
0 ' 

A.4.iiil iv) v) allow to consider first order conditions of 

an asymptotic minimisation problem. Moreover A.4.iiil is 

compatible with non differentiable criteria such the ones 

appearing in least absolute deviation methods. 

3.b. Necessary condition for the consistency of aq 

M-estimator 

Property 3,3 

U12der the assumptions A.1 to A,4, if the true value 8 
0 

belongs 
0 

to ® and if there exists an M-estimator ê which 
T 

converges 

separated, 

p 
0 

8,. s. 

then: E 
p 

0 

to 8 
0 

and which is P asymptoticall.v 
0 

D~(X, Y, 8 ) : O. 
0 

Proof: see appendix 1. 
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Thus, a necessary condition for the existence of a 

consistent 

parameter 

M-estimator is that the true value of the 

satisfies the first order condition of the 

asymptotic minimisation problem. 

3.c. Necessary and sufficient condition for the consistency 

of an M-estimator 

Let us introduce another regularity condition. 

Assumption A.5 

ousl.Y 

0 

v e E e, v P E rt:I 
0 

differentiable with 

, E 4>(X, Y, 8) 
p 

is twice continu-

respect to 8 in a neighborhood of 

J 2 E 4> (X, Y, 8 ) 
p 0 

8 and the Hessian matrix is positive 
0 

definite. 

We are now able to show that the previous necessary 

condition for the consistency of an M-estimator is also 

sufficient. 

Property 3.4 

Cnder the assumptions A, 1 to A, 5, if. the true value 
0 

8 
0 

belongs to ® and if E 
p 

0 

."1-es tima tor rvhich converges 

P -as:vmptotically separated. 
0 

Proof: see appendix 2. 

D<.l>(X, Y, 8 ) = O, there exists a 
0 

p 
0 

a. s. to 8 and which is 
0 
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4. CHARACTERISATION OF THE CRITERIA PROVIDING CONSISTENT 

M-ESTIMATORS 

4.a. The Basic Result 

Properties (3.3) and (3.4) can be put together in 

order to give a first characterisation of the criteria ~ 

providing consistent ~-estimators. 

Property 4.1 

L'nder the assumpti ons A. 1 to A. 5, there exi s ts, for 
- 0 any P E :f'.such that 8(P) E ®, a 1"!-estima.tor convergillg P a.s. 

to B(Pl and P as.-vmptotieall.v separated if and onl,v if: 

This property clearly shows that the class of the 

suitable ~ criteria depends on the class g involved in the 

restrictions defining the parameter of interest. We are now 

going to make more explicit this dependence and in order to 

do that we need a ''Farkas type" lemma (see, for instance, 

Mangasarian [1969]). 

4.b. A "Farkas type" lemma 

The integral; g(X, Y, 8) = I g(x, y, 8) dP(x, y) can 

be seen as a bilinear form with respect to g and P and can 

be denoted by <g, P>. With this notation property 4.1 becomes 

{ p E :f' <g, P> = 0, g E g} C { P E :f' < D~, P> = 0} 
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this looks like the familiar Farkas assumption 

K 

which implies h 
K + 1 

= I À 

k=l 
for some 

k 
À E IR, k=l, ••. ,K. 

k 

However, we cannot directly apply classical Farkas lemma to 

our context, in particular because ~ is nota vector space. 

So we first give a lemma which is adapted to the present 

situation, 

Lemma 4.2 (Generalised Farkas lemma) 

Let~ be a convex famil,v of probability distributions 

on a space o, and h , k=l,,,.,K, K real functions defined on 
k 

o and integrable with respect to any P E ff (i.e. belonging to 

l (~)) . Suppose (condition C) that, for any k, there exist 
1 

two elements P and P of~ such that: 
... k - k 

E 
p 

- k 

p 

p 

E 
... k 

E 

- k 

h = 0 

h = 0 

V i -;,t k 

V i -;,t k 

Then, for any function h of [
1 

(fp), a necessary and sufficient 

condition for 

i hk = 0, k=l, .. ,,K} C { P E ~ 

is that there exist K scalars À
1 
,,,., Àk such that: 

V P E ~. 
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Proof: see appendix.3. 

Condition (C) which appears in the previous lemma can 

be shown to have an equivalen~ form. 

Property 4.3 

Condition !C) 

condition: the convex 

iR" {[~ h 
k ' 

k=l, .. ,,K), p 

Proof: see appendix 4. 

is 

E 

equivalent to the following 

CO/le 

fi>} is 

spanned by the subset of 

equal to IRK • 

4.c. Application to the Characterisation of Consistent 

M-Estimators in Conditional Modela 

In order to deal with the usual economet~ic situation 

1--·here X 
t 

is an exogenous variable and where the parameter .of 

interest is defined anly through the conditional distribution 

of Y given X , we introduce two assumptions on the families 
t . t 

j) and 9, 

We assume that the probability distributions in f can 

be described by choosing independently a marginal probability 

distribution 

probability 

for X 
1 

in a f ami l v. • .:o .J- X and a conditional 

Note that an 

distribution of Y given X 

element of 
t t 

~ /, denoted by 
y X 

probability distributions P / indexed by x y X 

( .,L 4) ~'f>=© xm 
• "'x ..rr/x 

in a family m /. .,-y X 

P /, is a set of 
y X 

E ~. So we have: 

This assumption, saying that the choice of P in f does not 
X X 

live any additional information on Pw/x' is usually made in 

the econometric models. 
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It is also convenient to introduce the following g 
farnily, Let r be any real function defined on ~ and 

h , ... , h K real functions defined on~ x ~- x ®, we consider 
t K 

the farnily defined by: 

(4;5) g = { g(x, y, 0) = Y(x) h (x, y, 8), k=l,,,.,K} 
k 

In the previous definition 1 is allowed to vary arbitrarily, 

the only constraints being that the functions g of 9 must 

satisfy the assurnptions previously introduced. 

As seen below, the pararneter of interest associated 

with e. ,_, ,e; i ven in (4.5) is in fact defined through the 

conditional distribution of Y given X. To show this result, 
t . t 

it is useful to introduce the following simplifying 

assumption. 

