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ABSTRACT
ON THE STRUCTURE OF PARETO-OPTIMA TN AN INFINITE

HORIZO ECONOMY WHERE AGENTS HAVE RECURSIVE PREFERENCES

This article generalizes the one-agents growth theory with discounting
to the case of several agents with recursive preferences. In a multi-
consumption goods world, we show that, under some regularity conditionms,
any Pareto-optimum can be viewed as the trajectory of a dynamical system.
The state space can be chosen to be either the product of the space of
capitals by the (n-1)-simplex or the state of couples, capital-utilities
achievable by (n-1) agents from that capital. We define and study the
properties of generalized value functions. A generalized Euler's equation
is introduced. It is then being used to give uniqueness and local stability

conditions for a steady state.

RESUME
STRUCTURE DES OPTIMA DE PARETO DANS UNE ECONOMIE

A HORIZON INFINI OU LES AGENTS ONT DES PREFERENCES RECURSIVES

Cet article généralise la théorie de la croissance & un agent qui utilise
un critére de choix avec taux d'escompte au cas de plusieurs agents avec préfé-
rences récursives. Dans un monde a plusieurs biens de consommation, on montre
que sous certaines conditions on peut représenter tout optimum de Pareto comme
trajectoire d'un systéme dynamique. On peut prendre comme espace des états, soit
le produit de 1'espace des biens de capital par le (n-1)-simplexe, soit 1l'espace
des couples capital et utilités réalisables par (n-1) agents & partir de ce stock
de capital.On introduit des fonctions-valeurs généralisées ainsi qu'une équation
d'Euler généralisée. On 1l'utilise par la suite pour donner des conditions d'uni-

cité et de stabilité locale de 1'état stationnaire.
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Mots Clés : Préférences récursives, optimum de Paréto, dynamique, fonctions
valeurs, équations de Bellman, équations d'Euler.



INTRODUCTION

These last years dttention hés focused on the dynamics of equilibrium models
where agents are infinitely lived. Becker [1980], Bewley [1982], Yano [1984],
[1985], Coles [1985] [1986] have studied the dynamics of intertemporal
equilibriuﬁ allocations when agents have separable preferences. The last
three authors ﬁave shown that if agents have the same discount factor and if
it is sufficiently close to one then in equilibrium the economy has the well

known turnpike property of optimal growth.

On the other hand, following Koopmans' work [1960], [1969], Iwai [1972],
Benhabib et ali [1985] for the one agent case,Lucas and Stokey [1984] and
Benhabib et ali [1986] studied the dynamics of Pareto-optimal allocations ip
models where agents have recursive preferences. They all assumed basically
the existence of one consumption good only. The purpose of this paper is to
carry on this last work one step further in a more general setting. (We use

many consumption goods) and to generalize well-known results of growth theory.

In order to do so, we introduce in section one an economy with m infinitely
lived agents and a producer at each date. An initial stock is given. Agents
have recursive preferences, the technology is markovian and time invariant.
In section two, we show that under strict concavity and differentiability
assumptions on utilities and strict convexity assumptions on production any
Pareto optimal sequence may be viewed as the trajectory of a dynamical system,
The state space can be chosen to be the product of the capital space by the
simplex (capital-utility weights assigned to agents) or the space of capital
and utilities achievable by n-1 agents from that capital stock. In section
three, we generalize the one—agent value function. This can be done in two
ways according to the state space chosen, as shown by Lucas and Stokey [1984]
and Benhabib et ali [1986]. We extend their definitions to the multi-consum-

tion goods case and study the properties of the generalised value functions.



In part four, we generalize "Euler's equations".

We then first use these equations to give sufficient conditions of existence
and uniqueness of stationary states in the multi-consumption goods case (our
approach is based on Brock [1973] and Burmeister [1980]).We then extend
Mangasarian's result [1966] that any bounded sequence that satisfies

Euler's generalised equations is in fact optimal.

We conclude with a couple of examples. The first one extends slightly
Benhabib et ali's [1986].

In the second one agents have separable utilities and same discount factor,

we thus get a turnpike theorem for discount factors close to one.



I - THE MODEL

1.1 - Generalities

We consider an economy with n consumers each of whom lives for an
infinite number of periods t=1,2... . There are m consumption goods
s, . . m, © P\
and p capital goods. The commodity space is then (R+) X (R+) .

We shall use in b and (Rh)°° (h=m or 'p) the following

[
=
N

. >z,

. . . h .
conventional notations : in R, z' > z &> V] i

z' >z <&>z' >z and z2' # z

z'>>z&>»Vj=1...h z! >z,

J J

: hye ' ' ' '
in (R),525(=>Vt20zt_>_zt;E‘>5<===>£_5and£#5

T will denote the shift on sequences. For x = (xo,x1,...), T35=(x1,x2,...).
The economy is described by the list

E = ( (RI_I:)OO , W, i€I = {1,...,n}, (RE)°°, B, k_ ) We shall define

below each element of this list.

1.2 - Recwrsive pregerencesd :

i i 1 m . .
Let xl = (x1 se..3X, ) ER denote the quantity agent 1 consumes at
t t1 tm +
i i1 P .
date t. Let x = (xo, x?...) denote the infinite sequence of agent i

[0}
consumptions. Let X be the space of consumption sequences (RT)
endowed with the product topology. Let us recall that this topology is

metrisable and that one can for example define Ekzaz) by

‘ . . . m . ;
where d 1is any distance in R , Since

~ ~

d (x,y) = 7 LEEEi:Zil-] 1
120 1+d(xi,y9 P

d(Tx,Ty) < 2 d(x,y), T is a continuous map from X into X .

Let S be the space of bounded continuous functions from X into R

endowed with the sup norm |luf| = sup u(x) .
x € X



Following Beals and Koopmans [1969] and Lucas and Stokey [1984] we
shall assume that preferences are representable by a utility function which

belongs to a class that we next define.

A function W : RT xR, +-R+ is an aggregator function if it satisfies

the folloﬁing properties :

W1 : continuous and satisfies W(x,0) < M,vx

W2 : concave

W3 : Ww(,0) =0

We : (x,z) < (x',2') and (x,2) #(x',z'") implies W(x,z) < W(x',z') ;
and for some 0 < B <1

WS o |W(x,z) - W(x,z")| < B |z-z'| for all x € RT and all z, z' € R.

We have the followiag theorem :

THEOREM I.1 :
Every aggregator W defines an operator on S as follows
Ty u(z) = W(xo,u(TQg)). T, 18 a contraction. There exists a unique
u€S such that TW u = u with the following properties :
(2) u <8 concave (strictly concave whenever W 1is strictly
econcave in x)

(22) Non decreasing

(22Z) u(0) = 0

Proof : Let us first prove that Tw defines an operator on S . Note that

Twu is continuous on S as composite of continuous maps. Twu is bounded since

lTwu(z) - W(xO,O)I < B u(Tx) < Bllull by W, and therefore

sup| Twu(§)|<M-+B||u|| .
xEX

It follows from w5 that Tw is a B-contraction on S since

|Tu - T v | < B [u(t®) - v(T 0| < B |uv], vx.



As Tw maps concave, non decreasing maps into themselves, TW‘ has a
unique fixed poinF which is concave and non decreasing. As u(0) = Tw'u(O) =
W(0,u(0)) and is unique, u(0) =0 .

If W 1is strictly concave in x, then u 1is also strictly concave. This

can be proved by induction. Let x and x' be such that X, # x6 then

u(d x + (1-0)x") =w() x0+(1-)\) x('), u(d T)+(1 = X)) T (x")))
> A W(XO,U(T(E)) + (1-2) W(xé,u(T(g'))==Au(§Q + ({:i) u(x')

Now let x and x' be such that x, = xi Vi < j and X, # x3

Then u(A TI(x) + (1-D)TV(x"N>Au(TI (x) + (1-1) u(TIx")

as u(TJ—1(§» = w(xj_1,u(TJ(5))) and since W satisfies W, we have

ud TG+ -0 T &) > u@?T @)+ w6

and therefore u(A x + (1-)x') > A u(x) + (1-1) u (x'), by the induction

hypothesis.

Example 1.1 : The discounted case.
Let Vv : RT + R’ be a continuous, concave, uniformly bounded function
such that v(0) = 0 . Let W(x,z) = v(x) + Bz . Then it can be easily

verified that all the properties W1 - W5 are fulfilled.

Let u(x) = § Bt V(xt) . Since v is uniformly bounded u is well
defined and satisgies u(x) = W(xo,u(T(g))). It is therefore the unique
solution to the functional equation Tw u=u.

Therefore the classical growth theory and intertemporal general equilibrium
theory with discounted preferences is a particular case of the theory we shall

develop.

Remark 1.1 : Note that we work with a weaker topology then Lucas and Stokey
[1984] who use RT . All proofs concerning compactness and continuity are
thus much easier. Moreover notice that we have weakened their hypotheses that
W(x,y) <M Vx, Vy into w(x;O) < M, Vx in order to be able to apply it to

linearly separable preferences.



