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ABSTRACT 

ON THE STRUCTURE OF PARETO-OPTIMA IN AN INFINITE 

HORIZO ECÔNOMY WHERE AGENTS HAVE RECURSIVE PREFERENCES 

This article generalizes the one-agents growth theory with discounting 

to the case of several agents with recursive preferences. In a multi­

consumption goods world, we show that, under some regularity conditions, 

any Pareto-optimum can be viewed as the trajectory of a dynamical system. 

The state space can be chosen to be either the product of the space of 

capitals by the (n-1)-simplex or the state of couples, capital-utilities 

achievable by (n-1) agents from that capital. We define and study the 

properties of generalized value functions. A generalized Euler's equation 

is introduced. It is then being used to give uniqueness and local stability 

cond~tions for a steady state. 

RESUME 

STRUCTURE DES OPTIMA DE PARETO DANS UNE ECONOMIE 

A HORIZON INFINI OU LES AGENTS ONT DES PREFERENCES RECURSIVES 

Cet article généralise la théorie de la croissance à un agent qui utilise 

un critère de choix avec taux d'escompte au cas de plusieurs agents avec préfé­

rences récursives. Dans un monde à plusieurs biens de consommation, on montre 

que sous certaines conditions on peut représenter tout optimum de Pareto comme 

trajectoire d'un système dynamique. On peut prendre comme espace des états, soit 

le produit de l'espace des biens de capital par le (n-1)-simplexe, soit l'espace 

des couples capital et utilités réalisables par (n-1) agents à partir de ce stock 

de capital.On introduit des fonctions-valeurs généralisées ainsi qu'une équation 

d'Euler généralisée. On l'utilise par la suite pour donner des conditions d'uni­

cité et de stabilité locale de l'état stationnaire. 

Journal of Economie Literature : 020, 110, 210 

Mots Clés : Préférences récursives, optimum de Paréto, dynamique, fonctions 
valeurs, équations de Bellman, équations d'Euler. 



INTRODUCTION 

These last years attention has focused on the dynamics of equilibrium models 

where agents are infinitely lived. Becker [1980], Bewley [1982], Yano [1984], 

[ 1985], Coles [ 1985·) [ 1986] have studied the dynamics of intertemporal 

equilibrium allocations when agents have separable preferences. The last 

three authors have shown that if agents have the same discount factor and if 

it is sufficiently close to one then in equilibrium the economy has the well 

known turnpike property of optimal growth. 

On the other hand, following Koopmans' work [1960], [1969],Iwai [1972], 

Benhabib et ali [1985] for the one agent case,Lucas and Stokey [1984] and 

Benhabib et ali [1986] studied the dynamics of Pareto-optimal allocations in 

models where agents have recursive preferences. They all assumed basically 

the existence of one consumption good only. The purpose of this paper is to 

carry on this last work one step further in a more general setting. (We use 

many consumption goods) and to generalize well-known results of growth theory. 

In order to do so, we introduce in section one an economy with m infinitely 

lived agents and a producer at each date. An initial stock is given. Agents 

have recursive preferences, the technology is markovian and time invariant. 

In section two, we show that under strict concavity and differentiability 

assumptions on utilities and strictconvexity assumptions on production any 

Pareto optimal sequence may be viewed as the trajectory of a dynamical system. 

The state space can be chosen to be the product of the capital space by the 

simplex (capital-utility weights assigned to agents) or the space of capital 

and utilities achievable by n-1 agents from that capital stock. In section 

three, we generalize the one-agent value function. This can be done in two 

ways according to the state space chosen, as shown by Lucas and Stokey [1984] 

and Benhabib et ali [1986]. We extend their definitions to the multi-consum­

tion goods case and study the properties of the generalised value functions. 



In part four, we generalize "Euler's equations". 

We then first use these equations to give sufficient conditions of existence 

and uniqueness of stationary states in the multi-consumption goods case (our 

approach is based on Broek [1973] and Burmeister [1980]).We then extend 

Mangasarian's result [1966] that any bounded sequence that satisfies 

Euler' s generalised equations is in fact optimal. 

We conclude with a couple of examples. The first one extends slightly 

Benhabib et ali's [1986]. 

In the second one agents have separable utilities and same discount factor, 

we thus get a turnpike theorem for discount factors close to one. 



I - THE MODEL 

We consider an economy with n consumers each of whom lives for an 

infinite number of periods t=1,2 ..•. There arè m consumption goods 

and p capital goods. The connnodity space 1.s then (R:) 
00 

x (R~) 
00

• 

We shall use in Rh and (Rh)oo (h = m or p) the following 

conventional notations in Rh ' > z ~Vj = h z! > z. ' z ... 
J - J 

z' > z ~z' > z and z' "f z 

z' »z ~Vj = 1 ••• h z ! > z. 
J J 

in 
h 00 

(R ) , z' > z ~ Vt > 0 z' > z 
"' - "' - t - t 

z '> z ~ z' > z and z' "f z ,...,, ,,...,, ,...,, - ,,...,, "' ,...,, 

T will denote the shift on sequences. For ~ = (x
0

,x
1

, ••• ), T ~ = (x
1 

,x
2

, ••• ). 

The economy is described by the list 

E = ( (R:)
00

, Wl., iEI = {1, .•• ,n}, (R~)
00

, B, k
0 

). We sh~ll define 

below each element of this list. 

i i i ) E Rm denote the quantity agent Let X = (x l , ••• , X ]. consumes 
t t tm + 

date t. 
i i i the infinite sequence i Let X = (xo, x1 .•. ) denote of agent 

consumptions. Let X be the space of consumption sequences 

endowed with the product topology. Let us recall that this topology is 

metrisable and that one can for example define d(~,J) by 

00 

'a' <x,y) = I 
"'"' i=O 

[ 

d (x. , y.) ] 1 
1 +dtx. ,1.y .) 

2
i 

]. ]. 

where d is any distance in m s· R • ince 

d(Tx,Ty) < 2 d(x,y), T is a continuous map from X into X. 

at 

Let S be the space of bounded continuous functions from X into R 
+ 

endowed with the sup norm Il u Il = sup u(x) • 
XE X 
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Following Beals and Koopmans [1969] and Lucas and Stokey [1984] we 

shall assume that preferences are representable by a utility function which 

belongs to a class that we next define. 

A function W: Rm x R +R is an aggregator function if it satisfies 
+ + + 

the following properties 

W1 continuous and satisfies W(x,O) < M,Vx 

W2 concave 

W3 W(O,O) = 0 

W4 (x,z) ~ (x' ,z') and (x,z) '1' (x' ,z') implies W(x,z) < W(x' ,z') 

and for some O < B < 1 

ws lw(x,z) - W(x,z')\ < B \z-z' \ 

We have the following theorem: 

THEOREM I.1 : 

for all x E Rm and all z, z' ER. 
+ 

Every aggregator W defines an operator on S as follows 

TW u(:;) = W(x0,u(T(;;:)J. TW is a aontraation. There exists a unique 

u E S such that T W u = u wi th the fol lowing properties : 

{i) u is conaave (strictly concave whenever W is striotly 

concave in x J 

(ii) Non decreasing 

(iii) u(OJ = 0 

PMoo: Let us first prove that TW defines an operator on S. Note that 

TW u is continuous on S as composite of continuous maps. l'wu is bounded since 

\rwu(~) - W(x0 ,o)I ~ B u(T,e) ~ B\\ul\ by w5 and therefore 

supl Twu(~)\<M+B \lu\\ 

xEX ,..., 

It follows from w5 that TW 1s a B-contraction on S since 

lrwu(,e) - Twv<,e) 1 ~ B lu(T,e)) - v(T ,e) 1 ~ B llu-vl\, V,e. 
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As TW maps concave, non decreasing maps into themselves, TW has a 

unique fixed point which is concave and non decreasing. As u(O) = TW u(O) = 

W(O,u(O)) and is unique, u(O) = 0. 

If W is strictly concave in x, then u is also strictly concave. This 

can be pr~ved by induction. Let ,:5. and x' ,..., be such that X .J. x' 
Û T Û 

Now let x and x' be such that x. = x! 'v'i < j and x. =f,. x! 
1 1 J J 

Then u(À T\x) + (1-À)T\x'))>Àu(Tj(x)) + (1-À) u(Tjx') 
~ ~ ~ ~ 

then 

. 1 • 
as u(TJ- (x)) = W(x. 