Assumption A.6 

If, for some and k E {1, ... ,K} the equality 

holds, it implies 

E [hk (X, Y, 8) / X = x.] = E hk i x, Y, 8 l = 0 
p P,/• 

• V X E ~ 

This assumption is verified for instance if~ is countable 

and if all the points of ~ have a strictly positive 

probability; it is also satisfied if~ is some open set of 

~q, if the distributions of 1
1 

have a strictly positive 

density with respect to the Lebesgue measure on~ and if 

E 
p y/• 

h I x, Y. e > 
k 

any P / E 
y X 

is right continuous with respect to x, for 

We can now show the following property, 
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Property 4.6 

In the semi-parametric mode] satisf;ving (4.-l:) and 

(4.5) and if A.6 _is satisfied, the para.meter of inte1·est 8 is 

equi-va.lentl.r defined by 

(-l:.6) 

Proof: 

E [h (X, Y, 01 / X = x) = 0 
p k 

k= 1 , ••• , K V x E ~. 

If E [h <X, Y, 8) /X= x] = 0 k=l, ••• ,K , V x E ~' 
p .k 

we have, for any function T such that the integral exists: 

E [ 1· (X) h (X, Y, 8 ) ] = Ep· {r (X) 
p . k 

E [h IX, Y, 0) /X]}= 0 p k 

Therefore the restrictions associated with g, defined by 

(4.5), are satisfied. 

Conversely, suppose that the restrictions implied by 

9 are satisfied. 

E f1'(Xl h tX, Y, 0)) = 0 
p - k 

k=l, ••• ,K. 

These restrictions can be written 

E [h (X, Y, 8) /X]\= 0 
p k J k=l, •.• ,K 

and choosing successively T(X) = ~ [hk (X,Y,8)/XJ , k=l, •.• ,K, 

we have: 

k= 1, •• , , K 

and, from A.6: 

E (h (X, Y, 8) / X = x) = 0 
p k 

k=l, ••• ,K. V XE x. 
D 
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It is now possible to characterise the ~ criteria 

whose minimisation provides a consistent estimator of a 

parameter defined by 

E [h (X, Y, 8) /X=x.) =O 
p k 

k=l, •.. ,Kt V XE l'., 

This characterisation rests upon lemma 4.2 applied to 

any family f / of ~ossible conditional distributions of Y 
y " 

when Xis equal to a given x. In order to apply this lemma we 

introduce the following assumptions. 

Assumption A.7 

i) E D~(X, Y, 8) = 0 V P E ~8 <=> E [D~(X, Y, 8) /X= x) = 0 
p p 

V PEP , V x El'., 
0 

ii) © is convex for a11y x. E l'., 
,.r Y /x 

iii) For an.v x El'., k E {1, ... ,K} and 8 E ®, there exist t;wo 

distributions p+k, 8 and p-k, 8 such that: 
Y/" Y/" 

E h (x Y, 8 ) > 0 E h (x, Y, 8 ) = 0 j;,:"k, 
p+ k, 8 

k t 
p+ k, 8 

j 

Y /x y/" 
E h (x, Y, 8) <. 0 E h ( x, Y, 8 ) = 0 ,j;;a!"k. 

p+ k, 8 k p+ k, El 
j 

y /x. y/" 

Assumptions A.ï.i) means that ,x must be sufficiently large 

and that f / and~ 
y " 

have to satisfy regularity conditions. 

Assumptions A.ï.ii) and iii) imply that the families ~ "'v /x 
must be sufficiently large. 

dimensions 

parametric 

of families 5>x and 

context in which we 

These requirements on the 

5> / seem natural in a semi 
y " 
do not want to restrict too 

much the probability distributions. If assumption A.ï.ii) is 

not satisfied, it is possible to consider the convex set?._/ 
y " 

spanned by any fY/"; in this case, however, it should be 

verify that the assumptions previously made on f =, x f / 
X Y X 
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remain val id on r = 5\ X ~~ /x where ~ /x is the set whose 

t_ypical element is a class of P / E «">* / x E 1:, 
y X ..-y x' 

We can now show the main general result. 

Property 4.7 

Let us consider a semi parametric model defined by a 

famil.r of probability distributions satisf,ving (4,4) and by a 

parameter of interest defined by the restrictions associated 

assumptions A, 1 to A. 7 the rd th g satisf;ving ( 4, 5). Under 

parameter of interest is also defined by (4.6) and the 

H-estimators which are consistent and as.Ymptotically 

se para ted are associa ted id th cri teria sa tisf.ring 

where À • 
k 

h 

D<i>( x, y, 8) 
'\-, 

= ~ X (x, 8) h (x, y, 8) 
k k 

k=l 

k=l,, .. ,K are p-dimensional vectors. 

Proof: see appendix 5. 

Note that the p-dimensional functions À appearing in 
k 

the previous property have to be compatible with the 

assumptions previously introduced on ~. In particular we 

shall see in 

assumption A.5 on 

the examples considered hereafter that 

the Hessian matrix of E ~(X, Y, 8
0

) will 
p 

induce restrictions on these X 's. 
k 
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5. APPLICATIONS 

Now, 

theorem 4.ï. 

we are going to discuss various applications of 

For each application, we define the semi-parametric 

model of interest and then we derive the criteria leading to 

consistent M-estimators, While the consistency condition 

stated in property 4.7 concerns the derivative of~. we 

prefer to integrate the relation in order to make clear the 

expression of~. To perform this integration, we need some 

additional restrictions, depending on the semi-parametric 

model considered. However, to keep the length of this section 

~ithin reasonable limits, these restrictions are not 

systematically detailed. 

5.a. M-Estimation of a Regression Parameter 

case, 

We study this classical example in the one-dimensibnal 

However, it is easy to generalise the results obtained 

to the multivariate case. 

The regression equation is: 

Y = m(X , 8) + u 
t t t 

where u is a scalar error term, 
t 

There are no a priori constraints on the probability 

distribution of u except the nullity of the conditional mean 
t 

E(ut I Xt) and the rest~ictions implied by assumptions A.1 to 

A.7. Under these regularity conditions, the appropriate 

criteria are such that: 
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D~ ( x , y , 8 ) = À ( x. , 8 ) ( y - m ( x. , 8 ) ) , 

since the identifying constraint is: 

E ( Y - m ( x., 8) 1 X] = 0, 

For convenience, we restrict ourselves to functions ~ which 

are continuously differentiable with respect to 8, For any 

pair { Y
1 

, y ) of values of Y, we have: 
2 

{. 