Remark 1.2 : If W 1is assumed to be continuous and satisfies W, = W it is
still possible to associate with it a utility function (not necesseraly

bounded). Indeed let X = QT' and S' be the space of continuous function £

on X such that sup —L%%Q%L— < ®© , Then it can easily be shown that S'
ko o]

endowed with the norm IIf“S, = sup yf(X) is a Banach space. As W is
oo

concave, there exists a C > 0 such that W(x,0) < c(1+||d|) . Therefore
with W we can associate an operator on S' as follows Tw u(§)==w(x0,uT(5)).
Indeed from W, we have that |W(x0,u(T(x)) -W (x0,0)|

<8 (+fl]] ) llully, and therefore [W(xg,u(TG)) [ <8 flullge + O +llx ).

Moreover T_ u is continuous on QT therefore Tw(u) €s’'.
However the counterpart of this weakened hypotheses is as in Montrucchio 1984 ]

a stronger assumption on the production set so as to get a bounded utility set.

Remark 1.3 : The aggregator W defined above can be viewed as an extension of
the one defined in Koopmans [1960] and Koopmans et ali [1964]. Indeed consider

. Let C:R" >R, be
5 T+ +

any concave, strictly increasing function that verifies C(0) = 0 . Then

a function ‘lP:ZR+ X]R+ > R+ that satisfies W1 -W
W(x,z) ='1%C(x),z) is an aggregator function in the sense defined above.

1.3 - Stationary Markovian technoogy :

The technology at date t will be assumed to depend only on the vector
of capital stocks K, = (Kt1""’Ktp) € RE on hand at the beginning of t
énd the production possibilities will be assumed to be invariant in time.

Given a stock k we shall assume the existence of a set of pairs (x,y)
of current consumption goods and beginning of next period capital stocks
that are jointly producible B(k) E,RT'X RE , so that the technology is

characterized by a correspondence B : RE -+ RT X RE with the following

properties



BO : B is continuous
B1 : for each k, B(k) is compact and convex
B2 : (x,y) € B(k) and 65 (x',y') < (x,y) implies (x',y') € B(k)
B3 : k' < k implies B(k') < B(k)
B4 : if (x,y) € B(k) and (x',y') € B(k'), then
((ex + (1-0)x"), (By + (1-6) y')) € B (6k + (1-6)k")

for 6 € [0,1]

B5 : (x,y) € B(0) = y = 0 and there exists x>0 (x,0) € B(0)

B6 : k > 0 implies that there exist x > 0, y > 0, (x,y) € B(k)

This last hypothesis implies that from a non zero initial capital stock
one can generate capital and consumptions sequences that are not zero at

each date. All others hypotheses are standard.

Example 1.2 : Let F(k,x,y) from ]RE X RT X ]RE > R be a continuous
convex function, increasing in x and y and strictly decreasing in k .
Let F(0,x,y) <0 imply y =0 and F(0,0,0) < 0 . Then let

B(k) = {(x,y), F(k,x,y) < O} then B satisfies B < B .

1.4 - Feasible consumption paths. Utility set :

o i . i . 1
In what follows let us denote by X = 2 xl, X, = z Xt, X = Xl.
- . ~ ~
i 1

Fe bl

For x and x' in ]Rh, h=1,m,n or p, let x>\=)\x+(1—>\)x', relo,1l .

Given kO the initial stock a feasible allocation path is a couple
(x,k) € X x (RE)oo such that (it , kt+1) € B(kt) Vt > 0 . We denote by
X(ko) the set of all x € X" which are feasible. Let us also define

feasible consumption paths as follows
c(ko) = {5€ X, (xt, kt+1) € B(kt) vt > 0 for some k€ (Rf'_)oo,ko given}
It can be rewritten as follows :

- - - - oP -
Clky) = {ﬁ €X, 3k, €R,, (x5, k) € Blkj) and T x€ C(k1)}

The correspondence C : RE » X has the following properties :



THEOHF@_I.Z
(i) v k&’ C/ka. ls wonvex compact. If x € C(ka) and x' < x then
y -
x' € C(kO)
(2) The correspondence k -+ C(k) has a closed graph and is lower
semi~continuous
(3) vxel[o,11,x C(ko) + (I-)\) C(k&) < C(A ko + (1-)) ké)
(4 k' <k dmplies C(k') < C(k) .
Proog : (1) The convexity of C(k) follows from B1 and B4 . To prove that
C(ko) is compact let F(ko) = {(x,k) € X x (RE)w, x € C(ko)}, let 1h,i= 1,2
denote the ith projection of RT X RE on the it" factor. Let H1B(k0)==CO(kO),
2 . . 1
II = i =
B(ko) K1(k0), and define by induction II B(Kt(ko)) Ct+1(k0)’
2 i .
I B(Kt(ko)) = Kt+1 (kO) . As II” and B are continuous so are the
correspondences Ct . Moreover they are compact valued as B is compact
valued.
As F(ko) 7 Ct(ko

0 0
P(ko) is relatively compact. Moreover P(ko) is closed since B(ko)isclosedandB

) x T Kt+1(k0)’ it follows from Tychonov's theorem that

is upper semi-continuous. Therefore F(ko) is compact and so is C(ko) its

projection on X .

(2) Since B(k) is closed for every k and the correspondence k -+ B(k)

has a closed graph, the correspondence k’+ C(k) has a closed graph. To prove
its lower semi~continuity let kg - ko and QE) € C(ko). Let gz, E) € P(ko).
Thenk (xo, k1) € B(ko) - As B 1is continuous there exists a sequence

(xg, k?)E B(kg) converging towards (xo, k1). Similarly there exists a

sequence (x?, kg) € B(k?), (x?, k;) > (x1, k2). One constructs by induction

) .

n .n . n n ,n
a sequence (x , k_ .) € B(kt)’ such that (xt, kt+1) - (Xt’ k

t’ Tt t+1

Therefore gn € C(kg) and 5? converges towards x .

(3) and (4) that follow from B4 and B3 respectively are omitted. O

Following Negishi' [1960] we now introduce the utility set U(ko)

the set of utility vectors which can be reached by attainable allocations :
Uk,) = {(ul(xl)) : % € c(ko)}

Let & : X > X" be defined as follows : o(x) = i(gL)E:Xm, g = 5'}



It will be shown in appendix one that ¢ 1s continuous.
Let U : X° » Rz denote the function U(x) = (u1(x1),u2(x2),...un(xn))
~ ~ ~ "~y
T 1is clearly continuous and U(k) = T(@(C(k)))

U(k) has the following properties :

THEQREM I.3 :
(1) [\"or every k, U(k) <s compact, convex (strictly if all ui are
strictly concave) and satisfies free disposal :Yu €U(k), 0 < u'<u
tmplies u'€ U(k).
(2) U(Xk+ (1-X) k') 2 X U(k) +(A-NU(K'). (The inclusion is strict if
all the Wi are strictly concave).
(3) Yk > 0 there exists z>>0 such that 2z € U(k)

(4) The correspondence from le_ ~‘&-RZ : k> U(k) <s continuous.

Proog : (1) The (strict) convexity of U(k) follows from the convexity

of B(k) and the (strict) concavity of the ui . Compactness of U(k)

follows from the compactness of C(k) and the continuity of & and U .

Free disposal follows from the fact that x € C(k) implies x' € C(k) for

every x' < x .

(2) Let x € C(k) and x' € C(k') be such that z 51 = x and 25’i='§'.
i

i
Then A x + (1-1) x' € C(A k + (1-1) k') by theorem I.2 (c). For some

+

i, x4 x5, uh Qg 0 x'h > et &)+ -0 uix D) and for j#i

u’ (&§J + (1= §'J) AuJ(zJ) + (1-)) uJQg'J) which proves 2.

v

(3) By assumptions B5 and B6’ there exists x>0, y >0 such that (x,y) < B(’k)

therefore X3 >0 for some j . Let us consider the following consumption

sequences : xi. = l-x. and xi =0 Vi, V& # j xi. =0, Vt>1, Vi, Vj.
0_] n j 04 ? ’ tj ’ Z 1 ’

By W3,u1 le) >0 Vi.

(4) U 1is lower semi~continuous and has a closed graph as composite of lower

semi-continuous correspondences and maps with a closed graph. The ui being

uniformly bounded, U(k) belongs to some fixed compact set for every k. U is

therefore upper semi-continuous.



IT - PARETO-OPTIMALITY

X € X(ko) is Pareto-optimal if there exists no x' € X(ko) with

ﬁ(i') > ﬁQﬁ). We shall denote by 6(k0) the image by U of the

Pareto-optima corresponding to the initial stock k. It is a classical result

that U(k) 1is compact for every k and homeomorphic to the unit simplex

n—-1

A of R" » the homeomorphism being the '"radial projection" on A"

(see Mas-Colell [1985] page 154).