1
,u(TJ(x))) and since W satisfies w

4 
we have J- ,..., 

u(À Tj- 1(~) + (1-À) Tj- 1 (~')) > À u(Tj- 1 (~))+(1-À) u(Tj- 1 (~')) 

and therefore u(À ~ + (1-À)~') > À u(~) + (1-À) u (~'), by the induction 

hypothesis. 

Example. I.1 : The. fuc.oun:t.e.d c.a.6e.. 

Let v · Rm + R+ • + be a continuous, concave, uniformly bounded function 

such that v(O) 0. Let W(x,z) = v(x) + Bz Then it can be easily 

verified that all the properties w
1 

- w
5 

are fulfilled. 

00 

Let u(~) = l Bt v(xt) 
0 

Since v is uniformly bounded u is well 

defined and satisfies u(~) = W(x
0

,u(T(~))). It is therefore the unique 

solution to the functional equation TW u = u. 

Therefore the classical growth theory and intertemporal general equilibrium 

theory with discounted preferences is a particular case of the theory we shall 

develop. 

Re.mMk. I.1 : Note that we work with a weaker topology then Lucas and Stokey 

[1984) who use im. All proofs concerning compactness and continuity are 
+ 

thus much easier. Moreover notice that we have weakened their hypotheses that 

W(x,y) ~ M 'v'x, 'v'y into W(x,O) < M, 'v'x in order to be able to apply it to 

linearly separable preferences. 
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Rema.Jtk I.Z : If W is assumed to be continuous and satisfies w2 - w5 it is 

still possible to associate with it a utility function (not necesseraly 

bounded). Indeed let X = .R,m and 
+ 

S' be the space of continuous function f 

on X such that sup ~ < 00 • Then it can easily be shown that S' 

endowed with the norm Il f Ils, = sup ~ is a Banach space. As W is 

concave, there exists a C > 0 such that W(x,O) ~ C(1+11~1). Therefore 

with W we can associate an operator on S' as follows TW u(!) =W(x0 ,uT(!)). 

Indeed from w
5 

we have that lw(x0 ,u(T(x)) - W (x0 ,o)I 

~ f3 (1+llxll
00

) Il u Ils, and therefore IW(x0 ,u(T(x))) I ~(f3 Il u Ils, + c)(1+llx 11
00

). 

Moreover TW u is continuous on i: therefore TW(u) ES'. 

However the counterpart of this weakened hypotheses is as in Montrucchio ll.984 ] 

a stronger assumption on the production set so as to get a bounded utility set. 

Rema.Jtk I.3 : The aggregator W defined above can be viewed as an extension of 

the one defined in Koopmans [1960] and Koopmans et ali [1964]. Indeed consider 

a function 1Y: 1R x 1R + R 
+ + + that satisfies w

1 
- w

5 
• Let 

any concave, strictly increasing function that verifies C(O) = 0. Then 

W(x,z) = 'ùt.c(x),z) is an aggregator function in the sense defined above. 

I. 3 - StationaJtY, Man/wv,i_.a.n te.c.hnology : 

The technology at date t will be assumed to depend only on the vector 

of capital stocks Kt= (K 
1

, •.. ,K ) E Rp on hand at the beginning of 
t tp + 

t 

and the production possibilities will be assumed to be invariant intime. 

Given a stock k we shall assume the existence of a set of pairs (x,y) 

of current consumption goods and beginning of next period capital stocks 

that are jointly producible B(k) c Rm x Rp, so that the technology is 
- + + 

characterized by a correspondence B : Rp + Rm x Rp with the following 
+ + + 

properties : 



BO Bis continuous 

B1 for each k, B(k) 1.s compact and convex 

B2 (x,y) E B(k) and O~(x',y') < (x,y) implies (x',y') E B(k) 

B3 k' < k implies B(k') c B(k) 

B4 if (x,y) E B(k) and (x' ,y') E B(k'), then 

(<ex+ (1-0)x'), (0y + (1-0) y')) E B (6k + (1-6)k') 

for 0 E [ 0, 1] 

BS (x,y) E B(O) => y = 0 and there exists x > 0 (x,O) t;: B(O) . 

B6 k > 0 implies that there exist x > 0, y> 0, (x,y) E B(k) 

5 

This last hypothesis implies that from a non zero initial capital stock 

one can generate capital and consumptions sequences that are not zero at 

each date. All others hypotheses are standard, 

Ex.ample I.2 : Let F(k,x,y) from ]Rp x Rm X llp -+ Il be a continuous + + + 

convex function, increasing in X and y and strictly decrea:sing in k . 
Let F(O,x,y) < 0 imply y = 0 and F(0,0,0) < 0 . Then let -
B(k) = {(x,y), F(k,x,y) < O} then B satisfies BO~ B6 . -

l. 4 - F ecv.,,lble c.o 116 wnptio n pa.:th6 • U.tilfty .6 et : 

In what follows let us denote by x = 2 X 
i 

xt = 2 i - I i 
' 

X , X = X . t "' • ,..,, 
1. i 1. 

For and x' :Rh h=1,m,n let 
À = Àx + ( 1-À)x', ÀE]0,1[ X in 

' 
or p ' X . 

Given k
0 

the initial stock a feasible allocation path is a couple 

such that k 
1

) E B(k) Vt > 0 • 
t+ t -

We denote by 

the set of all x E Xm which are feasible. Let us also define ,...., 

feasible consumption paths as follows 

C(k
0

) = {xEX, (x, k 
1
) E B(kt) Vt > O for some kE (RP)°'',k0 given} ,...., t t+ "' + 

It can be rewritten as follows 

The correspondence has the following properties : 



THEOHFM I.2 

(.?: V !;
0

, '"'I ( 1, 
l,,, "o and x' < x then 

x' E C(k
0

) 

(2) The correspondence k + C(k) has a cZosed graph and is Zower 

semi-continuous 

(3) VÀE [0,1], À C(ko) + (1-À) C(kb) :: C(À ko + (1-À.) kb) 

(4! k' < k impZfrs C(k') c C(k) 

6 

P11.006 : (1) The convexity of C(k) follows from B
1 and B4 • To prove that 

C(k
0

) is compact let r(k
0

) = {(~,19 EX x (R~)
00

, ~ E C(k
0
)}, let Tii,i= 1,2 

d h . th . . f m Rp h . th f II 1 (k ) (k ) enote t e 1 proJection o R+ x + on t e 1 actor. Let B 
O 

= c
0 0 

, 

rr 2 B(k
0

) = K
1

(k
0
), 

rr
2 

B(K (ko)) = K 
1 t t+ 

corr~spondences Ct 

vaiued. 

and define by induction rr
1 

B(Kt(k
0
)) = Ct+

1
(k

0
), 

(k ) rr
1 d • h 0 

• As an B are continuous so are te 

Moreover they are compact valued as Bis compact 

00 00 
As f(k

0
) c TIC (k

0
) x TI K 

1
(k

0
), it follows from Tychonov's theorem that 0 t O t+ 

f(k
0

) is relatively compact. Moreover f(k
0

) is closed since B(k
0

) is closed and B 

is upper semi-continuous. Therefore f(k
0

) is compact and sois C(k
0) lts 

projection on X 

(2) Since B(k) 1s closed for every k and the correspondence k + B(k) 

has a closed graph, the correspondence k + C(k) has a closed graph. To prove 

its lower semi-continuity let and 

Then (x
0

, k
1

) E B(k
0

) • As B 1s continuous there exists a sequence 

(x~, k~) E B(k~) converging towards (x
0

, k
1
). Similarly there exists a 

n n n n n ( ) sequence (x
1

, k
2

) E B(k
1
), (x

1
, k

2
) + x

1
, k

2 
• One constructs by induction 

a sequence (x~, k~+l) E B(k~), such that (x~, k~+ 1) + (xt' kt+l) • 

Therefore ~n E C(k~) and xn converges towards x. 

(3) and (4) that follow from B4 and B3 respectively are omitted. a 

Following Negishi' [1960] we now introduce the utility set U(k0) 

the set of utility vectors which can be reached by attainable qllocations 

Let <P : 
m X ,., X be defined as follows 1 ex> 
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lt will be shown in appendix one that ~ is continuous. 

"' m n 
Let U : X + R+ denote the function U(x) ,..., 

1 1 2 2 n n 
= (u (x ) , u (x ) , ••• u (x ) ) ,..., ,..., ,..., 

U is clearly continuous and· U(k) = U(~(C(k))) 

U(k) has the following properties 

THEOREM I.3: 

(1) For every k, U(k) i is compact, convex (strictly if aZZ u are 

strictly concave) and satisfies free disposai : Vu EU{k), 0 < u' < u 

implies u' E U(k). 