D~(x., 

D~(x, 

0) = À(x., 8) 

8) = À(x, 8) 

(y
1 

rn(x, 8)) 

[ Y - m ( x, 8) J 
2 

Therefore, À(x., 8) is given by: 

D~(x, y , 8)) - D~(x, y , 8) 
2 1 

/\( x, 8) = 

in particular À(x, 8) is continuous with respect to 8. 

Noreover, 

Dtl->( x, y, 8 l 

À(x, 8) m(x, 0) which 1.s 

is also continuous with 

equal to À(x, 8) y -

respect to 8. Thus, ·by 

integrating (5.1) with respect to 8 in an open connected set, 

we obtain the necessary form for~: 

with: 

~(x, y, 8) = A(x, 8) y+ B(x, 8) + C(x, y), 

<)A 
, x, e l + 

<)8 
(x, 8) m(x, 8) = 0, 

So, the consistent M-estimators are solutions of minimisation 

problems of the following type: 



( 5 . 2 ) 
Min 

8 
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T 
"\-, 
.._. (A(xt , 8) yt + B( x , 8 ) + c ( ( x , yt ) J 

t t 
t=l 

dB JA 
wi th ( x, 8 ) + i x, 8 ) m ( x, 8 ) = 0 

Je as 

Remark 5.3: Gouriéroux-Monfort-Trognon (1984] proposed, in 

this context, to estimate the parameter 8 by a pseudo-maximum 

likelihood procedure. The main idea is to affect to the 

dependent variable Y a pseudo family of p.d,f, l(y, m) 
t t 

indexed by the mean m and then to estimate the parameter 8 by 

the maximum likelihood method after replacement of m by 

m(x, 8), Of course, if the family l(y, m) is arbitrarily 
t t 

chosen, it does not contain the true p.d.f. and the maximum 

likelihood procedure does not provide in general a consistent 

estimator· of the true parameter 8 • However, the 
0 

pseudo-maximum likelihood estimator is consistent for well 

chosen families. This approach is based on criteria of the 

form: 

T 
'\-, 
.._. Log .e(yt, m(xt, 8)) 
t=l 

comparing with (5,2), we conclude that the consistent 

pseudo-maximum likelihood procedures are based on families 

such that: 

Log l(y, m) = A* (m) y+ B* (m) + C(y) 

<=> l(y, m) = exp [A* (m) y+ B* (m) + C(Y)) 

These are the 

McCullagh-Nelder 

linear exponential families (see also 

(1983] for the use of these farnilies in 

statistical theory). 
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5.b. M-Estimation of a Regression Parameter with Symmetri­

cally Distributed Disturbances: 

We consider the model: 

Y = m(X, 8) + u 
t t t 

where the disturbance u 
t 

is syrnrnetrically distributed 

conditionally to the exogenous variables. There are no other 

a priori restrictions on the probability distribution of u , 
t 

except 

family 

those implied by assumptions A,1-A,7. Since this 

of probability distributions is smaller than ~he one 

studied in 5.a, the set of suitable criteria may be larger. 

The identifying constraints are: 

E (h(Y - m(X, 8)) 1 X= x) = 0 
p 

for any x in~ and any odd function h. 

Property 4,7 cannot be directly applied since there 

is an infinite number of odd functions h defining the 

identifying constraints. However, 

that: 

from property 4.1 we know 

E D~(X,Y, 8) = E D~(X, m(X, 8) + u, 8) = 0, 
p p 

for any probability distribution P such that the conditional 

p.d.f, of a given Xis symmetric. 

Taking into account the syrnmetry property of the 

distribution, we deduce: 

E [D~(X, m(X, 8) + u, 8) + D~(X, m(X, 8) - u, 0)) = O. 
p 
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Thus, if ~ is large enough for assumption A,7.i) to be 

satisfied, we conclude: 

E [D~(x, m(x, 8) + u, 8) + D~(x, m(x, 8) - u, 8) 1 X= x] = 0 
p 

for any x in ~ and any symmetric conditional probability 

distribution belonging tom . Thus, if m is large enough 
,F y/ X 'IJ y,· X 

(for instance if P · contains all the symmetric dichotomous 
y / >< 

probability distributions for the error term), we have: 

D~(x, m(x, 8) + u, 8) + D~(x, m(x, 8) - u, 8) = 0 

for an:v ·K and u. 

Property 5.4 

l.inder the assumption of s;vmmetric distribution of the 

disturbances. the criteria providing consistent 

N-estimators of regression parameters are such that: 

D~(x, y, 8) = '-P(x, y - m(x, 8), 8), 

r.there <p(x, u, 8 l is an odd function of u. 

Clearly, we have not used the generalised Farkas 

lemma proved for a finite number of constraints. In the 

present context, the same type of result has been obtained by 

a direct proof, The derivative D~ belongs to the vector space 

spanned by the functions defining the identifying 

constraints. 

Remark 5.5: For this- semi-parametric model we could also 

restrict ourselves to pseudo-maximum likelihood estimators, 

i.e. to the solutions of: 
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T 

~ Max .... Log .e(y , m(x, 8)) 
t t 

8 t=l 

where .€(y, ml is a family of p.d,f, indexed by the mean m. 

These procedures are consistent if: 

D Log .e 
Dm 

,ê,m 
0)) - iX, 

è8 
8) = ;,p(x, y - m(x, 8), 8) 

D Log .e 
where ~(x, u, 8) is an odd f~nction of u and is the 

Dm 
right derivative of the pseudo-likelihood function. 