1

For further use the rest of this section is devoted to show that under some

further regularity conditions on the technology and on preferences, for

-1

. . . n .
every k, the Pareto frontier is homeomorphic to A the homeomorphism

- n .
being the map from A" L. U(k), O > arg max z ot ot
i=1

Let us first quote the following result

LEMMA II.1 :
The correspondence k - U(k) has a closed graph.

, Wheuw) .

Proog : Let (kv, zv), z, € U(kv) converge to (k, z). z € U(k) iff there

exists a 6 € An_1 such that I ot 2t maximizes z elul,(ul)
i

»

€ U(k) (see

Mas-Collel [1985]). Thus there exists a sequence 63 such that

el zt s oet Wt V(u\l)) €U(k) . Let VEU(K). Since U is L.s.c.

ivvEt Ty ’
i i v

there exists a sequence v € U(k ),v. = v . Therefore I ot 2
AY V Y i V
Let O be a limit point of the sequence ev . Then we get

et zt>r et vt for every Vv € U(k). Therefore =z € U(k).

We shall now on assume the following.

B, Biss For every k >0, k' >0, k # k' if (x,y) € B(k)

Y>1oetvh.

v v

and (x,yD€EB(k')

then there exists x' > x, x' # x such that (x', yx) € B(kk).

. . i, . .
V5 Biss For every i, W is strictly concave in x .

1 m
++

boundary conditions.

A For every i, w" isC on R x R, and satisfies the following



i i
(x, z7) >

. 3
W7 (1) Inadaconditions i

] x;
‘x% -0
J
(2) 1f x}=0 for all j =1 ... h then Wl(xl,zl) is a C1 function of

x;, p>h and 2zt .

We first prove the following lemma :

LEMMA II.2 :
For every u € U(k) there exists a unique triple
((xi), Y, (zi))in R’Zn X Rf_ X,RZ such that Wi(xi,zi) = ui, Vi
(z,y) € B(k) and z€U(y) . The map e from graph U into

E}Zn X RE X RZ y (kyu) -~ ((aci) s Ys (zi)) 18 continuous.

Proog : Let k be fixed and u € U(k). Since the W' are strictly concave

. . i i i, i i, .. .
there exist unique (Xl), such that u' = W'(x »Z2 ) Yi . Uniqueness of the

associated. y follows from B4 biss. To prove uniqueness of (z) assume
- . . . A
(x,y) € B(k) and z and z'€U(y) . Since U(y) 1is strictly convex, =z
2N . " A T
belongs to 'U(y). Thus there exists 2" > z. , z"€U(y). Therefore

"i

u, < Wl(xl,z ) Vi, which contredicts the pareto optimality of u .

To show the continuity of e , let k\) + k and u, >u. Let
i i ~ -
((x \))’ Yy (z\))) = e(k\), u\)). As U has a closed graph, (k,u) € graph U .
Let K, be any fixed compact set such that k\) and k belong to Ko’

Let B(K )=V B(k) . Then e(k\),u\)) € (HlB(Ko))nx H1B(Ko) XU(IIZB(KO)), Vv
k€K
(o]

Let ((;l), ;, (z") be a limit point of the sequence. Then Wl(;l,;1)=ul

by continuity of wh, (;,;) €B(k) since B has a closed graph and
;EU(;) since U has a closed graph. Therefore ((x°), ;, (z*)) = e(k,u)

= = =i i i i i 1 .
X =X ,y=y, z=12 . Therefore x\)-*x,z\)-*z Vi and y\)-*y.;ﬂ

We next have the following basic proposition :
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PROPOSITION II.1 : Consider the problem (P)

T 1,17

s { L6 Wixt,ab), (3,y) € B(K), z € U(y)} . Let ((3%),7,(3%))

denote the corresponding optimal solution (% =x=( k, ),z =2"( k,0),Yi). Then :

a) ¢t = 0 implies 52:-'0 and .z-z =0
7 ,
b) If there exists 120 and § such that a_cj0>0 then for all 1 such that 67’>0,
5 >0 .
J

e) GQ'>0 implies 52 >0

W gty - of (g
1

d) o (z°,% x/,27) for all 4,7 € J = {£,0" >0}, for all
axh Bxh :
h € H={hxy>0}
e) The map f from RP x a1 into R™ x RP x r"
+ + + +
~7 - =7 . ,
(k,0) >~ ((x”") , y, (z7)) is continuous

Proog : Let k et O be fixed. The maximisation problem stated above is
equivalent to max 2 ot gl . The solution & 1is unique since Uk)

£€U (k)
is strictly convex and belongs to U(k). By lemma II.1, there exist a unique

triple ((x") v,(z")) which solve the initial problem P.

Proof of a : Suppose that 62 = 0 and E% > 0 for some good i, . Choose

—————————— ) i 0
. 0 .
j such that 6 > 0 . Let all consumptions and all zb be unchanged except
the consumption of good i_ for agents £ and j . Let x!l =
-4 0 - Yo
X, X, '
0 i< o -i i i -1
== and xi = x5 A then 2 x = 2 x'" and by Wa,Z W (x'7,z)
0 0 i i i

> ) ot wh (x*,z'). This contredicts the definition of ((;i)’;’(;i))

Suppose that El #0. Let 0< XK ZR. U(k) being strictly convex and

2

o
satisfying free disposal (21, z ,...X,‘En) e’ﬁfi). Therefore there exists

- -— 2 - . . . . ‘ .
z' >> (z1 z , X, z")  in U(k) . The W' being strictly monotone in 2z ,
; elwl(il,z'l) > % o wl(il,El), again a contradiction.
i



1"

Proof of b : Suppose that there exists & such that §§ >0 and i with
6 > 0 and Xj = 0 . Let all quantities, production and utilities be

unchanged except the consumption of the jth good byragents £ and 1 .

—

Let € > 0 be such that ;? >€e . Let sz = Xj - € and xj% =g .

ret aw = 0 wie'l,zh) + ottt b - ol Wit Zh - o2& Zh

By W, VA,3 €'>0 xgl < € implies W (x"l,-l) - Wl(§1,;1) >Ace' . By We
and W7 3¢>0 Ix'l - §§[ <e' Wz (X,K’ER) - Wz(xz; ZQ) >-¢'c,
i ! L 92
then AWD> (60 A - 67¢c) €' . Choose A such that A > < c and €'
6

so that x?’-— €' >0 , then AW>O0.

Proof of c : Suppose that 92 >0 and ;2 = 0 . It then follows from b)

—— v e e e o o

that xJ = 0 Vj. Let (x,y) € B(k) be such that X > 0 for some good r

and x =0 Vq# r , (existence of (x,y) follows from By and BZ)'

Let xk Ax + (1-0) I x° = AX, yk = Ay + (1-}) ; and

i
zA = Xz + (1)) z. By B4,(xx,yk) € B(k) and zA € U(yx) by theorem I.3.

Let agent £ consume x'z = xA and let x'}

]

O0Vj# % and let agents
t [Wl(x'l,z'x)-Wl(Eigll =

pick zA as future utilities. Then by W ,AW

A RA L

ix ) - W(0,z5H)] >

Xej [wj(o,z ) - wj(o; 27 + G'Q'[W(
i#L

Cg et [sEovi ettt 3 -%
1

z’) - W (0 )l .

By W, for every A, 3¢ such that ]xxl = A|x| < € implies

7

Vet zh - who,7h > anx] .

Thus AW > A[Alxlez—ﬁ £ 6" |z -Z%]]. Choose A so that this last quantity
= i

. L. € _
is positive and A < —— . Then AW > 0 a contradiction.
|x]

Proof of d : Assume that 92>() and ;? =0 Vj=1...h, h<m, It then

follows from b) that XJ 0 Vi€l , Vji=1...h.

Let B'(k) = B(k) n {{o}x...{0} x Rffh}XimE . Let B'(k) be its projection

on m@“hx:mp .
+ +
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Let P(k) = {(x,2z), 3y,(x,y) € B'(k),z€U(y)} and P(k) be its projection
on I{T—hX]Rf . Define ﬁl(;,.zl) = Wl((0,§),zl) for x E]Ril—h, (0,%) € IIRI:.l .
Consider the restricted problem

i

max { ] oF Wt zh, (y) € 3'(), z € U(y) }

i
which is equivalent to
max { ) ot 'ﬁl(;{‘l,zl), (X,y) € B(k), z € U(y) }
i .