(2) UO,k+ (1-À) k 'J => À U(k) + (1.-À) U(k '). (The inclusion is strict if 

all the Wi are strictly concave). 

(3) Vk > 0 there exists z >> 0 suoh that z € U{k) 

( 4) The correspondence from ~ + R: : k + U(k) is continuous. 

PMoô: (1) The (strict) convexity of U(k) follows from the convexity 

of B(k) and the (strict) concavity of the 1 
u Compactness of U(k) 

follows from the compactness of C(k) and the continuity of ~ and U. 

Free disposal follows from the fact that x E C(k) implies x' E C(k) for 

every x' < x 

(2) Let ~ E C(k) and x' E C(k') be such that I xi= x and . ,.., ,..., 

Then 

1 i, X 

1 

À X + (1-À) ,..., x 1 E C(À k + (1-À) k') by theorem I.2 (c). ,..., 

-' ,i i (' i 
T X , U /\~ + 

i i i (1-À) x' ) > Àu (x) ,..., ,..., 
i 'i 

+ (1-À) u (x ) ,..., 

l x'i=x'. 
• ,..., r,.J 

1 

For some 

and for j =1- i 

Àuj(xj) + (1-À) uj(x'j) ,..., ,..., which proves 2. 

(3) By assumptions B
5 

and B
6

, there exists x > O, y~ 0 such that (x,y) I:'. B(k) 

therefore 

sequences 

i By w
3

,u 

X• ) Ü 
J 

for some j . 

1 1 
: xoj = n xj and 

(xi) > 0 Vi . ,..., 

Let us consider the following consumption 

i 
Vi, V'x, =/- j , x . = 0 , Vt ~ 1, Vi, Vj . 

tJ 

(4) U i~ lower semi-continuous and has a closed graph as composite of lower 

semi-continuous correspondences and maps with a closed graph. The i 
u being 

uniformly bounded, U(k) belongs to some fixed compact set for every k. U is 

therefore upper semi-continuous. 
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II - PARETO-OPTIMALITY 

~ E X(k0) is Pareto-opt~mal if there exists no x' E X(k
0

) with ,..., 

U(x') > û'<x). We shall denote by Û(k
0

) the image by u of the ,..., ,..., 

Pareto-optima corresponding to the initial stock k. It is a classical result 
..... 

that U(k) is compact for every k and homeomorphic to the unit simplex 

n-1 t::, of the homeomorphism being the "radial projection" on n-1 t::, 

(see Mas-Colell (1985] page 154). 

For further use the rest of this section is devoted to show that under some 

further regularity conditions on the technology and on preferences, for 

every k, the Pareto frontier is homeomorphic to 

being the map from 
n-1 ..... 

t::, + U(k), 8 + arg max 
n 

I 
i=1 

Let us first quote the following result 

LEMMA II.1 : 

n-1 t::, 

The correspondence k + U(k) 'has a closed graph. 

" 

the homeomorphism 

P~oo6: Let (kv, zv), zv E U(kv) converge to (k, z). z E U(k) iff there 

exists a 8 E t::,n-l such that E ei zi maximizes l 8iui,(ui) E U(k) (see 
i 

Mas-Collel (1985]). Thus there exists a sequence such that 

there exists a sequence V" E u (k ) 'V + 
V V V 

Let 8 be a limit point of the sequence 

v E U(k). Since U is l.s.c. 

v. Therefore r ei i > r 
V 

2
V i i 

8 . Then we get 
V 

E é i 
E 8i V 

i 
for every v E U(k), Therefore z E U(k). z > -i i 

We shall now on assume the following. 

B4 Biss For every k > 0 
' 

k' > 0 
' 

k ,; k' if (x,y) E B(k) and ( x, y ') EB ( k ' ) -
then there exists x' > x, x' .,, 

X such that (x'' yÀ) E B(kÀ). 

w2 Biss For every i, wi is strictly concave in X . 

w6 For every i, wi is c1 on 
m 

and satisfies the following R x R 
++ + 

boundary conditions. 



i . . a w 
Inada conditions--i 

a x. 
( i 

2
i) 

X ' 

J i · x. -+ 0 
J 

i 
(2) If x. = 0 for all j = 

J 
i x , p > h and 
p 

i 
z 

We first prove the following lemma 

LEM!4A II. 2 : 

For every u E Û(k) there exists a unique triple 

((xi), y, (zi))in ~ x ~ x R: such that Wi(x\zi) = ui, Vi 

(x,y) E B(k) and z E U(y) • The map e from graph Û into 

~ x ~ x R: , (k,u) -+ ((xi) , y, (zi)J is continuous. 

9 

P~ooo: Let k. be fixed and u E U(k). Since the Wi are strictly concave 

i there exist unique (x ), such that i i( i i) u• • f h u = W x ,z vi • Un1queness o te 

associated y follows from B4 biss. To prove uniqueness of (zi) assume 

(x,y) E B(k) and z and z' E U(y) • Since U(y) is strictly convex, 
0 

L-~ À 
belongs to U(y). Thus there exists z" > z. , z" E U(y). Therefore 

u. < Wi(xi ,z"i) V i , which contredicts the pareto optimality of 
l 

u • 

To show the continuity of e let kv-+ k and uv-+ u. Let 

À 
z 

i i 
((x v), Yv' (z )) = e(k, u ). As 

V V V 
u has a closed graph, (k, u) E graph U • 

Let 

Let 

Let 

K
0 

be any fixed compact set such that kv and k belong to K
0

• 

B(K )= U B(k). Then e(kv,uv) E Œ1B(Ko))nxn 1B(Ko) xu(Il
2

B(Ko)), Vv 
0 kEK 

0 

=i = =i ((x ) , y, (z ) ' . . f h Th Wi(=i ~i) i be a limit point o t e sequence. en x ,z = u 

by continuity of i = = W , (x,y) E B(k) since B has a closed graph and 

~ E U(y) since U has a closed graph. Therefore 

=i i = =i i X =X, y= y, Z = Z Therefore 

We next have the following basic proposition 

=i = =i ((x ) , y, (z )) = e(k,u) 

and y -+ y • 
V 

C 
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PROPOSITION II.1: Consider the problem (P) 

max {}:: ei Wi(x\zi), (f,y) E B(k), z E U(y)}. L.et {(xi),y,(zi)) 

denote the corresponding optimal solution -i i -i i . (x =x (k, 8),z =z (k, 8},V1,,), Then: 

impUes 
-,Q, -i x ::0 and z = 0 

i 
b) If ,there exists i and j such that x.0 >0 then for all i s~ch that 8i>O, 

0 J 

c) 

d) 

-i z.>O. 
J 

et> o impUes 

i awi 
8 -. 

-i -i (x , z ) 

xi > o 

ej a~ rxj zjJ for au i,j E {i,0i>O}, = J= 
' 'ôx~ axJ 

h 
h E H = {h,x~ > O} 

e) The map f from IR~ x t:.n-l into IR': x IR~ x IR: 
-i - -i (k,8) + ((x) , y, (z )) is continuous 

for au 

PMoo: Let k et 0 be fixed. The maximisation problem stated above is 

equivalent to max l 
~EU(k) 

Si ~i. The solution ~ is uni.que since U(k) 

-is strictly convex and belongs to U(k). By lemma II.1, there exista unique 

triple ((xi) y,(zi)) which solve the initial problem P. 

Proof of Suppose that 8.Q, = 0 and 
-i 

> 0 for a x. ---------- 1.0 
j such that eJ > 0 . Let all consumptions and all z 

the consumption of good io for agents i and J 
-2 -.Q, 
x. X. 

1.0 
and x!j -J 1.0 

then I -i I ,i = -- = x. + X = X -2-2 1.0 1.0 i l. 

> I el. wi (xi,zi). This contredicts the definition of 
l. 

some good io . Choose 

i be unchanged except 

Let ,i x. = 
1.0 

and by w4'? rJ.wi (x'i,;i) 
l. 

«i.),y,<z.)) . 
l. l. 

Suppose that 
-i 
z =/. 0 • 

-i Let O < X < z . U(k) being strictly convex and 
0 

satisfying free disposal 
-1 -2 -n ~ (z , z , .•• x, z) E U(kJ, Therefore there exists 

-1 -2 -n z' >> (z z , X, z) 1.n U(k) The W1. being strictly monotone in z , 

" eiwi (-xi,z,i) > " ei wi(-xi,-zi)' . d' . ~ w aga1.n a contra 1.ct1on, 
1. 