Therefore, the family 
D Log .e 

of p.d.f. must be such that 

(u + m, m) is an odd function of u. Kafaei-Schmidt 
Dm 

[1984] proposed to estimate the parameters of such a model by 

a pseudo~maximum likelihood procedure based on the Sargan's 

family (Missiakoulis [1983]) given by: 

.€(y, m, œ) = [ 1 + œ I Y - m 1 ] exp [ - ()(, 1 Y - m I J , 

We have: 

Log C(y, m, œ) = Log œ - Log 4 + Log [l+Q fy-mf] - Qfy-mf, 

and the right-derivative of this function with respect tom 

is given by: 

D Log ,e(y, m, œ) 

Dm 

We verify that it is an odd function of u = y - m. This 

explains why the associated pseudo-maximum likelihood 

procedure provides a consistent estimator, 
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5,c. M-Estimation of a regression Parameter with 

Symmetrically Distributed Disturbances and Censored 

Observations 

Property 5.4 may be directly applied to the case of a 

Tobit model: 

where: Y = m(X 
t t 

distributed. 

81 + u 
t 

, if Y :PO , 
' t 

, otherwise , 

and u 
t 

is 

We have to look for criteria 

D~(x, y, 8) = ~(x. y - m(x, 8), 8), 

symmetrically 

where ~(x, u, 0) is an odd function of u and D~(x, y, 8) 

depends on y throu~h the censored observation y*, 

Therefore we can define a function D~(x, y*, 8) such 

that D~(x, y 1 ~, 8) = D~(x, y, 8) = ~(x, y - m(x, 8), 8), 
y •;.rO 

This function has two different forms depending on the sign 

of the latent variable: 

..... ..... -
D~(x, y :Ily~o, 8) = D~(x ; O, 8) 1ly<o + D~(x, y, 8) 11..y~o, 

Now let us apply the transformation y - - y+ 2m(x, 8) and 

use the property of~ to be an odd function, We obtain: 

,..,. ,.,., 
D~(x, 0, 8) lv<o + D~(x, y, 8) l,~o 

- -= D~(x. 0, 8) 1 ù - D~(x, -y+2m(x, 8), 8) 11. ~ 6 
·y >2 ml"•") ,....,2 m( "• "') 

Then two cases have to be distinguished. 
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i) If m(x, 8) < 0, the previous equality implies: 

- ..., -
D4> ( ><., 0 , 8 ) = Dq, < x, o , a l (=::) D<P ( v , · . o , 0 > = o 

and, since the real line is the union of ]-ro, O[ and ]2m, +ro[, 

we have o$(x, y*, 9) = 0 everywhere. 

ii) If m(x, 8) ~ 0, we obtain the following form of the 

criterion: 

..., ..., 
Dq,(x, y 1ly>o' 8)= D q,(x., 0, 8) [11.y<o -11y>2 m("K, 8 )) 

where <f> i~ an odd function. 

In summary we have the following property: 

Property 5.6 

In the case of a censored model and of a symmetric 

distribution of the disturbance, the criterion giving 

consistent M-estimators of the parameters of the conditional 

median are such that: 

Dq, ( x, y* , 8 ) = { D $ (X' 0 , 0 ) [ 1l y * = 0 - 1L y * >2 IR ( 'K; 8 ) ] 

+ :ll. * <f>( x, y* - m ( x, 0 ) , 0 ) \. 
o <y ~2 m< x, 8) } 

r,rhere <p(x, u, 8) is an odd function of u. 

In particular we can see that to obtain a consistent 

M-estimator from censored observations, it is necessary to 

drop a part of the observations associated with negative 

values of m(x, 8). 
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Remark 5.7: A possible choice consists in taking for~ the 

function used in O.L.S, procedure, i.e., ~(x, u, 8) = 2 ux 

and to fix n$(x, 0, 0) by continuity: 

o$(x, 0, 0) = - 2m(x, 8)x.The criterion is such that: 

- m ( x, 8) 11. < + m ( x, 8) 1l } x 
Y O V >z a ( >t., 8 ) 

= 2 lllB < .... , 8 > ~ {Min [ y* , 2m ( x, 0) J - m ( x, 8 ) } x 

This is exactly the criterion proposed by Powell [1986] 

(formula 2.8). 

However, it has to be noted that property 5.6 gives a 

number of others possible criteria. In particular another 

natural one would be based on function ~ associated with 

L,A.D. estimation method. 

5.d. M-Estimation of a Conditional Median 

Let us now assume that the parameter 8 is introduced 

through a conditional median. The semi-parametric mode! is: 

Y = m(X, 8) + u t: 1, ... , T, 
t t t 

where the conditional probability distribution of u given X 
t t 

has a strictly positive density function and a zero median. 

Since this mode! implies less restrictions than 5.b 

on the probability distribution of the errer term we should 

obtain a smaller class of criteria providing consistent 

M-estimators. 
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The identifying constraints are: 

E [ 1[Y-mCX,0lCO) - : X 1 = O. 

The condition on the criterion is: 

(5.8) D~(x, y, 8) = ~(x, 8) [ I[y-mCx,BlCO) 

Let us restrict ourselves to the usual case where the 

criterion depends on x and 8 through rn(x, 8): 

~(x, y, 8) = ifl(y, rn(x, 8)). 

We assume that ~(y, m) is continuous and differentiable with 

respect tom (except on a set of Lebesgue rneasure zero) and m 

is differentiable ~ith respect to 8. Then, we have: 

d~(y, m(x, 8)) drn(x, 8) 
D~ ( >t, :v , 0 l = 

for any (x, 8) such that (f'(y, ·) is differentiable at m(x, 8). 

Comparing with ( 5. 8) 1 we conclude that, for almost 

every m, (f' has a partial derivative of the form: 

d'+' 
[n[y-mCO) ~I · ( y, ml = 1,),( m) -

dm 

To obtain the expression of the criterion ~. we have to 

integrate the previous relation. It is first interesting to 

note that, under some weak regularity conditions (see 

Appendix 6) the function µ can be considered to be positive. 

So, we shall study criteria that are associated to functions 

;,p such that: 
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D'f)( y• ml ~] ( 5. 9) = µ(ml [ n .. -
Dm r ·- 111 ~o 

with f.1-(ml > 0 for an:i,. m in ,.fi1. 

If~=~= ]a, b[, we can integrate with respect tom 

the above relation: 

·f(y, m) - ..P(y, y)= Jmf-1,(m) 
y 

·n - - dm. [ 11 V - 111~0 2 

If A(ml is an indefinite integral of f-1,(m), we obtain: 

~(y, m) - ~(y, y) = 

1 

2 

1 

2 

[A(m) - A(y)] , if m ~ y, 

[A(m) - A(y)} , if m ~ y. 