Clearly ((:_<1), v, (z')) is a solution to that problem. We shall apply Aubin-

Ekeland [1984] lemma p.223. Let A be the linear operator from Rimx ]R:_l >

m-h n

R, X R, defined as follows A((xl),(zl)) = (2 ?c'l,(zl)). The problem we
i
study is

max { ] ot W&, 2h, aced), @) eTw ) .
1

We need to show that the Slater condition 0€ Int[adom(} 6'W)-P(k)] is

. . 1
satisfied or 0O € Int:(]RI!:'l L ]RI+1 -P(k)). It thus suffices to show that there

exists a strictly positive element in P(k). Under B_ and by theorem I.3

6
there exists an element (x,y) € B'(k) such that y >0 and z € U(y),

~

z >>0 . Let x>\=>\;c+(1-)\)x . y>\ and z>\. Then (x>\, y)\) € B(k) by B

4
A , m~h A .. . e g
x >>0 1in R+ and z >>0. So the slater condition is verified. Let

*
A denote the adjoint of A . By Aubin-Ekeland [1984] lemma there exists

_ _ .. . s .
a q€ ]RI:_l by ]RI_:_l such that 8(2 o Wl(xl,zl)) = A q . We thus have
i ,

R R T
ot Gl ih o 3y vi,jes, hen .o
i i
axh Bxh

Proof of e : Define the following correspondences from ]RE into

(D, v, &), Gyy) € B}

F1(k)

(D, v, &), zeu@)}

I, (k)
Then 1"1 and I‘z are continuous and the optimisation problem is

max { J 6" wxt,eh), (D), y,D) €T 0 01y )
1 .



13

It follows from the maximum principle that the unique optimal solution is a

continuous function of (k,0). o

Let us next recall the following definition :

Deginition : Let UG Iif. A vector u € U is supported by 6 € Aﬂ-1 if

- . . i i . .
U maximizes ) 8 u subject to u € U . We have the following result :
i

THEOREM II.1 :

Let (k,u) € graph U . Then there exists a unique © that supports u .

The map @ from graph U onto Anwl,(k,u)-J£+ 8 <s continuous.

Prood : Let u € U(k) be given. Thenthere exists a € that supports u
(see Mas-Colell 1985 p.125). Let xh, ;,(El) be the unique triple associated

to u by lemma IIL.2.

We then have ) 6" wl(gl, zh) = y 6" u' = max { y o" Wl(xl,yl),(i,y) € B(k)
' i i i
z € U(y) } . Let us show that 6 is unique. It follows from proposition

II.1.c that X" = 0 implies 6" = 0 . Let us then consider . J= {1,21#0}
and H = {h,E;#O Vi€J}. Let h be fixed in H . Then (6Y) is uniquely

b —‘ —‘ . j -l —.
determined by the linear system ' EE-i—'(xl,zl) = o EET (x,z") vi, jeJ
. Bxh ox)
To prove the continuity of ¢, h

let (kv’uv) converge to (k,u). Then by lemma II.f1, (k,u) € graph U. There exists
ii i i . ,
a sequence Gv that supports u s therefore z vak)zi evu VuE;U(kv) , Yv. Pick
. 3 i

u' €U(K) then since U is continuous, there exists a sequence u;(EU(kv) such that
i

i i
> )6 u'" forevery v
v = 2 Vv . y

uS-*u'. Let 6 be a limit point of Gv. Then one has z Bi u
i

L
i
unique, 6 converge towards 5.
v

i —i i i .. . : - P
and therefore T el u > 2 G u'}. This implies that 6 supports u. As 1t 1s
i
o
Remask 11.1 : For every fixed k , the map u ~> 6 is a continuous bijection,
it is therefore a homeomorphism. We thus have another homeomorphism of the
set of Pareto-optima and the unit simplex besides the radial projection.

THEOREM I1.2 :

ALl Pareto-optimu arve described by a trajectory of the dynamical system
T(k,0) on le x "1 obtained as follows :
let (x"(k,0)), y(k,e),(zt(k,e) be the optimal solution of P . Then

1(k,8) = (y(k,0), @ly(k,8), (z°(k,0)))
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Prood : let k and v € a(k) be given. By remark II.1, VfEAn—1 corresponds
to a unique 0 € A By solving (P), one gets ((xi(k,e)),y(k,e),(zi(k,e))).
Let w(k,0) = @(y(k,8), (2" (k,0))).
Let the decision maker solve a similar problem with initial data (y,w)
Then the whole trajectory corresponding to the Pareto-optima can thus be
reconstructed.

Let us compute 7T(k,8) in the case of separable agregators with different

discount factor.

Example 11.1 : Let W-(x',zY) = ul(xd) + gt 2% .

Let k and 0 be given. We need to solve
max { J 6" u'x") + Y8 ezt , (x,y) € B, z€U() } .
i i
i__e" g

r ¢l g
b

\
Let © Then it is equivalent to :

max { J 6" o' + (] stehy(J el b, Gy €30, zeuy )
i i i

The problem being separable, one chooses first z , y given so as

to max { ) e'l 2, z € U(y) } . Let v(y,0') denote the maximum value.
i

Then one solve :

max { § 0% u'x) + (7 8% 6%) v(3,0M, Gy €8O I .
1 1

Thus e'i supports zi » ¥y which implies o(y,z) =6' , Vy .

Therefore 7t(k,0) = (y(k,6),6') . The dynamics of 6 is independent of

that of y . It can easily be shown that the map 6 - 6' has all vertex of
the simplex as fixed points and an extra point ei =-% Vi such that Bi=maijj
and  q equals the number of such i and Gj =0 otherwise; The vertex are
unstable fixed point and the last fixed point is globally attractive.
Consider now an agent i with Bi < max Bj, let B(k) belong to a fixed compact
set K0 , then xi(kt,et) + 0. (since xi(k,e) is continuous and xi(k,e) =

=0 Vk if 6% = 0) , where (k ,8,) = 1% (k,0)
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One can therefore easily rediscover Ramsey's result but one cannot say
anything about the path of capital stocks.

An alternative way of describing a trajectory.

As it has been shown by Benhabib and ali [1986] one can parametrise

the trajectory in a different way. Let H-1 be the map from nf‘-+'mp'1

. -1 _
defined by I "(x ...xn) = (XZ"'xn)'

1
-2 n, . -1
Let (k,zo,...,zo) belong to the graph of I U(k).

Consider the following problem

1

), Witz >zh L, i > 2 (¢ xty) € BR)(2Y) € Uy .
1 1" - 0 - 71 1
i>1

max w1(x1,z

It can be easily shown that under W, biss and B4 biss there is a unique

2

solution xl(k,(zl) ), y(k,(zl) ), zl(k,(zl) ) and the map from
0. Q. 1 0.
i>2 i>2 122
Graph H_1U into (I€?5 X IRE x RY, (k,(z;) ) > (x* (k,z),y(k,z),zl (k,z))

iZZ i>1 i>1

is continuous.

The trajectory can therefore be described step by step. This definition

does not require any differentiability assumption on the who.

In some cases, Lucas and Stokey's parametrisation may be more useful
(as in the case of separable utilities) in other cases Benhabib and ali's

one may be more interesting.



ITI - VALUE FUNCTIONS

In this section, we introduce two generalized versions of the value
function of optimal growth, one is due to Lucas and Stokey [1984], the
other to Benhabib et ali [1986]. We study their properties, continuity,

concavity and differentiability.

Lucas and Stokey's value function

Let V(k,8) = sup{Z ei zi,zEU(k) }'—'sup{gl ei Wi(xi,zi) , ()z,y)GB(k) ,zE€U(y)}
i i

PROPOSITION III.1 :

n-~1

a) The map from LRg X A >R , (k,0) > V(k,8) <s continuous

b) Under B, and Wy for every 8, the map from lRf > R

k » V(k,8) <s strictly concave in k .

Under Wé, W6,
+

IR, 6 »V(k,0) <s strictly convex.

W7 for every fixed k, the map from An-l into

Proog : The proofs of a) and first statement of b) are omitted. Let us
prove the strict convexity in 6. Let (xl(k,e)),(zl(k,e)) denote the

optimal solution conrresponding to 6. Let 6 and 60' be given,

GA = A6 + (1-2)8'. It follows from lemma II.1 and proposition II.1

. N . . A
that 6 # 6' implies (xl(k,e)) # (xl(k,e')) # (xl(k,e }). Therefore
i | ix ik

V(k,ek) =) ot? Wi(xix,z ) =AY ot Wi(xik,zik) + (1-0) ) e'iWi(x )
. : g

i i
< AV (k,0) + (1-2) V(k,8") o

In order to study the differentiability properties of v(k,8) we

introduce the following auxiliary function. Let

D = {(k,y,9,z) k€ IRE . yEHZB(k), 8 € An—1, z€U(y)}. D 1is a convex

set of ]RE X ]RE x IR_I:X ]R:-l‘ Let G:D ~» ]R+ be defined as follows :

6(k,y,0,2) = max {J 6% w'(xl,zY), R,y) € B}
x i

16 .
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Then V(k,8) = max {G(k,y,8,2z), y € HZB(k), z € a(y)}
Ys2

We first need the following lemma.