1. 
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Proof of b : Suppose that there exists .Q, such that 
-.Q, 
X. > Ü 

J 
and i with 

and 
-l. 
X. = Û • 

J 
Let all quantities, production and utilities be 

unchanged except the consumption of the .th 
J good by agents .Q, and 

Let 0 be such that 
-.Q, 

Let 
,.Q, -.Q, 

and ,i 
e; > x. > e; x. = x. - e; x.' = e; . 

J J J J 

/::.W = 0iw\x,i ;i) 0.Q.w\x 1
\ 

-R, - ei w\i ,zi) - e.Q,w\i\z.Q,) Let + z ) . ' 

By w7 VA,3 E:
1 >0 x/ < e; 

1 
.Q, -.Q, 

and w7 3 c > 0 x' - x. 1 

j J 
< E: 1 => W.Q, (x 1 \;.Q,) - W\x\ Z.Q,) > - E: 1 C , 

i 

l. . 

then /::. W > (81. A - e\) e; 1 • Choose A such that A>~ C 
e1. 

and e;' ' 

so that 
.Q, 

x. - e;' > O , then /::. W > 0 • 
J 

Proof of c Suppose that and 
-JI, 
x = 0. It then follows from b) ----------

that xj = 0 Vj. Let (x,y) E B(k) be such that x > 0 for some good r 
r 

and 

Let 

xq = 0 Vq 'f r , (existence of (x,y) follows from B
6 

and B
2

). 

À -1. À x = Àx + (1-À) ~ x = Àx, y = Ày + (1-À) y and 
l. 

À = ÀZ + ( 1-À) À À 
E B(k) and À E U(yÀ) by theorem I.3. z z. By B

4
,(x ,y) z 

.Q, 
.Q, À x'j 0 Vj 'f JI, and let agents Let agent consume X

1 = X and let = 

pick À future utilities. Then by w
5

, lM E ei [Wi(x'i ,z .À)-WÏ(;i,zi] z as = 
l. 

I eJ cw\o,zjÀ) - w\o, zj>l + e.Q,cw\x\/À) - w\o,zi>l > 
jj.Q, 

- 8 À ~ ei I zi - -;il+ 8.Q,[w\x\z.Q,) - w\o,z.Q,)] • 
l. 

By w
7 

for every A, :1 e: such that lxÀI = Àlxl < e: 

w\x\;l) - w\o,z.Q,) > AÀixl . 

implies 

= 

Thus /::.W > À[A!xl8.Q,-8 ~ 0i lzi-';i!]. Choose A so that this last qu~ntity 
- l. 

is positive and À< _e:_. Then /::.W > 0 a contradiction. 
lxl 

Proof of d: Assume that and 
-.Q, 
x. = 0 

J 
-i . follows from b) that x. = O V 1. E I • 

J 
V j = 1 

Let B1 (k) = B(k) n {{Q}x ... {O} x ]Rm-h}xJRP. 
+ + 

on 

Vj = 1 ••• h , h < m. It then 

• • • h • 

Let B'(k) be its projection 
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Let P(k) = {(x,z), 3y,(x,y) E B'(k),zEU(y)} and P(k) be its projection 

on 
m-h n . -i ,.., i i ,.., i 

lR x]R. • Defl.ne W (x,z) =W ((O,x),z) 
+ + . 

for ,..,, E lR.m-h (O,x) € Rm • 
X + , + 

Consider the restricted problem 

{ \ i i i i max l 0 W (x ,z ), (x,y) E B'(k), z E U(y) } 
i 

which is equivalent to 

max 
i ,..,, 

Clearly ((x
1
), Y, (;1

)) is a solution to that problem. We shall apply Aubin-

Ekeland [1984] lemma p.223. Let A be the linear operator from Rmn x ]Rn -+ 
+ + 

i i \ -i i defined as follows A((x ),(z )) =(lx ,(z )). The problem we 
i 

st:udy is 

max { I ei Wi(xi,zi), A((xi),(zi)) E P(k) } • 
i 

We need to show that the Slater condition 0 E Int[Adom(I eiwi)-P(k)] is 
i . ·. m-h n ,.., 

satisfi.ed or O E Int(lR x lR - P(k)). It 
+ + 

thus suffices to show that there 

exists a strictly positive element in P(k). Under B 
6 

and by t_heorem I. 3 

there exists an element (x,y) E B'(k) such that y> 0 and z E U(y), 

ci·, yÀ) E B(k) by B
4 

, 
À '::: À À 

z > > 0 • Let x = Àx + ( 1-À) x , y and z . Then 

À m-h À x > > 0 in R+ and z > > 0 . So the slater condition is verified. Let 

* A denote the adjoint of A. By Aubin-Ekeland [1984] lemma there exists 

a 

-i -i 
(x , z ) 

such that 
i 

We thus have 

'v'i,jEJ, h E H • c 

~!~~!-~!-~ : Define the following correspondences from lR~ into 

f
1

(k) = {((xi), y,(i)), (;,y) E B(k)} 

f/k) = {((xi), y,(i)), zEU(y)} 

Then r 1 and r 2 are continuous and the optimisation problem is 

max {Lei Wi(xi,zi), ((xi), y,(zi)) E r1(k) n r2(k) } . 
i 
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It follows from the maximum principle that the unique optimal solution is a 

continuous function of (k,0). o 

Let us next recall the following definition 

Vè6in,Lt.,i.on: Let U C JR.n. 
+ 

A vector u EU is supported by 

u maximizes lei ui subject to u EU. We have the following result 
l. 

THEOREM II.1 

if 

Let (k,u) E graph U. Then there exists a unique e that supports u. 

The map (p from graph U onto 6.n-l, (k,u) _P..,. e is continuous • 

... 
P~oo6: Let u E U(k) be given. Thenthere exists a 0 that supports u 

-i - -i 
(see Mas-Colell 1985 p.125). Let (x ), y,(z) be the unique triple associated 

to u by lenuna II.2. 

We then have l 0i Wi(;:/' -i 
= ~ z ) 

i l. 

z E U(y) } . Let us show that e 

II. 1. c that 
-1. = 0 implies ei X 

and H = {h,~,10 V i E J} . Let h 

determined by the linear system 

To prove the continuity of (p, 

ei i = max { l i i i i -
u e w (x ,y ),(x,y) E B(k) 

i 
is unique • It follows from proposition 

= 0 . Let us then consider { -i . J = i,x ;'O} 

be fixed in H. Then (ei) is uniquely 

GJ' ~l.) V i' j E J ei awi. -i -i j awj 
(x 'z ) = e --r 

ax~ ax~ 

let (k",u") converge to (k,Ü). Theo by lennna II.1, (k,Ü) Egraph U. There exists 

a sequence 6 that supports u, therefore 
\) \) 

l eiui > l eiui VuE U(k) , Vv. Pick 
. \) v-. \) \) 
l. l. 

u' E U(k) then since U is continuous, there exists a sequence u' E U(k ) such that 
\) \) 

u' +u'. Let e be a limit point of e . Theo one 
\) \) 

\ i i \ i i has l e u > le u' for every v 
. vv-.vv 

and therefore I ei Üi >lei u'i. This implies 
i i 

unique, 8 converge towards 9. 
\) 

l l -
that e supports u • As it is 

Cl 

Rema!L~ 11.1 : For every fixed k, the map u + 0 is a continuous bijection, 

it is therefore a homeomorphism. We thus have another homeomorphism of the 

set of Pareto-optima and the unit simplex besides the radial projection. 

THEOREM II.2: 

AU Pareto-optùna ar•e described by a trajectory of the dynamical, system 

,,. (k, 0) JRP x , n-l bt · d .P -, -, • on + w o a~ne as JOvvOWS: 

let (:x/(k, eJJ, y(k,0), (zi(k,0)) be the optimal solution of P. Then 

i 
T(k,eJ = (y(k,eJ, (p{y(k,eJ, (z (k,eJJJ 
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PJLoo6 : let k and v E U(k) be given. By remark II.1, v E 6n-l corresponds 

to a unique 8 E b.n-1 • By solving (P), one gets 

Let w(k,8) = ~(y(k,8),(z 1 (k,8))). 

Let the decision maker solve a similar problem with initial data (y,w) • 

Then the whole trajectory corresponding to the Pareto-optima can thus be 

reconstructed. 

Let us compute T(k,8) in the case of separable agregators. with different 

discount factor. 