Since A has a positive derivative, it is an increasing 

continuous function; it can be interpreted as a c,d.f, of an 

absolutely c~ntinuous measure Kith positive density f.1-, 

Therefore, ~ has the following form: 

•f'( y, m) = 
1 

') ... 
1 A(m) - A(y) 1 + C(y) 

The previous discussion is summarised in the following 

property: 
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Property 5.10 

Let m(x, 8) be the conditional median of Y. 

j 
L,°J1der re.litula1·i t.r cond i tians and i t· 

';_:j = Jtl = ]a, b [ , 

~(x, y, 8) = ~(y, m(x, 0)) 

then. the criteria r..;hich lead ta consistent t•J-estimators of 8 

have the followin~ form: 

T 

L 
·t= 1 

or, equivalently, 

1 A(m(x, 8)) - A(y ) 
t t 

T 

~ ..... 
t=l 

A(m(x ,8)) - A(y )1 
. t t 

r,.,·here A is the c.d.f. of' a measure on ]a, b[ with a positive 

density. 

Remark 5.11. The ~------- fact that the above c~iteria yield 

consistent M-estimators is rathe1· intuitive. It is well-known 

(see e.g, Koenker-Bassett [19ï8]), that a consistent 

M-estimator of the median is the least absolute deviation 

estirnator obtained from: 

Min lm (x, 8) - Y 1. 
t t 

8 t=l 
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This procedure belongs to the above class of M-estimation 

procedures if we take A(m) = m, i.e. the cumulative function 

of the Lebesgue measure on R, Moreover, it is clear that the 

initial model: 

Y. = m(x, 8) + u 
• t t 

where the error term bas a null conditional median, can be 

defined in equivalent ways, Let us consider increasing 

-functions A; if m(x, 0 ) is the median of Y, A(m(x, 0 )) is 
0 0 

the median of A(Y) and an equivalent model is given by: 

A(y ) = A(m(x ,0) + v 
t t t 

where v is an error term with a null condidtional median. 
t 

This shows that the consistent N-estimation 

procedures proposed in property 5.8 can be interpreted as 

least absolute deviation methods applied to transformed 

models. 

Remark 5. 12, Cons ide ring some classical continuous 

distributions, we obtain the following examples of criteria: 

Lebesgue measure: 

T 

Min 1 Y - m(x , 0) 1 
t t 

0 t=l 

Logistic distribution: 

T 
1 1 

Min 
0 t=l 1 exp( - yt ) 1 + exp (-m(x, 0)) 

t 



Weibul] distribution: 

T 

Min 
8 

L 1 exp(-exp(-yt))- exp(-exp(-m(xt, 8))) 1 

t=l 

Logari thm function ( on ~ ) : 
* 

T 
'\-, 

Nin ...,. 1 Log; Yt 

8 t=l 
- Lo.e; m( x , 0 ) 1 

t 
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Remark 5.13. It is worth trying to evaluate the limitations 

implied on the criteria by the regularity assumptions we have 

made. Among the usual consistent procedures, the maximum 

score procedure (see Cosslett [1983], Manski [1975], [1985]1 

is the only one which is not compatible with property 5.8. At 

this leveJ, we have tn recall that this estimation method is 

only consistent under some additional conditions on the 

distribution of the exogenous variable. Kevertheless, it is 

easiJy seen that the maximum score method appears as a limit 

case of our class of criteria. If we consider the c.d,f. 

function of the unit mass at zero A(y) = t,, the associated 
V •:,-0 

criterion js: 

T 

' .... t=l 
11 -. 

Y ~o 
t 

- 11 m,x ,8);?;0 
t 

The minimisation of this function is equivalent to: 

Min 
8E@ 

T 

t=l 
[ ·n V ?o 

t 
1J m ( + 11 

Y t <o 
·n 

m(X ,8)~0 
t 

] 

which provides the criterion of the maximum score procedure. 
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5.e. M-Estimation of a Parameter Appearing in a Conditional 

Mean and a Conditional Variance: 

A second order econometric model is: 

Y = m(X , 8) + u 
t t t 

where the conditional probability distribution 

zero mean and a variance denoted by: 

V(u 
t 

X ) : 0'2 ( X , 8 ) • 
t t 

In this case, the identifying constraints are: 

E[Y - m(X, 0) 1 0) = 0 , 

E [ Y2 
- êr2 (X' 8 ) - m2 (X' 8 ) 1 X) = 0. 

of u has a 
t 

The application of property 4.7 leads to criteria satisfying: 

D<.jJ ( x, y , 8 ) = X ( x, 8 ) ( y - m ( x, 8 ) ) 

+ µ.()<., 8) (y2 - 0'2 (x, 0) - m2 (x, 8)) 

Remark 5.14: If we restrict ourselves to pseudo-maximum 

likelihood estimators, the optimisation problem is: 

Max 
8 

T 

L Log .e [Y , m( x , 8 ) , o-2 
( x , x)] 

t t t 
t=l 

where .€(y, m, 0'2 ) is a family of p.d.f. indexed by the mean m 

and the variance 0'2 • The previous condition shows that these 

procedures are consistent if: 
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a Log l(y, m, a 2 l 
= \ ( m ' J2 ) ( Y - m ) + \ ( m ' o-2 ) ( Y2 - o-2 - m 2 ) 

After integration, we see that the family of p.d,f. has the 

following form: 

.e ( y , m , v 2 ) = exp [ A ( m , <12 
) y + B ( rn , <1

2 
) y 2 + C ( m , <12 ) + D ( y l ] 

This is an exponential family whose canonical sufficient 

statistic is IY, Y2 l (quadratic exponential families), 

The usual example of such a family is the normal one. 

Remark 5,15: It is easy to extend the result to the case of a 

multivariate dependent variable Y. Thus, we can see that the 

farnily of multivariate normal distributions can be used as a 

family of pseudo-probability distributions (see Gouriéroux-

Monfort-Trognon [1984]). This is the reason why 

pseudo-maximum likelihood procedures based on the gauss~an 

distribution provide consistent estimators in the context of 

simultaneous-equation models or in the context of time series 

(see Hannan [1970]). 