LEMMA III.1 :
Let & be a continuous, compact convex—-valued correspondence from
) (&)

TN
lRm into itself. Let x,€ @(kO). Then there exists a neighbourhood

0
V(ko) such that’xoecb(k) for every k 1in V(ko) .

The proof is given in appendix one. o

Let D2 be the projection of D on ]RE X ]Rr+l X ]R:_l

LEMMA IIT.2 :
a) Let (y,9,z) be fixed in D2 , then the map
k >~ G(k,y,0,2) is concave in k .
b) If y <s interior to HZB(k) . If G <s differentiable
with respect to k then V <is differentiable with respect to k and

grade(k,e) = gradk G(k,y(k,0),0,2(k,0))

Proof : The proof of a) is omitted. Let (k Oo,zo) be fixed with

0,y0’
Yo = y(ko,Go), z2q = z(ko,eo). The correspondence k - HZB(k) is compact

)

convex valued. Let y € 2B(k). By lemma III.I, there exists a neighbourhood
2

V_(kO) such that Y € I'B(k), VkE V(ko) . YkE V(ko), G(k,yo,eo,zo) <

_ , . '
< V(k,eo) and G(ko,yo,e ,zo) V(ko,eo). By Benveniste and Sheinkman's

0
[1979] theorem I, if G 1is differentiable with respect to k so is V and

gradk V(k,8) = gradk G(k,y(k,8),0, z(k,0)) a

In order to prove the differentiability of G , we shall restrict the
technology. Let F : ]RS X ]R:l_1 X ]RE + RP (k,x,y) > F(k,x,y) be a
strictly convex, C2 function strictly increasing in x , that satisfies

moreover properties of example I.2. Let us assume

B7 : B(k) = {(x,y), F(k,x,y) < 0}



PROPOSITION III.2 :

o
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Assume BZ > B7 and W* of class C'Z for every 7 . Let e€An—'Z and k€R€+ .

1

Then G is C° with respect to k in IR€+ and

grad, G(k,y,0,z) = - X grad, F(k,z(k,6), y(k,0))

o° Weizt(k,0),25(k,0))
with A = d

sz(k,x(k,e),y(k,e))

Proog : Let z be fixed in U(y) Then as F 1is increasing in x
G(k,y,g,z) = maxi{ z ot wl(xl,zl), F(k,x,y) = 0 }
x i o
i n-1
Let us first assume that x >> 0 for some i. As 0€A .
IT1.1, this implies xJ >> 0 for all ]

The first order condition implies since F
i i, i i ~
6 gradX Wi(x ,z7) = A gradx F(k,x,y) for some A > 0

Differentiating we get :

G 2 R , R 2
ot 2 ?2 (xl,zl)dx1 - A.é—g (k,x,y)(z de)- gradx F(k,x,y)dA = A O F
ox ox j oxdk
grad, F(k,x,y)dk + grad  F(k,X,y) (] dxl)=0
J
2 1 82F
This can be written in matrix formas follows : let —5" and —
o 9k
denote the hessians of W' and F with respect to x.
- 221 2 2 2 T
61 QN%T - A é—% s — A 9—%-, ...... - A E—% s - gradx F dx1
ox 9x o9x ox
2 82.2 2
A 2F W _, 3F - grad F dx?
2 2 2 X
ax ox ox
2 2. n 2
-)\-?——g enBWZ_ABIZ" --grad_F dx"
ox ax x x
gradx F gradx F gradx F 0 J dx
— L

by proposition

is stricly increasing in x .

(k,x,y)dk

= A dk
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where A € L(]Rp, ]an-‘.1 ).

i3ht o % -
As the matrices 0 3 and - —5 are definite negative, the upper matrix

ox ox

which belongs to L(Ian, R™)  is definite negative. It then follows from

Pallu de la Barriére [1966] Corollary p.295 that the matrix above
has a determinant different from zero. The implicit function theorem can

therefore be applied and

Grad, G(k,y,0,y)dk = ] 6" grad W'(x' (k,8), z'(k,8))dx" =
1

A ograd Fl,x(k,0), y(k,8)( ] dx" ) = - ) grad F(k,x(y,0),y(k,0))dk
. i .
If x- > 0 for some i, let x; =0 Vj=1...h, k<mn

2 . %
From proposition II.1, xj =0 for every % since 6 > 0.

One can consider a restricted optimisation problem with variables of the form
i ~L A~ m—h
x = (0,x7), x € ]R+

Then G(k,y,6,2) = magw{i h Wl(O,gl,zl), F(k,o,;,y) =0 } .

x1

The proof given above carries over to that case.

Let us summarize our results in the following theorem.

THEOREM III.I1 :

Assume BZ-B7 and W* of class 02 for every < . Then V <s
. op o,
Clm E+X1R

7
+

eiw;: (% (0,k)a% (k,6))

- X grad, F(k,z(k,0),y(k,0)) with A=

gradk V(k,0) %

F2j(k,x(k,6),y(k,6))

grady V(k,0) = W' (" (k,0),2" (k,6))

We now give Benhabib et ali's value function

Benhabib et ali's value function

1

0 Vi > 2, (x,y) € B(k)

Let \—I(k,(zi) ) = max {w1 (x1 ,z1), Wl(xl,zl) >z
i>2

and (zl)121 € U(y) }
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PROPOSITION IIL.3 : n) The map from graph T2y - 1H+,(k,(zg)i\2)-*ﬁ(k,(zz) )

1>8
18 continuous and strictly concave -
b) ﬁ'satisfies the generalized Bellman's equation
ﬁ(k, (+1) ) = maw {Wlea? v(y,(z%)i>2) @,y €80K), W (a*,57) 257 )
"2k L V1,>2

The proof of a) is straightforward. Strict concavity of V follows from BA

biss,w2 biss and theorem I.3.
To prove b), let T be the operator defined on the set of continuous functions

from graph of H—iU into R’ endowed with the sup-norm :

~ i ' 1, 1 i ~ i, 1 i\ 1.
T f(k’(zo)izZ) = max {w (x ,f(y,z1) ), (x,y) € B(k),W (x ’Z1)ZZO’V122}

i>2
One easily shows as in dynamic programming that T is a contraction that maps
concave functions onto concave functions. It thus have a fixed point which is

concave.
We next prove a theorem which is similar to theorem III.1

THEOREM III.2 :

Assume BZ - B7 and W* of class 02 for every <
0

Then V is CZ in graph H_l U

doreover we have gradkﬁ(k, (z;:) ) = - Algmdk F-(k,a;(k,z;),y(k,zz))
1>2

1>2 2
1,1 i
Wiz (ky(27) .yq)
with AZ = AJ 7 0 122 =
F,.(kyx(k(z") ),y(k,(z7) ))
27 %52 %i>2
.7 . wltelix, (25)), 51 (k, (2°)))
z — J o] [0}
and —= (ky(z ) ) == — 7 7 = vJ
3z o ive Wota" (ky (2)),5" (K, (7))

Proo4 : The proof of differentiability of V is analogous to that of V .

One introduces the auxiliary function defined on the convex subset of

RP><R“1><mP><mn
+ +
b= {(k (z)) ez ), keRP LG e u),yer’B0,h) € u(y)}
°i>2 i>1 °i>2 i>1

<}

(k,(z;) ,y,(zjl‘) ) = max {w1 (x1 ,211)’w1(x1’z:) > z; ,Vi>2 (R,y) € B(k)}
i>2 i>1
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As in lemma III.2, V differentiable implies v differentiable and

S _ S i i i i
gradg oy V(20 5)) = grad HEICRFNE .y(k’(zo)iy)’%’(k’(zo)izz»f

In order to prove the differentiability of V let us assume B7.

As in proposition III.2 the first order conditions lead to the following

system. (One first assume x' >> 0 and then one can consider a restricted

Let us add the relations :

gradX W1(x1,z1) = A1 gradX F(k,X,y)

At gradX Wl(xl,zl) = A1 gradX F(k,g,y)

i, i i i
Wix,z,) = z

Vi>2 and F(k,g,y) =0 .

In order to solve for the x° and AL we have to show that the following

matrix E

nmé¢

n-19

is invertible.

/problem);

(.2 1 2 2 2
1
8‘2 - X’ §~§ ,-A1 E_% s cesee 5 = A é—% - grad F 0 0
’ X - 9x ox ox x
2 ! 2.2 2 2 |
- A‘ L | Az LI AMAE A1 o F | - grad F grad w2
2 2 2 2 X X
| 0X ax 9x ox \
H ‘ \
! \
i \
| \
:
| \
2 \
_ 1 2°F nd%" 1ok - *
A ax2 i i S | gradx F gradxwn
S
i
t |
grad F t gradXF 0 0 0
t
0 gradX W 0
0 0
0 £ gradxwn
nm n
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nm . . . .
) and is negative definite

A B] where A € L(R™, R
t

Clearly E = n om
and BEL(R , R )

B 0 .and has rank n

X

Y’) = (0 where X € nﬁ““

Let us show that Ker E = {0} . Assume E <

and Y € R®. Then AX + BY = 0 and UBX = O . This implies 'Y' B A 'BY = 0

and X = - A_1 BY . Thus BY

0 and as B is of rank n, Y=0 and X=0

-~ 1
Therefore dV = gradX W1(x1,z1)dx1 Al gradx F(k,x,y) dx =
- k1(grad F dk + grad F ) dx'). As
k X .
i>2
i

I gradX F dx= = gradX Wl(xl,zl)dx1 dzi Vi>2, we get

A
av = - A1 grad, F dk - 2 At azt . o
k . o)
i>2
. Al
Remark 111.1 : It can easily be shown that A1==9—-, vV i>2, so that BL——Jw—w
6 £ AT+
i b | i>2

and © = : , 1>2.