Example. II. 1 

Let k and 8 be given. We need to solve 

-max { l 81 ui(xi) + l ë ei zi , (x,y) E B(k), z E U(y) } • 

Let 'i ·e 

i l. 

ei Bi 
=----'--~ 

I: ej Bj 
Then it is equivalent to 

J 

max { l ei ui(xi) + ( l 81 8i) cI 8 ,1. i), (;,y) E B(k), z E U(y) } 
i i i 

The problem being separable, one chooses first z y given so as 

to max { I e'i zi , z E U(y) } • Let v(y, 0') denote the maximum value. 
i 

Then one solve 

max {lei ui(xi) + ( l Bi ei) v(y,8'), (x,y) E B(k) } • 
i i 

Thus 8'i supports i z , Vy which implies ~(y,z) = 8' , Vy. 

Therefore T(k,8) = (y(k,0),8') • The dynamics of 8 is independent of 

that of y. It can easily be shown that the map 8 + 0' has all vertex of 

the simplex as fixed points and an extra point 

and q equa.ls the number of such l. and 0J 

unstable fixed point and the last fixed point 

Consider now an agent i with 81. < J max 8 , let 

0i = ..!. Vi 
q 

= 0 otherwise. The vertex are 

is globally attractive. 

B(k) belong to a fixed compact 

set K , 
0 

(since i 
X (k,8) is continuous and i 

X (k,8) = 

= 0 Vk if 8 1 = 0), where 



One can therefore easily rediscover Ramsey's result but one cannot say 

anything about the path of capital stocks. 

An alternative way of describing a trajectory. 

As it has been shown by Benhabib and ali [ 1986] one can parametrise 

the trajectory in a different way. Let -1 
II be the map from ]Rn -+ lRn-l 

defined by 

Let 2 n 1 (k,z0 , ••. ,z0) belong to the graph of II- U(k). 

Consider the following problem 

111 iii i max W (x ,z
1
), W (x ,z

1
) ~ z

0
, i > 

l. i 
2,<r x ,y) E B(k~(z1) E U(y) • 

i>1 

It can be easily shown that under w2 biss and B4 biss there is a unique 

solution xi(k,(z
0
i) ), y(k,(z~) ), z1

1
. (k,(z

0
i) ) and the map from 

i>2 i>2 i>2 
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Graph II- 1 U into (lRmn) x m.P x IR.n (k, (z 1
) ) -+ 

+ + ' 0 i>2 
i i ( (x (k,z),y(k,z),z k,z)) 
i>1 i>l - -is continuous. 

The trajectory can therefore be described step by step. This definition 

does not require any differentiability assumption on the Wi • 

In some cases, Lucas and Stokey's parametrisation may be more useful 

(as in the case of separable utilities) in other cases Benhabib and ali's 

one may be more interesting. 



III - VALUE FUNCTIONS 

In this section, we introduce two generalized versions of the value 

function of optimal growth, one is due to Lucas and Stokey [1984), the 

other to Benhabib et ali [1986]. We study their properties, continuity, 

concavity and differentiability. 

Lucas and Stokey's value function 

Let V(k,0) = sup{r 0i zi ,zEU(k) }"'-sup{~ 0i Wi(xi ,i), (~,y)EB(k) ,z E U(y)} 
i i 

PROPOSITION III.1 

a) The map from IRP x 6.n-l -+ 1R , (k, 0) -+ V(k, 0) is continuous 
+ 

b) d d f e h f JR P -+ IR+ Un er B4 an w2, or every , t e map rom + 

k-+ V(k,0) is strictly concave in k. 

Under w2, w6, W 7 for every fi:l:ed k , the map from 

+ 

n-1 
6. into 

JR , 0-+ V(k,0) is strictly convex. 

PMoo: The proofs of a) and first statement of b) are omitted. Let us 

prove the strict convexity in 0 . Let (xi (k, 0)), ci (k, 0)) denote the 

optimal solution conrresponding to 0 . Let 0 and 0' be given, 

0À = À0 + (1-À)0'. It follows from lemma II.1 and proposition II.1 

i i i À 
that 0 i 0' implies (x (k,0)) i (x (k,0')) i (x (k,0 )). Therefore 

V(k,0À) = l 0ÏÀ Wi(xiÀ,ziÀ) = À I ei Wi(xiÀ,ziÀ) + (1-À)L0'iWi(xU,/À) 
i i i 

< ÀV (k,0) + (1-À) V(k,0') a 

In order to study the differentiability properties of v(k,0) we 

introduce the following auxiliary function. Let 

D = {(k,y,8,z) kEJR~, yEII2B(k), 0 E 6.n-l, zEU(y)}. D is a convex 

of ]RPX]RPX n n 
G:D be defined as follows set JR x lR . Let -+ ]R . 

+ + + + + . 
{I 0i Wi(x i i - E B(k)} G(k,y,0,z) = max 'z ) ' (x,y) 

X i 
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Then V(k,0) = max 
y,z 

2 A 

{G(k,y,0,z), y E Il B(k), z E U(y)} 

We first need·the following lennna. 

LEMMA III.1: 

Let 

IRm 

~ be a continuous, compact convex-valued correspondenae from 
0 ,.......-...., 

into itself. Let x0E ~(k0). Then there exists a neighbourhood 

The proof is given in appendix one. a 

Let D2 be the projection of D 

LEMMA III.2 

a) Let (y,0,z) be fixed in 

on JR P x JRn x lR n • 
+ + + 

then the map 

k-+ G(k,y,G,z) is concave in k. 

b) If y is interior to IT2B(k) • If G is differentiable 
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with respect to k then V is differentiable with respeat to k and 

gradkV(k,0) = gradk G(k,y(k,0),0,z(k,0)) 

PJtooo: The proof of a) is omitted. Let (k
0

,y
0
,e

0
,z

0
) be fixed with 

Yo = y(k0 ,00), z0 = z(k0 ,0
0
). The correspondence k-+ rr2B(k) is compact 

0 

convex valued. 

V(k
0

) such that 

Let y E ~. By lennna III.I, there exists a neighbourhood 

2 y
0 

E Il B(k), VkE V(k
0

) • VkE V(k
0
), G(k,y

0
,e

0
,z

0
) < 

~ V(k,00) and G(k
0

,y
0

,e
0

,z0) = V(k
0

,e
0
). By Benveniste and Sheinkman's 

(1979] theorem I, if G is clifferentiable with respect to k so is V and 

gradk V(k,0) = gradk G(k,y(k,0) ,0, z(k,0)) a 

In order to prove the differentiability of G, we shall restrict the 

technology. Let (k,x,y)-+ F(k,x,y) be a 

strictly convex, c2 function strictly increasing in 

moreover properties of example 1.2. Let us assume 

B7 : B(k) = {(x,y), F(k,x,y) < O} 

X ' that satisfies 
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PROPOSITION III.2: 
0 ~--

Assume B1 -+ B7 and Wi of class c2- for every i . Let 

Then G is c1 with respect ta k in IRP and ++ 

n-1 _v 
9€6 andkEff++· 

gradk G(k,y,0,z) = - À gradk F(k,;(k,8), y(k,0)) 
i i i i 8 W.(x (k,8),2 (k,8)) with À= __ ..._ _______ _ 

F
2
j(k,x(k,8),y(k,8)) 

A 

P~ooô: Let z be fixed in U(y) Then as F is increasing in x 

G(k,y,9,z) =maxi{~ 8i Wi(xi,zi), F(k,;,y) = O} 
X l. 

Let us first assume that xi>> 0 for some i. As 

0 
.,---:-

9 E 6 n- 1 , by proposition 

II.1, this implies xJ >> 0 for all j . 

The first order condition implies since F is stricly increasing in x. 

i i i i A e. grad W (x ,z ) = À grad F(k,x,y) for some À > 0 
X X 

Differentiating we get 

{ 

e i a2wi ( i i) d i .
2 

X ,z X 
dXl. 

a2
F À-
2 

(k,;,y)(L dxJ)- grad F(k,i,y)dÀ 
dX j X 

-~2 o F ..,. 
= À ~(k,x,y)d~ 

axak 
gradk F(k,;,y)dk + grad F(k,x,y) <I dxj)•= 0 

X • 
J 

a2wi 
This can be written in matrix formas follows : let -:-z 

ax 
denote the hessians of Wi and F with respect to x. 