5.f. M-Estimation of a Parameter Defined Through Conditional 

Quantiles: 

Let us consider a parameter 8 appearing in K 

conditional 

assume that 

0t.-quantiles, k=l, ••• ,K, 

the respective shapes 

m ( x, 8), k= 1, ••• , K, m 
k 1 

constraints are: 

~ m 
2 

œ < œ < •.• < œ. We 
1 2 K 

of these quantiles are 

and the identifying 



34 

E [ 1l . .. 
Y <..m k ( X, ") - (J(.. l = 0 li. 

k= l, .•• ,K 

The relevant objective functions among those depending on x 

and 8 through m (x, 8), k=l, ••. ,K are such that: 
k 

K 

Dl.V ~ (1' -~ -0(. ) (y, m) = "'-' /\ (m) 
. v~mk k 

Dm k 
k=l 

1l v~m 
-0(. 

1 
1 

= /\( m) for any m. 

1L 
v~m 

-0(, 

. K K 

It can be shown (see appendix î) that /\(m) has the following 

form: 

1 

À. ( m) 

/\(ml = i 

0 

This implies: 

Dc.l> 

Dm 
k 

( y, m) 

0 

À (m) 
K 

= À I m) 
k 

with t\ (ml > 0, k=l, ... ,K. 
k 

k= 1, .•• ,K. 

Integrating the previous equations we obtain the 

following result: 
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Property 5.16 

The criteria i.:hich lead to consistent N-estimators of 

a parameter 8 defined through 

k=l, •.. ,K hare the follor,dn.s( form: 

4>[y' m (x, 8), ••• , 
1 

K 

m ( x, 8) ) 
k 

Q(,k -quantiles m ( x, 8 ) , 
k 

= B(y) + L { ( 1 - oc. ) ( A (m ( x, 8) ] - A (y)) 11. . 
k · k k k Y <m k C " , €1 l 

k=l 

- oc. (A (m (x, 8)] - A (y)) 11 >. 8 
} 

k k k k Y"fflk(",) 

where the A 
k 

functions are c.d.f. of measures with positive 

densities. 

Proof: see appendix 8. 

Since B. (y, m l 
1 i 

is a criterion providing a consistent 

M-estimation of a 0(, -quantile, 
i 

we have shown that the 

criterion 4> is obtained by adding criteria corresponding to 

each quantile, 
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6. CONCLUSION 

In this paper Ke have delt Kith the consistency of an 

M-estirnator. This problem has been treated at a high leve] of 

~enerality 

derived a 

since, under weak regularity assumptions, we have 

characterisation of the M-estimators which 

consistently estimate a given parameter of interest. A 

natural next step would be a general st11dy of the asymptotic 

distributions of the consistent M-estimators, of the 

existence of lower bounds for the asymptotic covariance 

matrices and the reachability of these bounds; this kind of 

study should be linked with similar works (Newey (1986), 

Chamberlain [1987]). 
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Appendix 1 

Proof of Property 3.3 

i) The condition A,4.ii) of uniform convergence implies that: 

T 

iL 
T t=l 

i i ) 

4>(X , Y , 8 ) t t T 

A 

converges P 
0 

Since e is P -asymptotically 
T 0 

a.s to E 
p 

0 

separated 

4>(X, Y, 8 ) 
0 

and converges p 
0 

a.s. to 8 0 • there exists a set .Q of sequences 

w = {C>\' . yt ) , tE IN *} satisfying p 
0 

and a positive scalar E such that: 

"' e E e 

11 e - ê 

'r/T?;T 
0 

T 

T Il < E ~ ~l 4>(>\, Yt, êr) 

( .Q) > o, an integer 

T 

~L 
t=l 

iii) Considering one of these sequences for which: 

T 

iL 
T t=l 

{p(x t • 

and 

T 

iL 
T t=l 

4>(X , Y , 8) 
t t 

converges P 
0 

converges P 
0 

a.s. to E 
p 

0 

a.s. to E 
p 

0 

4>(X Y 8 ) t t O 

4>(X, Y, 8) 

for any 8 such that Il 8 - 8 Il< E (see A.4.ii)) we have: 
0 

T 
0 
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V 8 Il 8 - 8
0 

Il < E E ~(X Y 8 ) ~ E ~(X, Y, 8) 
p t t O p 

0 0 

iii) Applying assumptions A.4.iii), iv), v), we deduce the 

necessary condition: 

0 

= E 
p 

0 

D~ (X Y 8 ) = 0 
t ' 0 

• 
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Appendix 2 

Proof of Property 3.4 

il This result is a consequence of the proof proposed by 

Jennrich [1969] in the non linear least squares context. 

Following the same approach. it can be seen that there exists 

a M-estimator ~hich is P asymptotically separated and which 
0 

converges to a solution of the limit problem: 

-

~lin 

8EV
8 

0 

E sp(X. Y, 0) 
p 

0 

where V
8 

is a compact neighborhood of 0
0 

arbitrarily chosen 
0 

in order to have a well-defined estimator [ 
T 

i i) Assumption A.5 ensures that the mapping 0--+ 

is locally strictly convex. Therefore, it is 
,..,, 

E ,~(X, Y, 0) 
p 

0 

possible to 

choose the neighborhood V in e such a 

admits 

way that the liniit 

its unique 
0 

problem Min 

8EV
8 

E c.\.>(X. Y. 8) 8 
p 

0 

0 

solution, This provides the sequence 

converging P a.s. to 8 
0 0 

as 
0 

of N-estimators 

• 
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Appendix 3 

Proof of the Generalised Farkas Lemma 4.2 

The candi tian j s obviously sufficient and the 

following proof concerns the necessary part, 

-i) Let P be any element of the family f, Let€ be the binary 
k 

variable equal to .. _ .. , if E h :;:, 0, and to "+''; if E h < O. 
p k p k 

We are going to show that there exists a probability 
K 

distribution Q E ~ satisfying: Q ~ = ~ 
k=l 

with: 

(X. 
k 

p 

Cl(, ~ 0 
k 

k=O, 1,, •• , K 

I: 
k=O 

and such that Eh = 0 
Q k 

0:. = 1 
k 

k=l.2, •.. K. 