£ A+

i»2

IV - EULER'S EQUATIONS - STATIONARY POINTS

— Euwler's equation :

Let us now reconsider the problem max { 2 gt Wl(xl,zl), F(k,}:xl,y)f_ﬂ z€ﬁ(y)}
i i

Let w=¢ (y,z). Let us recall that z € U(y) iff V(y,w) = wz .
Wherever interior, the optimal solution satisfies the following equations

obtained by differentiating with respect to x, y, z, w and using theorem III.I.

i ioiiy ~
@D) et gradX W (Xt’zt+1) = At grad_ F(kt’xt’k )

t+1

) of M i iy L gl
t 9z el e Vet

(3) F(kt,;c ,k...) =0

t t+1
@ § et =1
i t

(5) At grady F(kt’xt’kt+1) T H At+1 gradk F(kt+1’xt+1’kt:+2) =0
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i i )

_ 1
w (xt+1’ S TY)

i
6z,

i .
Let us assume that fkt and et are given. The unknowns are

i

i i 1 . i
A z
A At+1’ kt+2’ Xee1? %42

Xpo kt+1’ Zeet? 6t+1’

There are 2mn + 2p + 3n + 3 unknowns but only mn + 2n + p equations.

Let us add the following equations

i i

i i . ~

(7) 8 4q Brady Wiz qs Zt+2) = Apey 8734, Flkipqs Xpaq k-1:+2)
it i i i

®) 8iht 37 Fperr Zea2) T Har Ben2

9) F(kt+1’ X g0 Kepo

10) § etﬂ = 1
i

. i i
+ +
qlven et’_kt’ 6t+1, kt+1’ we thus have 2mn + 3n + p + 4 unknowns

(add Moy to the previous) with the adequate number of equationms.

1

This body of equations constitute Euler's generalized equations Et and

. . . i . ~ i
in principle unables us to write kt+2’ 6t+2 as functions of Gt, kt, kt+1’
: .
0
t+1

One can also differentiate with respect to xl, y and z' Bellman's
generalized equation and use theorem III.2. For further use let us use a

. . .. 1, 1. 1,1 1,1 1,1 .
direct approach. The solution maximizes W (xo,w (x1,...,W (x2,...,W (xt,...,))))
under the constraints F(kt,xt,kt+1) =0 and

ioi, i i : '
z, = W (xt , Zt+1) Vi>2,Ve>0.

Let L denote the Lagrangian of this problem :

o o n
1, 1 1 ~ ifj. i, 1 i i _
L(x,k,z) = W (xo,z1) - 2 At F(kt,xt,kt+1)f+2 2 My [W (xt,zt+1) Zt] .
o t=o0 1=2

Whenever the optimal solution is interior, it satisfies the following system (Et)

t=1 oo
aw! 1 1 1.1 1
(11) ( E B2 %p Zh+1)> grad, W (x .z

t+1) = A, grad_ F(kt’xt’k )

o} t+1

N I i1y ~ ,
(11) biss | v, srad W (xt,2t+1) A, srad F(kt,xt,kt+1)‘v12 2

vi>2



(13) F(kt, X, kt+1) =0

(14) 'At gradk F(kt, X,» kt+1) + At—1 grady F(kt—1’
AR S L B 3

(15) z, W (Xt’ Zt+1) Vi> 2

As in the previous case we express zi k s
1€ P P e+2 > “t+2) @

i>2
i i
of (kt, kt+1’ zt . zt+1> .
i>2  i>2

Remark IV.1 : Assume that k s X , z are bounded.-Let

b = inf min oF (kt’xt’k

t . F t+1
J J

Therefore Xt + 0 and consequently ut >0 vi > 2.

On the uniqueness of the steady state :

Besides the assumptions of theorem III.1, let us assume

24

functions

t+1

t-1 1.1 1 ‘
). Then b > 0 and bA <B supt“gradxw (x,,2 ) -

that B(RE) is a

m . .
convex compact subset of R, ><IR2 . Then a fixed point argument ensures

that T which is a continuous map defined on a compact set, has a fixed

point (or steady state). Let us assume moreover that it

is an interior point.

Then Euler's equations lead to the following system of equations :

. i . . e . is=
(16) ot QEI xl, zl) - A 9F (y,x,y) = 0,
> 9x . j=
J J ‘
(17) Wt (xh,z") =
oz
X F - oF ~ .
- (18) 337 (v,%,7) +p5— (9,%,9) = 0, j=
: ] J
(19) F(Y9;;’Y) =0
(20) g 8, = 1

(21) 2 =W (xt,z2h) i =

1yeeesP



25

Let us assume for the remainder of this sub-section that :
B, biss} F(k,x,y) = @1(x) - @2(k,y) where @2 is strictly concave in (k,y)
and increasing in k , decreasing in y and twice continuously differentiable

. . . . 1
and @1 1s convex, increasing in x and C

In order to prove uniqueness of the steady state, following Lucas and Stokey [1984]
we shall show that given p equations (16), (17), (20), (21) uniquely determinei
(x,z,06,)) for u near one. When the production function is separaBle, given u,
equation((18)unique1y determines y for u near one. Finally we shall use (19)
in order to show that u 1is uniquely determined.

We prove first that given Q near onme, (16), (17), (20) and (21) have‘a
unique solution (x,z,0,A). It is sufficient to prove that the determinant of

the Jacobian matrix of this system has a constant sign. This matrix is a follows :

nm terms n terms n terms
:— g 2 1 0 B —
' ‘ 61 oW 0... 0 "
814321 A rad &, 0 . 0 -grad®
ol 8 1 o grac®y
. 2
ol i 0
12 2
9% % 0 .
on azw“ : A grad | -gradd
N 0 ‘ 1 1
9X 9Z-
2 1 2 1
S 0...0 v
3x0z 0z
0 0
azwn 2 n
0 axnaz“ 0 AL
2
: oz
- Jl-grad ¢, © 1 -p = 0
61 1 ~
\\\\ 0 0
0 - grad <I>1 0 \\\
6 1T - u
0 0 L 1 0
- o
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ad
Multiplying every (nm + n + j) column, for j =1,...,n, by—i-, and

adding it to the last column; we get a determinant which last column and last

th .
row are zero except the (nm-*2n:+1)th element of the (nm+ 2n+ 1) column which

. 1 . . Lo .
is equal to = . Hence the determinant of this matrix is D where D is the

A A

determinant of the (nm X 2n) X (nm + 2n) principal matrix obtained by
deleting the last column and last line. For u = 1, an argument similar to
that of proposition III.2 shows that the principal matrix has a determinant

different from zero. As this determinant is a continuous function of

i i i . ‘ .
(x )iGI’ (z )i€I’ (0 )i€1 and X, it keeps a constant sign on
° mn °n °n
R N x R, X A X ]R+ . By a standard argument based on degree theory,
i

((xl), (z7), (61)) and A are uniquely determined for u = 1 . By the

implicit function theorem, they are also uniquely determined in a neighbourhood

of p =1
From B7 biss (18) simplifies into :
8@2 3@2
(18) biss 557-(y,y) U (y,y) = 0 .
J J
526 226 5% 520
Let Jw) g = [ oyt et ( Tt T )]

be the jacobian matrix.
We shall prove that if 2, is strictly concave in (y,k) then J(u) 1is

definite negative for p near one. Indeed, in that case, the matrix :

2 2 2 A2
0 @2 9 ©2 d @2 ] ®2
ay12 3y13yp 3y18k1 3y13kp
2 2 2 2
ad @2 . ] @2 P @2 P @2
dy 0 2 Jy ok, " 3y Ok _
(I)"( ) yp }71 Byp Y 1 yp P
Vyy) =
2 2 2 2 2
9 ®2 - 9 <I>2 8 QZ e 9 ¢2
ak1dy1 8k18yp ak? 8k13kp
2 2 2 2
9 ¢2 .. 9 ¢2 9 ®2 e 8 ¢2
Akpdy1 3kp3yp 3kp8k1 ak2

p
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"~

2 h , with
L

11=(h1,n..,hp,h1,...,hp), is strictly negative if ﬂ # 0 . Tedious

is negative definite and the expression R o

computations give :

o’ , _3%F 22F a2

+ +
Bijyz Syjakz Bkjayz Bkjékz

0 >If Pl =-] hoby ( ) =*h3(h .
i,

3>

Since J(uy) 1is negative for u near one its determinant is also strictly
negative. Hence, using againvan argumént based on degree theory, one cah
conclude that (18) determines y wuniquely as function of pu for
sufficiently near one.