' ..... . 

n:lw2 
élF 8---À-

3x2 ax2 

2 2 n 
- À .L! en~ -

dX
2 ax2 

t grad F t grad F t 
grad 

X X 

32F 
À-

ax2 

F 
X 

- grad F 
X 

- grad F 
X 

- grad F 
X 

0 

and 

= A dk 

dxn 

dÀ 
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where A E L(IRP, lRnm+ 1 ) • 

As the matrices ei ,lwi o2
F are definite negative, the upper matrix -- and -2 

ax2 
dX 

which belongs to L(IR.nm' JRnm) 1S definite negative. It then follows from 

Pallu de la Barrière [ 1966] Corollary p.295 that the matrix above 

has a determinant different from zero. The implicit function theorem can 

therefore be applied and 

Gradk G(k,y,0,y)dk = ? 81 gradx Wi(xi(k,8), zi(k,8))dxi = 
1 

-À grad F(k,i(k,8), y(k,8)( l dxi) = 
X 

- À. gradk F(k,x(y,8),y(k,8))dk 
1 

1 let 
1 

0 Vj h, k < If X > 0 for some 1, x. = = ... m. 
J 

From proposition II. 1, 
2 0 for Q, s1nce et > 0 • x. = every 
J 

One can consider a restricted optimisation problem with variables of the form 

i "'i "'i m-h x = (0 ,x ) , x E JR + • 

Then G(k,y,8,z) = max ..... {I ei Wi(o,'i'i,zi), F(k,o,i,y) = 0}. 
x 1 i 

The proof g1ven above carries over to that case. 

Let us summarize our results in the following theorem. 

THEOREM III.1 : 

Assume B
1 

- B
7 

and Wi of cZass c2 for every i. Then V is 

• 0 p X JROn c1 i,n E + + • 
i i i i 

gradk V(k, 8) = 
8 W.(x (8,k)z (k,8)) 

À. gradk F(k,;(k,8) ,y(k,8)) with À.=-~------­
F2j(k,;(k,8),y(k, e)J 

grad
8 

V(k, 8) i i i = W (x (k,8),z (k,8)) 

We now give Benhabib et ali's value function 

Benhabib et ali's value function 

( 
i) {1 1 1 i i i i. Let V k, (z ) = max w (x ,z ) ' w (x ,z ) ~ zo V1 > 2 ' (x,y) E B(k) 
0 i>2 
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PROPOSITION III .. ;; : n.; The map fram graph 

is continuous and strictZy concave 

IT-1 [! -+ + i) - . i _ IR , (k, (z . .,2) ~ V(k, (Z ) ) 
0 ~, 0 i>2 

-
b) V satisfies the generaZized BeZZman'sequation 

-The proof ~fa) is straightforward. Strict concavity of V follows from B
4 

biss, w2 biss and theorem I. 3. 
,..., 

To prove b), let T be the operator defined on the set of continuous functions 

from graph of n-1 U into ]R+ endowed with the sup-norm 

{
1 1 i ,.. i i i i.} ::: max W (x ,f(y,z1). ),(x,y) EB(k),W (x ,z 1)~z

0
,''1.~2 

1>2 

One easily shows as in dynamic programming that T is a contraction that maps 

concave functions onto concave functions. It thus have a fixed point which is 

concave. 

We next prove a theorem which is similar to theorem III.1 

THEOREM III.2: 

Then V is c
1 

and Wi of cZass c2 for every 
0 

~ in graph TI U 

i 

Mo1te.ove/L we have - i gradkV(k, ( z ) ) 
1 " i i 

À grodk F{k,x(k,z ),y(k,z )) = -
0 i>2 0 0 

i~2 i~2 

with 

1 1 i 
1 W.(x (k,(z ).>

2
) 

À =---~J._ ____ o_~~~-------" i i F
2 

.(k,x(k,(z ) ),y(k, (z ) }) 
J 0 i>2 °i>2 - -

-
and av (k,(zi) ) 

dZi O i>2 

P1too6: The proof of differentiability of V is analogous to that of V, 

One introduces the auxiliary function defined on the convex subset of 

]R p X ]R. n-1 X ]R. p X ]R. n • 
+ + + + 

n:::{(k,(zi) ,y,(z 1

1
°) ),kElR~ 

0 i>2 i>l 
i -1 2 i } (z) E TI U(k),yEII B(k),(z

1
) E U(y) 

0 i>2 i>1 

,..., i i {1 1 1) i i i i . V(k,(z) ,y,(z
1
) )=max W(x,z

1 
,W(x,z

1
)~z

0
,V1~2 

0 i>2 i>l 
(x,y) E B(k)} 
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As in lemma III.2, V differentiable implies V differentiable and 
- i ,..,, i i )i i grad(k,z) V(k,(zo)i>2) = gra~(k,z) V(k,(zo)i~2' y(k,(zo)i~~·z1,(k,(zo)i~2». 

In order to prove the differentiability of V let us assume B7. 

As in proposition III.2 the first order conditions lead to the following 

system. (One first assume x' >> 0 and then one can consider a restricted 
/problem). 

Let us add the relations : 

grad F(k,i,y) 
X 

Àl grad F(k,~,y) 
X 

i i i i W (x ,z
1
) = z

0 
V i > 2 and F(k,;,y) = 0. 

In order to salve for the Xi Ài and we have to show that the following 

matrix E is invertible. 

nm 

1 a2
F 

,-À --2 
dX 

' ..... - grad F 
X 

- grad F 
X 

0 

2 grad W 
\ X 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ 

\ 
\ 

0 

- grad F 
X 

grad W 
X n 

n-1 

{ 
t grad F Î -t - grad ,-1 0 0 0 -

X I X 1 1 1 1 1 ----------------T-------------------------------,-----------------------------
0 

0 

t 2 grad W 
X 

0 

0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

t n 1 
grad W 1 

X 1 

0 

------------------------------------------------ '-------------+---------------
nm n 



Clearly E = [t: :] where A E L(IR.nm, lRmn) and is negative definite 

and B E L(m.0 , Rnm) .and has rank n 

Let us show that Ker E = {o} Assume E ( ~) = 0 where X E 1R.nm 

and 
n 

Y E R , Theo AX + BY = 0 and tBX = 0. This implies 
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and X= - A- 1 
BY Thus BY = 0 and as B is of rank n , Y = 0 and X= 0 

Therefore dV = grad w1
(x1 z 1)dx1 

X ' 

- À1(gradk F dk + gradx F I dxi), As 
i>2 

À]_ 
d F dxl. -. gra 

Àl. X 

i i i i 
= grad W (x ,z )dx 

X 

dV = - À1 gradk F dk - I Ài dzl., c 
i>2 ° 

= À1 grad F(k,;,y) dx
1 

= 
X 

we get 

RemaJt~ III.1 : It can easily be shown that 
i ë 

À =~' \:/ ]_ > 2, so that e 1=--1...-­
E Ài+1 

and ·ei i i > 2 = . 
i>2 

E ÀJ+1 
j~2 

IV - EULER'S EQUATIONS - STATIONARY POINTS 

- EuleJL '.6 e.quaü.on : 

Let us now reconsider the problem max { ? ei Wi(xi, /), F(k, li, y)~ 0 z E Û(y)} 
]_ i 

Let w = ~ (y,z), Let us recall that z E U(y) iff V(y,w) = wz. 

Wherever interior, the optimal solution satisfies the following equations 

obtained by differentiating with respect to x, y, z, w and using theorem III,!. 

( 1) ei i i i À F(kt,;t,kt+1) grad W (x ,z 
1
) = grad 

t X t t+ t X 

(2) 
i awi i i ei 

et az (xt,zt+1) = µt t+1 

,.. 
(3) F(kt,xt, kt+1) = 0 

(4) l ei = t 
]_ 

(5) Àt grad F(k .~ ,k 
1
) + µ À t+1 gradk F(kt+1';t+1'kt+2) = 0 

y t t t+ t 



(6) 
i Wi(xi 1 

zt+1 = ' zt+2) t+1 

Let us assume that kt and ei 
t 

are given. The unknowns are 

1 i 1 1 l. 
X t' k t+1' z t+1' 6t+1' 

À 
t' µt' À t+1' k t+2' 

X t+1' z t+2 . 

There are 2mn + 2p + 3n + 3 unknownsbut only mn + 2n + p equations. 

Let us add the following equations 

(7) 01 1 1 l. À grad F(k 
1

, kt+2) grad W (xt+1' zt+2) = xt+1' t+î w t+1 X t+ 

(8) i awi i i ei 6t+1 az (xt+î' zt+2) = µt+1 t+2 

(9) F(kt+1' xt+1' kt+2) = 0 

<10) I 01 = 1 
i 

t+1 

Given 
1 

kt' ë k we thus have 2mn + 3n + p + 4 et, t+1' t+1' 
unknowns 

(add l·\+1 to the previous) with the adequate number of equations. 