The requested forrn of Q implies: 

E ' k 
k 

+ oc. 
0 

E hk = œ 
Q k 

E 
p 

E h 
p k 

= 0 k=l,2,.,.K, 

and: 

O'. 
k 

O<. 
0 

= 

E k, k 

E 
p 

E k, k 

k=l,2,.,,,K, 
h 

k 

p t 
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From the definition of e , all these ratios are positive. 
k 

These equations, for k=l,2, ... ,K and the condition 
1-i: 

oc. 
k 

= 1 uniquely define (K + 1 ) real nurnbers 

IJ(. t ;y_ t ••• t Ut!, 
0 1 K 

with C<. > O. 
0 

The probability distribution Q 

...... 
which is so defined belongs to f, 
convex. 

i i l By assumption, we know that Eh = 0 
Q k 

Eh= O. This can be written: 
Q 

K 

E h 0 
~ 

E h = = .;;.... Cl: + 
Q k p 

k=l E k • k 

K K 

' 
(!/.. 

~ k 
==> E h = "'-' E h = "'-' E 

p C'l p p 
k=l 0 E • k k=l 

k 

since this family is 

k=l, ... ,K irnplies 

i.'<. E h 
0 p 

E h 
PE 

k. k 

h 
k E h 

p k 
E k' k 

E h 
p 

e: k' k 

iii) It remains to show that the ratio: ~ = 
k E h 

does not depend on é t 
k 

p 

p 

i.e.; 

E h 

+ k 

E h 
k 

+ k 

E h 
p 

- k 
= 

E h 
p k 

- k 

In order to do so, let us define: 

,... 
Q = oc. p 

+ k 
+ (1 - od P 

By definition of P and P , we have: 
+ k - k 

p k 
e: k I k 

- k 
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E h = 0 V ,j ;;z: k. ·-Q 

Moreo...-er, if hTP, choose: 

E h 
p k 

- k 
0(, = 

E h E h 
p k p k 

+ k - k 

~ is a positi...-e scalar smaller than 1 such that Eh = O. 
_. k 
Q 

Therefore, since ~ belongs to the convex family J, we 

~et Eh= 0, i.e.: -Q 

Ü(. E h + ( 1 - <X) E h = 0 

= -

iv) Therefore we 

f or P E 2'p, • .. 

p p 
+ k - k 

E h E h 
p p 

- k Û(, - k 
= = 

E h 1 - 0(, E h 
p p 

+ k + k 

have found K scalars À 
1 

[h 
K 

E - ~ À h = 0 
p k k 

k=l 

k 

k 

t ••• ' À such that, 
K 

• 
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Appendix 4 

Proof of Property 4.3 

We denote bye the subset of RK 

{[~ hk' 
spanned 

jRK with 

k=l, ... ,K] , P E ~} and by CONE(e) the (convex) cone 

bye. We know that CONE(el is the set of vectors of 

components: 

>( =O(.Eh 
k p k 

k=l, ... ,K p E ~ 0(. ::;; o. 

The set CO:\"E(e) is equal to RK if and only if it contains the 

2K vectors e and e , k=t, .. , ,K, where e is the vector of 
k - k k 

1R8 whose ~omponents are all equal to zero, except the k th one 

whi~h is equal to one. But, it is straightforward to 

establish the following equivalences: 

e E CONE({3) <==) '=J P E p, À> 0 
k •• k [p~k h ] = Àe 

k 

[PE 
h ] = Àe . 

k 
- k 

These conditions yield condition (C), 

• 
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Appendix 5 

Proof of Property 4.7 

From assumption A.7.il, we know that 

ED 4>(X, Y, 81 = 0 
p 

V P E ~e 

Ç=:) E [ D4> ( X • y , 8 ) 1 :-;: = X] = ü V x E ~. 
p 

Therefore, for any fixed x in~. it is possible to apply the 

property ~.1 and the generalised Farkas lemma 4,2 in the 

conditional 

À , •••• À 
1 K 

mode! defined by ~Y lx' Then we get K scalars 

1.;hich are independent of Y (but may depend on x, 

8) and are such that: 

K 

D4>i x, y, 8) =~ i\ < x, 8 l hk ( x, y, 8) • 

k=l 

• 
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Appendix 6 

Proof of formula (5.9) 

We have to prove that, under some weak regularity 

conditions, the function ~ can be considered to be positive. 

These conditions are essentially about the commutability of 

the differential and integral operators. For instance, we 

need the following relation: 

We 

E '-1->(X, Y, 8) 
p 

28 J8' 
8:8 

shall also 

0 

= [J E D''-1->(X, Y, 
J8 p 

use assumptions 

01] 
8:8 

0 

about the 

differentiability of ~. the double differentiability of m 

with respect to 0 and the fact that the family of p.d.f, ~ is 

large. 

In a first step, we deduce from A5 that:· 

[ !a ~ D ' '1> ( X , Y , 8 ) 1. . 
0 

is positive definite and we use the 

0 

form of D''-1->(X, Y, 8) to compute: 

E [D''-1->(X,Y,8)) = 
Je P 

E ---- ~[m(X, S)) IY-m( 1, 8Jco 
{

Jm(X,8) [ __ 
2
1]} 

J8 p J8' 

We denote by 

given X and 

probability 

F the conditional distribution function of u 
X 

by density function. The conditional f 
X 

its 

distribution of Y ,1,tiven X can be obtained from 

that of u by translation of m(X, 8 ). We have: 
0 
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d 
E (D' <+>IX, Y, 8 ) ) 

J8 p 

() r [F, = E IX, 0 ) µ,[m<X, (3 ) J {m(X, 
J8 p .ê18 1 X 

8) - m(X, 8 l) - ~]} 
0 2 

= E { J [dm IX, 0) µ,(ml X, 8 l )] [Fx (ml X, 8) - m(X,8 l) 
p X . J8 08' 0 -m 

+ E 
p 

X 

Then, 

[!e E 
p 

/~m8 lv IX' 8 l 
08' 

iX, 8) µ[m!X, 8)) f 
X 

[m(X,9 l - m(X, 8
0 

l ]} 

1 
since F ( 0) = ' 

we obtain for 8 = 8 
X 2 0 

eij. [am(X, 8 Jm(X,8) 
f, < 0 l l D '<.j.>( X, Y, = E 1-~[m(X, 8) ] 

p Je è8' 1 
0,- = 0,-

0 

Since we have assumed that f is positive, the above matrix 
X 

~ill be positive definite for any probabilitY distribution P 
• X 

of the family ~Px if 1-~ is positive. This sufficient c.ondition 

Kill be also necessary if the farnily P is large enough. 
, X 

• 



Appendix 7 

Form of the Matrix A(m) (§ 5.f.) 