Let us finally solve equation (19) or @1(x(u)) = ?2(y(u),y(u))

The first assumption one can make, as in Brock [1973], is that the Hessian
of @2(y,y) hgs a negative inverse. Hence the Jacobian matrix of the system

RL0) Rl

§§§ + U 5?2 = 0 has also a negative inverse if p is near one (see III.1).
J ] dy 3%, ' -1 199,
Then one has T >0, Vj, since §E; >0, Vj, and dy = -J(”)[sig]dp
30, 2.\ dy, 30, 9y, |
~, _ 2 2) i e 2 7] .
Hence @2(u) g (3yj + Bkj a (1=w) % 5?;'757 >0 since p < B <1

The assumption made seems to be too strong. One way to relax it is to suppose,

as in Burmester [1980], that the technology is regular in the sense of Burmester-

Turnovsky.
B7 ter : The techndlogy is assumed to be regular in the sense of Burmester-
Turnovskv, i.e.. Yor wverv 0 < p < 1, the solution of
9 3% 3¢2 dy.
2 - R : L _.____J->0
§§T + ol 0; j=1,...,p verifies 2 . dp
J J J J

Hence, as previously, $é(u) >0
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Remark IV.2? : If the technology is regular in the sense of Burmeister-Turnovsky,

then the value of the variations of the capital is always negative at the

1)
equilibrium rate of interest. Indeed T can be viewed as the equilibrium
5 :
price of capital kj and p 1is related to the equilibrium rate of interestr

by the expression u = T}; .

Let us know consider the consumption side and the function @1(x(p))==51(u).

As Lucas and Stokey [1984] we shall show that ®, is a decreasing function of u.

1

Let us try to motivate the "increasing marginal impatience" assumption that

we next make.

Consider a stationary path x ( ,...). Then zl==ul§§l)4=
Wl(x su (5 )). Let p = (BW yZ ) i An easy computation shows
Sz Z—w (xs )
i i
; %ﬁr (x , "+ hE, x7,...)
that p= =~ T
du
Ty (x + h&, x* R x* |

. . . . i, . i . :
By the implicit function theorem p is a function of x~ . However in the

case considered by Koopmans énd ali [1964], W(xi,zi) = zﬁb(xi),zi) for some
well chosen V and C (see remark I.3). In that case pi is a function of
zi. We define marginal impatience by the condition EE; <0, i.e. when the
utility level of a constant path increases, the ratigzbetween the marginal

variations of utility due to changes in the same amount in second and first
period decreases. (Examples of U functions that satisfy that property can
be found in Koopmans and Ali [1964]. The following condition can be viewed

as its generalisation :
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W Increasing marginal <mpatience :

Let xi(u), Zi(p) bethéuniquesolutionforconsumer i of (16),(17),(18),(19)

i . . .
then %gr (x () ,z (W) < 0 for every i .
: ' 8@1 de
Then under W8 , 51 is decreasing function. Indeed @1(p) = Z 5;7"75?’ with
: J ]
. i . .
dx. 1 i
i oWt W' dz
z } 7¥_ X (u), z (u)) = z 8xi & T 3A @ From (17) and (18{
: . i i . i " Bwi dx;
2" = “'1—2 x\ , therefore W (x'(4),z W)=+ ) i
- T du j oxt
3 xJ' h]
o0 dxl g
i 1 i W
A T 8x1 3 hence, @;(p) kp E 3] ET <0.
(1-1)0 j @

As 5é(p) is increasing in p and 51(u) is decreasing in u , 51(u) =9 (W)

has a unique solution.

From W5 and the implicit functions theorem, relation(2l) defines. z' as a

continuously differentiable function Z- of x' . Define

i . ..
u = min inf {%i— (x*, Cl(xl))}
i i \
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One can then summarize the previous results in the following theorem :

THEOREM IV.1 :

Under WJ - W8 s BZ - B7 ter and for 4 near one, if there exists an

interior steady state (x,4,%,0), then it is unique.

We next generalize Mangagarian's proof [1966].

THEOREM IV.2 :

Let k, and (z7), i > 2, be given. Let (z, k, z) with initial

datas ko and (z;) T > 2 satisfy B, . Assume (k,z) uniformly

bounded. Then (x,k,z) is optimal.

Proog : Let (?:S s }:ﬁ > é ) denote the optimal solution from ko,(z;), i>2.

F: R - -t _ i=i-i . -
F(kt’xt’ktﬂ) =0 Vt and z, =W (xt,zt+1) ,¥i>2 Vt. By theorem 1.3, (z)
is bounded. Let (x ,k ,z ) satisfy ’Et for every t . If (k) is bounded
then (x') are bounded since X €H1B(kt) . (z ) being bounded and verifying

~ t ~

i_ i i i . i i dioigi , .

z, =W (xt’zt+1) Vi, then z, W (xt,w (xt+1,...) Vi. Let L be as in page 23.

-1 - - - -
"Gl = Lak,2) - LEE,D)

~

Let us compute AW = W‘(x;,z:) -W

Since the constraints are binding, we have :

1
;{1)4.3‘1{_

1 1., 1 =1
52 (K2 (zy-20) .

1, 1 1 1,-1 -1 1 1 1
W (xo,z1) -V (xo,z1)2gradekXo,zi)(xo -
~ s - N Zi A1
- )\o [F(ko’xo’k1) - F(ko,xo,k1)] > )\0 gradx F(ko,xo,k1)(xo xo) +

)\O grady F(ko,xo,k1)(k1 —k1) .
and Vi__>_2
i, i, 1 i i,-1 ~i i i, i1 oiy, 1 -1
Mo [W (xo,z1) W (xo,z1)] 2 M gradxw (xo,z1)(xo xo)

. i i i i -i
i ow (xo,z1)(z1 z,)

+“0 oz 1

. . . .. . -t 1,~1 -1 t i, 1 1
: . .= z.= z
Similar inequalities can be written at date t. As z; W (xt,zt_”) and z; W (xt, t+1)

and
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using the fact that (xt’kt’zt) satisfies Et we get :
t—-1

1
oW 1
AW > hzo—é—z— (x h’zh+1)(z -z ) + )\ grad_ F(k ,x Sk )(x -x)
Y = i =i

At grady F(kt,x kt+1)( o ) + 122 i zt+1 zt+1) .
By remark IV.1, QE%E%E) bounded imply that k + 0 and u +0 Vi>2
so that A W > 1i % k

a > lim s%p (Xt gradxF(kt,xt,kt+1)(x ) + A grad F(k t,kt+1)kt+1)20.
Therefore §§,E,5) is optimal.
Remank 1V.3 : The result proved above is typically used in the following case :

Let us assume that (xt)i> - At and pt, i > 2 can be eliminated and that
i i .
\kt+2’ (zt+2)iz 2 > Kigq o (Zt+1)122) can be expressed as a function of

i i . .
(kt+1’ (zt+1)iZz » ke (Zt)i>2> . Let us furthermore assume that the jacobian

i % x  i% ; )
of that map at the steady state (k ,(zl)i>2 s k, z;>2) is a hyperbolic
p+m—1 p+m—1 - -

isomorphism of R X R with 2(p+m-1) eigenvalues, |ki| <1 for

i < ptm-1 and ]ki| >1 for i > p+m-1 . Let E,Z @ E, be a decomposition of

1 2
:RZ(p+mr1) such that T, = T has eigenvalues ki, i=1..., ptm~1 and

1 /E1

similarly for E, . Assume moreover the following regularity condition :

2

"Regularity condition"

. +m- . . .
The projection of E, on RF ™ L {0} is an isomorphism.

1

. . . .. .o i
Then optimal solutions corresponding to initial condition (ko,(z )..,) close

o'i>2
i * -

*
to the stationary state (k ,(z )i>2) converge towards it. The argument is

Scheinkman's [1976] page 25. Given any (ko(zz)i>2) sufficiently close to
* i % -
(k b4 (Z )izz

i
such that (ko,(zo)

)

), one can find by the regularity condition a unique (k1.(z:)i>2
i . .
152 k1,(z1)i22) is on the stable manifold of the steady

state. The path generated by Euler's system with these initial conditions is

locally stable. By theorem IV.2, it is optimal.
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Example 1 :

Suppose that we have one.consumption good and one capital good and a
production function % = G(k,y), which is stricly conéave, twice continuously
differentiable, and verifies g% <0, %g >0 . Assume to simplify that the

. . P . i .
steady state is unique and that the utility functions W  verify the

normality condition for future utility at the steady state :

Wt o%wt owh ot
Wo #7732 7 Liaiiic0
: 9z~ 9% 9x~ 9% 9z
Then we have :
COROLLARY IV.1 :
Assume Wﬁ - Wé and B, - B, ., then the steady state is unique
' 2
. . 9°G
and there exist €1>0" €2>0 such that if |W‘581 s and‘
,gg +1>- €, at the steady state of (E;) , then it is locally stable.