This body of equations constitute Euler's generalized equations Et and 

in principle unables us to write 

01 
t+î 

k ei 
t+2' t+2 

One can also differentiate with respect to 

as functions of 

i 
x, y and l. 

z Bellman's 

generalized equation and use theorem III. 2. For further use let us use a 
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d' h l, .. 1(1 1(1 1(1 1(1 )))' 
irectapproac. Theso utionmaximizes W x

0
,W x 1

, •.• ,W x2, ••• ,W xt•···• J 

under the constraints F(kt,xt,kt+l) = 0 and 

i i i i 
zt = W (xt, zt+l) Vi ~ 2, Vt ~O. 

Let L denote the Lagrangian of this problem: 

1 1 1 ~ A ~ ~ i [ i i i ) i] 
L(x,k,z) = W (x

0
,z 1) - l À F(k ,x ,k 

1
) + l l µ W (x ,z 1 

-z . 
,..., ,..., ,..., t t t t+ . . 

2 
t t t+ t 

0 t=o ].= 

Whenever thP. optimal solution is interior, it satisfies the following system 

(11) (
t-t aw1 1 1 ) 1 1 1 

IT -~-(xh, zh 1) grad W (x ,z 1) = Àt grad F(k ,i ,k 
1
) 

h=o oz + X t t+ X t t t+ 

. . . 
A 

1. 1. 1. 1. 

( 11) biss µt grad W (x ,z 
1

) À grad F(k ,x ,k 
1
) Vi > 2 

X t t+ t X t t t+ 

(12) l. awi l l i 
µt az (x , zt+l) = µt+l Vi > 2 t 



(15) 1 
z 

t 
'v'i > 2 

As 1n the previous case we express (z~+Z , kt+z) as functions 

i>2 

i 
z 

t 
i>2 

Remevtk. 1 V. 1 Assume that k x z are bounded.·Let 
"' "' ,.., 
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b = inf min dF (k , x , k 
1
) • Then b > 0 

t -- t t t+ 
and t-1 Il 1 1 1 Il bÀ <'3 sup gradW(xt,z 

1
). 

t - t X t+ 
J ax. 

J 

Therefore '\-+ 0 and consequently Vi > 2. 

On .the. ~u.e.nu.t. o O .the. .t..tea.dy .t..t.a.te. : 

Besicles the assumptions of theorem III.1, let us assume that B(R~) is a 

convex compact subset of :R.m x lRP • Then a fixed point argument ensures 
+ + 

that T which is a continuous map defined on a compact set, has a fixed 

point (or steady state). Let us assume moreover that it is an interior point. 

Then Euler's equations lead to the following system of equations 

(16) 0i aw~ êJF i = 1 , ••• , n i z 1.) 
... 

(x - À- (y ,x,y) = 0 
' l. ' ax. ax. j = 1, ••• ,m 

J J 

( 17) awi (x i l. 
,z) = µ 

az 

(18) 
dF (y,;,y) dF (y,i,y) 0 j 1 ' ••• 'p ay. + µ dk. = 

' 
= 

J J 

(19) F(y,~,y) = 0 

(20) l e. ·-
i l. 

(21) 
i i i i 

1 , ••• , n z = W (x ,z) l. = 
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Let us assume for the remainder of this sub-section that : 

B7 biss: F(k,x,y) = ~ 1(x) - ~2(k,y) where ~2 is strictly concave in (k,y) 

and increasing in k, decreasing in y and twice continuously differentiable 

and ~
1 

is convex, increasing in x and c1 . 

In order to prove uniquene3s of the steady state, following Lu cas and Stokey [ 1984) 

we shall show that given µ equations (16), (17), (20), (21) uniquely determine 

(x,z,0,À) for µ near one. When the production function is separable, given µ, 

equation (18)uniquely determines y for µ near one. Finally we shall use (19) 

in order to show that µ is uniquely determined. 

We prove first that given ~ near one,(16),(17),(20) and (21) have a · 

unique solution (x,z,0,À). It is sufficient to prove that the determinant of 

the Jacobian matrix of this system has a constant sign. This matrix is a follows : 

nm terms n terms n terms ,--------"------~------.,_ ______ ------------
2 ,... 

01 a w -
0 0 Il 

1 ... 
alaz À 0 0 -grad<I>

1 eT grad <1>1 . 

[ai ,2wi - •2•1] 0 

~ ax
2 

0 
. . 

,/wn 
. . 

À grad <l> -grad<l> en 
axnazn 

0 ern- 1 1 

,:i2w1 
0 0 

a2w1 
1 1 ... 

az2 
3xôz 

0 0 

;/wn 
a2wn 0 n n 0 ax :clz 
az2 

À 
- 0Î grad ~1 0 ..... 1 - µ 0 ,, 

',, 
0 0 ', ', 

À ', 
0 - - grad~ 0 ', 

en 1 ', 
1 - µ 

0 0 1 ................ 1 0 - . 



26 

0- j 

Multiplying every (nm+n+j)column,for j=1, ••• ,n, by-x·· and 

adding it to the last column; we get a determinant which last column and last 

th th row arc zero except the (nm + 2n + 1) element of the (nm + 2n + 1) column which 
1 D is equal to I. Bence the determinant of this matrix is X where D is the 

determinant of the (nm x 2n) x (nm + 2n) principal matrix obtained by 

deleting the last column and last line. For µ = 1, an argument similar to 

that of proposition 111.2 shows that the principal matrix has a determinant 

different from zero. As this determinant is a continuous function of 

i i i 
(x )iEI' (z )iEI' (0 )iEI and À, it keeps a constant sign on 

0 tnll on 0 o 
Il + x R + x 11 n x R + • By a standard argument based on degree theory, 

((xi), (zi), (0i)) and À are uniquely determined for µ = 1 • By the 

implicit function theorem, they are also uniquely determined in a neighbourhood 

of µ· = 1 • 

From B
7 

biss (18) simplifies into 

a~2 a<Pz 
-a- Cy,y) + µ ak. Cy,y) = 0 • 

yj J 
(18) biss 

Let 

be the jacobian matrix. 

We shall prove that if <P2 is strictly concave in (y ,k) then J(µ) is 

definite negative for µ near one. lndeed, in that case, the matrix : 

az<P 
2 

a2<P 
2 

a2<P 
2 a2ct> 

2 
--2 ... ay1ayP ay1ak

1 ay1akP ay1 

a2<P 2 
a2ct> 

2 
a2<P 

2 
a2ct> 

2 
ayPay 1 

--2 ayPak1 
ay ct>k 

Il ayP p p 
<P2(y,y) = 

a2<P a2ct> a2ct> a2<P 
2 .. 2 2 2 

ak
1
ay

1 ak1ayP ak
2 
1 

dk1ôkp 

a2ct> 
2 

a2<P 
2 

a2ct> 
2 

a2<P 
2 

ak a ôk ôy ôkpdk1 ak2 p Y1 p p p 



t"' "'" ,..... is negative definite and the expression h ~
2 

h, with 
~ ,..... 
h=(h1,, .. ,hp,h1, •.. ,hp), is strictly negative if h # 0. Tedious 

computations give 
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Since J(µ) is negative for µ near one its determinant is also strictly 

negative. Hence, using again an argument based on degree theory, one can 

conclude that (18) determines y uniquely as function of µ for µ 

sufficiently near one. 

Let us finally solve equation(19) or <P
1

(x(µ)) = <P
2

(y(µ),y(µ)) 

The first assumption one can make, as in Broek (1973], is that the Hessian 

of <P_z<y ,y) has a negative inverse. Hence the Jacobian matrix of the system 

d<P2 d<P2 
dy. + µ -- = dk. 

J J 

Then one has 

0 has also a negative inverse if µ is near one (see III.1). 

dy. d<P2 
-1 [d<P2] -1. > 0 'v'j 

' 
since dk. > 0 ' 'v' j 

' 
and dy :;: 

-\µ) dk. dµ dµ 
J J 

Hence Î' (µ) = 
2 (

d<P2 d<P2) dy. l -+- _:1_= (1-µ) . dy. dk. dµ 
J J J 

a<1> 2 ay. 
I ak. a,; > o since µ < s < 1 
J J 

The assumption made seems to be too strong. One way to relax it is to suppose, 

as in Burmester (1980], that the technology is regular in the sense of Burmester­

Turnovsky. 