If 1,;e denote by F 
0 

the true c,d,f, 

m0 ,, ,,, m0 the true values of m , ... , m we have: 
l K 1 K 

·So, we 

ç) 

[ E 
dm 0 

l 
., 
(j 

= 
dm 

= /,(m 
0 

F tm 
D<.J., 0 1 

E (Y, m) = /\(ml 
0 Dm 

F (ml 
o K 

have: 

D<.J., 

L. iY, ml 
Dm' 

0 

F (m F im0 

l 
0 1 0 1 

/\( m) 

F (m F i m0 J 
0 li 0 K 

• m = ID 
0 

f \ m0 0 
0 l 

0 f ( m0 ) 
0 K 

F ( m0 

0 1 

F (m0 ) 
0 K 

50 

of Y and 

This matrix must be positive definite for any possible value 

of the parameters m0 and for any possible density function f 
0 

(whose quantiles are m0 ,,,,, m0 ) i.e. for any possible value 
1 K 

1 

off (m0 J, ••• , 
0 1 

f (m0 
). In particular, the symmetry condition 

0 K 

gives: 
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for any f
0 

lm0el and f (m
0 

). 
0 k 

Thus: A .(m) = À, <m 
kt' 0 tk 0 

= 0 for any R. and k;z:.€. 

So, the matrix 

f (mo 
0 1 

by 

0 

,\( m 
0 

must be diagonal and, since its product 

0 

must be positive definite, the 

f ( m0 1 
0 K 

diagonal coefficients of A(m 
0 

must be positive. So: 

[ 
/\ lm) 0 

l 

t\( m) = tdth A k (ml > 0 • 

0 À (m) 
K 

• 
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Appendix 8 

Form of the Criterion ~in§ 5.f. 

For expository purposes we only consider the case K = 2. 

We have to integrate the following equations: 

D4> 
[ 11.Y <m 1 

(y, ml = À (m m -
Dm l l 2 

1 

D4> 
(y, m) = À (m m [ 1lv <m -

Dm 2 1 2 
2 

2 

Let us begin with the integrability conditions: 

We obtain, Ïor y <. 

DÀ 
1 

(m, m 
Dm 1 

2 

and for m ~~ Ill <:. 
l 2 

DÀ 
1 

(m' 
Dm 1 

2 

Since I',)(. < l'J(. t we 
1 2 

D24>(y, m) 

Dm Dm 
1 2 

m <. m 
1 2 

) ( 1 - ;JI. ) 2 1 

y; 

m ) (- ()(. ) 
2 1 

can conclude 

= 

= 

= 

D2q>(y, m) 

Dm 
2 

DÀ 
2 

Dm 
1 

DÀ 
2 

Dm 
1 

that: 

Dm 
1 

(m, 
. 1 

(m, 
l 

DÀ 
2 

Ill ) (1 
2 

m ) (-
2 

l'J(.l] 

C\ ] 

- ()(. 
2 

I',)(. ) 
2 

Dm 
2 

(m, m) = 0 
1 2 

and 
Dm 

l 

(m, m) = 0 
1 2 

So, we have: 

) 



D<.1-> 
•Xl ] ( y, ml = À (m ) l 11 . -

Dm 1 l V .._,ffl. 1 

1 

D<i> 
[ 11 V <m ~2 J ( y, m) = À (m ) -

Dm 2 2 . 2 
2 

· Computation of 4' on the Set y< m < m: 
l.. î.. 

t!> ( y. m • 
l 

¼'e have: 

ml - '+>(Y, Y, y) 
2 
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À ;, 0 
1 

• À > 0 
2 

= (<.V(:v, m ' 
1 

m ) ·- 4'(Y, Y, m )] + [4'(Y, Y, m) - 4'(Y, Y, y) 
2 2 2 

( u) du( 1 - ex. 
J 

) + À ( u) du( 1 - C'< ) 
2 2 

If we denote by A and A some indefinite integrals of À and 
l 2 1 

,\ , we obtain: 
2 

t!>( y, m m_ ) = ( ( 1 - 0<. ) ( A ( m ) - A ( y) ) 
1 ;; l l l l 

+ ( 1 - a) (A (m ) - A (y))+ 4'1Y, y, y) 
2 2 2 2 

· Computation of 4' on the Set m <y< m: 
l.. î.. 

4-'( )' • m , m) - t!>(y, y, y) 
J 2 

= [ 4'( Y' m 
l 

m2 ) - ,.J.> (Y' Y• m2 ] + [ 4'( Y' Y' m2 ) - 4' (Y' Y• Y l ] 

= t• \ ( u l (- '". ) du + J:' À (u) (1 - a) du 
2 2 
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: oc. (A (m l - . ..\ (y)) + (1 - oc. ) (A (m l - A (y)] 
l 1 l 1 2 2 2 2 

· Computation of~ on the Set y> m > m: 
- - .L--i_ 

The sarne type of computation leads to: 

4>(y t m, m) - 4,(y, y, yl 
l 2 

: oc. (A (ml - A (y)) - œ (:\ irn l - A (y)) 
l 1 l 1. 2 2 2 2· 

Synthetic expression of the objective function +: 

If we summarize the above results, we can write: 

4>(y, m ' 
l 

m2) = ,i•(y, y, y)+ (1 - C<.1) (A1(m1l - A1(y)) ·nv<11 

- oc. (A (m ) - A (y)) 1, 
1 · l 1 J v~•• 

1 

1 

+ ( 1 - OI. ) ( A ( m ) - ...\ ( Y ) ) 11,_. ~-m . 
2 2 2 J , -

2 

- oc.2 ( .. \ 1 m2 l - ·\ ( y) ) 11 .. >m 
. 2 