Proo4 : By remark IV.3, it suffices to prove that, the steady state is a
saddle point of the linearised Euler's équation and that the regularity
condition is fulfilled. The proof that the steady state is a saddle point is
omitted since it is tedious and similar to theorem 1 in Benhabib and Ali [1985].

The proof of the regularity condition can be found in the Apendix.

Example 2 :
. . i
Let us consider now the case where the aggregator function W  are
linear with the same discount factor B , i.e.,

i, i

wh(xt,zh) = Y + 82, Vi
From equation (2) of Et , one has : M, = B VvVt and et = 63 Vi, VvVt
One can easily check that (xi) depend continuously on (6%) and (kt’kt+1)’
o

since the Jacobian matrix of equations (1) and (3) is the following :



. ) i ﬁzF P grdux F
¢ —5 T A
° ox X
- gradX F
t
grad F ) tgradX F 0

and is obviously non- singular (see proposition III.2).
Let us assume :

2 2
Vi, v, —i - 2F

B
8 9x.9d ox .3k
i b

I
o

2

By differentiating equations (1) and (3) of E , one gets :

: 1 oF oF
\ —3 e —— ——— —
d‘”t H '( o ke * dy kit >
3
where,if V denotes the vector : JJL, cen jﬂi s eee o jﬁ; s sas 5 ET
’ ox 9x ax ox
1 m 1 m
- L a2 1 2
and J the negative definite matrix [ i 3‘2 - A 2—% ] , H = ‘tV J !
9x% ox -
By differentiating equation (5) , and replacing dkt and dkt+

by the expression obtained above, one gets the following system :

2

OF  OF 3°F
) (-—~ =L 4+ A 2F ) dk
; \3y; 3K, 3y 3k, 2t

2

1
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2
3°F OF  OF OF  OF 3°F
v 3 ([ AH + } +s[.—— il S, AH-—w——] )dk
& 3,97, 5y, 3, 3, Bk ok 9k, 2,t+1

2
oF OJF °F
+ B ) <___ =— + AH e ) dk =0
. Bkj Byz 3kjayl L,t+2

Obviously, this system can be rewritten in the following matrix form :

B dk + (A+ 7 0) dk
t t

+1 +2

+ B tB dkt = 0 where A and C are symmetric,
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It is well-known (Levhari and Leviatan [1972]) that if o is a characteristic

root of det [ azB + (A + B C)at+p tB ] = 0 then a%; is another one, if

one has the following assumption :

Bg : det B # 0

A B

Moreover if the matrix ( ) is positive definite, then, when R = 1 ,

'3 ¢
the corresponding characteristic roots are not on the unit-circle (see Levhari
and Leviatan [1972]); therefore for B near one the steady-state is a saddle-

point.

We prove now that the matrix

A B
(t ) is positive definite.
B C

Tedious computations show that

(tx’tY)(tz 2><§>=<§"J§%>2*Q":%%)(?%%)
(1 ) () (1o ) )1 ().

where L 1is the hessian of F with respect to (k,y) at a steady state.

. 3 oF .
Since 351 - B é%— at a steady state, the L.H.S. of the previous

relation is equal to

(o) -2 (s ) (120 ) (1, 2 R

<

. . P . t
and, hence, is strictly positive, if (tx, y) 0.
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A method similair to that of Scheinkman's [1976] can be used to show

that the regularity condition is fulfilled for B sufficiently close to

one.

One can summarize the results established above in the following corollary :

COROLLARY 1IV.2 :

Under assumptions Wl - Wé s those of Theorem III.1 and By, there

exist €, >0, €, >0 such that, if one has :

1 2
. oF | oF
Vi, V&, ’—'—:——_ |_<_€ s _<_E
ijay2 | 1 ijaﬁl 1
and 1 - €y < B<1I

then the optimal path ( (sc:;),k ) converges when t > « .

Remark 1V.4

In the case of linear aggregator function with the same discount factor,
one has a continuum of stationary points which depend on (9;) except when
the production function is separable. In that case the steady state of the

path (kt) given by Euler's equations is independent of (6;)



Appendix 1

Lemma A.1.
Let G be a continuous, convex compact valued correspondence form R"
into R"™. Assume x°€ int G(k®), then there exist a neighbourhood V(k°)

of k° such that for every k in V() , x° belongs to G(k).

Proof : Let x € int G(k®) . Then there exists a ball B(xo,p) - centered
at x° and with radius p included in G(k°) . Since G is lower semi-
continuous, there exists a neighbourhood of k° such that for every k 1in
V), 600 N BGS, o) # 6

b

Assume that the conclusion is false. Then there exists a sequence k" ,

kn

> k° such that G(k™ N B(x®,0) # ¢ but x° € G(k™
Let X denote the projection of x° on G(k™) and let yn be diametrically
opposed to X' in B(xo,p) , S0 that x" is also the projection of yn on

G(k™) . Then, | %" - xOH =min { ||z - xOH , z€EGK™ } >0 as n >,

Thus % convergeskto X~ . On the other hand, let y be a cluster point
of the sequence yn . We have d(y,G(k%)) =1lim d(yn,G(kn)) >p so that
‘ n

y € G(k°). On the contrary by construction yEZS(xO,;» c 6(k% a contradiction.



APPENDIX 2

Proof of the "reqularity condition” in_example .32
. _ j : n-1
Define E, = (kt' (zt)i>2) €ER xR

It has been shown in Benhabib et ali [1985) that the Euler system in a
neighbourhood of the steady state is equivalent to :

(Bp,p Bpap) = F (Bpo Bipy)

The Jacobian matrix DF calculated at the steady state has the fo]]ohing

form :

Where A and I (identity matrix) are (n x n) - matrices and f’' is a
positive scalar. It has been proven in Benhabib et ali [19851 that :

i) DF has 2 n eigenvalues Fa i=t,...,2n ; 0 < Iril <1 for i <n, and
Iril > 1 for 1> n.

ii) A is similar to a positive definite matrix with positive eigenvalues
Y5 strictly greater than 1 + f°,

Let E' denote the stable subspace of DF.

It can be defined as follows :

E1 ( (Q1 v, 02 v), v € Rn>
where Q‘ and 02 are (n x n)-matrices.

One has to prove this assertion :

veeR" ,aveRr", e=0 v,

or in other words det Q1 2 0.
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If it is not the case, and‘sinté E1 is n-dimensional, then there exists

0
(0, v) , with v # 0, which belongs to El' That means that DFt [ ] + 0 when

v

Since there exists P such that :

: ¢ 0 (P 0 0 1y (0 -1
Then  DF = ,W=P "vz0,
v 0 P -f’1 r W
Let (wi) be the coordinates of W.

One can easily check that

, | - lg. W (8, .
1T W Lt Ty n Ll T o

where the sequence (Bi t} verifies the induction relation :

Bi ter = Yy By T By gy

with initial values Bi 0° 0, Bi ) 1

i t t
Thus = By = Ay 4 Py g+ Mo

where ri oy, Ty o are the positive roots of the characteristic equation

r2 " Y r +f =0.

Furthermore : r,

i <1, ri'2 > 1

Since, Bi 0° 0, and Bi \: 1 one has A1 2 ¢ 0

As W 2 0 there exists i, such that |B W + +ovwhen t + + o,
0 10,t j

0
yielding a contradiction.



Lemma A2 - Let I be the correspondence from RT into (RT)n def ined as
n
L xi =Y }. Then I is compact convex

follows : [L(x) = ((xi) e ( RT)n,
: 1

i
valued and continuous.

Proof [ is trivially compact convex valued and has a closed graph.

Let ‘us show that it is lower semi-continuous : let Q be fixed in RT.‘

' A N A A
Assume X, = e X) = 0 and x]+l >0 ... Xm > 0.

Let (x') e £(8) fe £ x' = X . This implies x; = 0, Vi, Vh =t...1 .
; h

Let Qv — Q. En particular th — 0 for h = t...1 .

A

i *vh i i_A
Let 1 € h < 1, define Xh = then Xon 0 and § Xoh = %uh
Let h > 1+ 1, then there exist j(h), ¢ > 0 such that x}> e.

A
There exists vo such that v > vo implies vah - th < €.

\j Ii p— 1
+ >0 and for 1 # j(h), Xoh = *p

J a0 b
Let Xoh = X X Xp

vh h

Ji A . i
Then E Xoh = Xuh and Xon ™ X Vi, 0

Proposition - The correspondence from X into xm

]

.

$(x) { (x') ¢ Xm, I x' = x } is continuous.
~ ~ i ~

Proof - XM being endowed with the product topology, it suffices to show
that each “"coordinate map”, x = ((x;) e ( RT)", L XZ = xt} is continuous.
i

This last map is the composite of the "“th projection” with [ defined above

and is therefore continuous.
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