The technology is assumed to be r~gular in the sense of Burmester-

T,,rnnv~kv. i.e., , .. , 0 ,,,,, v O < µ < 1 , the solution of 

a<t>
2 

dy. 
1 verifies I --~ > 0 J = • • • • • P . ak. dµ 

J J 

Hence, as previously, i 2(µ) > 0 
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RemaJtk. IV. 2 : If the technology is regular in the sense of Burmeister-Turnovsky, 

then the value of the variations of the capital is always negative at the 

equilibrium rate of interest. Indeed 
a<1>2 
-- can be viewed as th~ equilibrium dk. 

J 
and µ is related to the equilibrium rate of interestr price of capital k. 

J 

by the expression µ 
1+r 

Let us know consider the consumption side and the function <I>
1 

(x(µ)) = 1
1 
(µ). 

As Lucas and Stokey (1984] we shall show that 11 is a decreasing function ofµ. 

Let us try to motivate the "increasing marginal impatience" assumption that 

we next make. 

Consider a stationary path x1 
= (xi, xi, .•• ). ,..., 

i i i i i (aw1 
i i) W (x ,u (x )). Let µ = ---... (x ,z) .... ,..., 1 1 1 1 1 az z =W (x ,z) 

that 1 
µ 

= ·[i (xi, xi+ hs, xi, ... )] 

dui i i i 
dh (x + hs, X , X , , , • ) h = Q 

Then i i i z = u (x ) = ,..., 

• An easy computation shows 

By the implicit function theorem i 
µ is a function of 

1 
x • However in the 

i i ..,,_ i i case considered by Koopmans and ali (1964], W(x ,z) = v(c(x ),z) for some 

well chosen V and C (see remark I.3). In that case i 
µ is a function of 

zi. We define marginal impatience by the condition 
i 

~<0 . h h . , 1 • e • w en t e 
dz 1 

-
utility level of a constant path increases, the ratio between the marginal 

variations of utility due to changes in the same amount in second and first 

period decreases. (Examples of ·1; functions that satisfy that property can 

be found in Koopmans and Ali (1964]. The following condition can be viewed 

as its generalisation: 
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1 ncJLe.Clô.{.YLg ma '1.g-i.nal ,émpatience : 

Let x\µ), zi(µ) beth~uniquesolutionforconsumer i of (16),(17),08)~(19) 

then ~:l. (xi(µ),zi(µ)) < 0 for every 1. 

Then under w
8 

, i 
1 

is decreasing function. Indeed 
, a<1>1 dx. 

<1> (µ) = I - __,l_ with 
1 . ax. dµ 

J J 

i dW1. i 1. 
x. = I x. -d <x (µ), z (µ)) 

J i J µ 

dzi 1 \ awl. 1. 
= 1-µ ~ 1 dxj 

J ax. 
therefore 

J 
l. 

À a<I>1 dx. l __ J 

(1-µ)81. axj dµ 
j 

hence, 1-µ \ 
<P~ (µ) = T l 

l. 

From (17) and ( 18) 

. d l. 
01. ~ < o . 

dµ 

. d i 
aw1. x. I-__J_= 

. ~ i dµ 
J oX. 

J 

As î 2 (µ) 1s increasing 1.n µ and i
1

(µ) 1.s decreasing in µ , i
1

(µ) = i
2

(µ) 

has a unique solution. 

From w5 and the implicit functions theorem, relation(21) defines zi 

continuously differentiable function çi 

µ=min 
1 

inf {aa:i (xi, Çi(xi))} 
1 

X 

of i 
X Define 

as a 



One can then sununarize the previous results in the following theorem 

THEOREM IV. 1 : 

Under w1 - w8 , B1 - B7 ter and for µ near one, if there exists an 

interior steady state (x,y,z,ë), then it is unique. 

We next generalize Manga5arian's proof [1966]. 

THEOREM IV. 2 

Let k and 
0 

i (z ), i _> 2, be given. Let (x, k, z) with initial 
0 ,.._, "" "' 

datas k and 
0 

(zi) i > 2 satisfy E Assume (k,z) uniformly 
0 - t • . "'"' 

bounded. Then (;E,,t,~) is optimal. 

P11.006 <i ' 
-: Let k ' 

z 
"' 

) denote the optimal solution from k , (i) , i > 2 . 
0 0 -
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-
F(kt ,it ,kt+1) 0 'v't and -t i -i -i . -z. = W (x ,z 

1
), V 1 > 2 V t. By .theorem 1.3, (z) = 

1 t t+ - "' 
is bounded. Let (~ ,i ,z ) 

"' 

,-J 

satisfy Et for every t . If (k) is bounq.ed ,..,, 

then (xi) are bounded since 
"' 

xt E II 
1
B(kt) . (z) being bounded and verifying ,..., 

i i i i . z = W (x , z 
1
) V 1 , then t t t+ 

i i i i i . 
as in page 23. zt = W (xt,W (xt+1, ••• ) 'v'i. Let L be 

Let us compute 

Since the constraints are binding, we have 

and V i > 2 

-t i -i -i t i i i Similar inequalities can be written at date t. As zi=W (xt '\+i and zi =W (xt ,zt+ 1 ) 

and 



using the fact that satisfies we get : 

t-1 aw1 1 1 1 -1 
6W_> 11 ~z (xh,zh+l)(zt-zt) + À grad F(k ; k )(x1 x 1) h=o o t X t' t' t+1 t - t 

+ \ grady F(kt,;t,kt+1) (kt+1 - kt+1) + J2 µ!+1 (z!+1 - z!+1) 

i 
µt By remark IV.1, (k,x,z) bounded imply that- À + O and ' ~~~ t + 0 
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Vi > 2 

so that 6 W > lim sup (À grad F(k ,x ,k 
1
)(x1) + À 

t t X t t t+ t t grad 
y F(kt,x ,k 

1
)k 

1
)>0. 

t t+ t+ -
Therefore (x,k,z) 1.s optimal. ,.., ,.., ,.., 

RemaJtk IV.3 : The result proved above 1.s typically used in the following case 

i 
'Àt 

l. 
i > 2 eliminated Let us assume that (xt) i > 1 and µt ' can be and that -

( l. 
(z!+1)i~2) can be expressed a function \.kt+2' (zt+2) i > 2 'kt+1 ' as of 

' (ztl.) \ • Let us furthermore assume that the jacobian 

of that map at the 
i~2) 

steady state ( 
* i * * i*) k ,(z )i~Z, k, zi~Z is a hyperbolic 

. . ]Rp+m-1 x ]Rp+m-1 1.somorph1.sm of with 2(p+m-1) eigenvalues, I>... 1 < 1 for 
l. 

i ~ p+m-1 and 1 À. 1 > 1 for i > p+m-1 . Let E1 @ E2 be a decomposition of 
l. 

]R.2 (p+m-1) such that T1 = T/E has eigenvalues À.' i = 1 ... p+m-1 and 
l. 1 

similarly for E2 . Assume moreover the following regularity condition 

"Regularity condition" 

The projection of E
1 

on :m.p+m-l x {O} is an isomorphism. 

Then optimal solutions corresponding to initial condition (k ,(zi).>
2

) 
0 0 l. 

close 

to the stationary state * i * 
(k '(z )i>2) converge towards it. The argument is 

Scheinkman's [1976] page 25. Given any i 
(k (z ) . >2) 

0 0 l. 
sufficiently close to 

* i * 
(k , (z \>2), one can find by the regularity condition a unique 

such that is on the stable manifold of the steady 

state. The path generated by Euler's system with these initial conditions is 

locally stable. By theorem IV.2, it is optimal. 
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Suppose that we have one.consumption good and~ capital good and a 
... 

production function x = C(k,y), which is stricly concave, twice continuously 

ac ac 
differentiable, and verifies ak < 0, ay > 0. Assume to simplify that the 

steady st~te is unique and that the utility functions Wi verify the 

normality condition for future utility at the steady state 

Then we have : 

COROLLARY IV.1 : 

Asswne w1 - w9 

and there exist 

and B1 - B7 

f:.1 >O, f:.2 >O 

then the steady state 

1 
a2G 1 such that if akay ~ f:.1 , 

is unique 

and 

ac -ak + 1 ~ - s2 at the steady state of (Et) , then it is ZocaZZy stable. 

PMoo; By remark IV.3, it suffices to prove that, the steady state is a 

saddle point of the linearised Euler's equation and that the regularity 

condition is fulfilled. The proof that the steady state is a saddle point is 

omitted since it is tedious and similar to theorem 1 in Benhabib and Ali [1985]. 

The proof of the regularity condition can be found in the Apendix. 

Ex.ample, 2 : 

Let us consider now the case where the aggregator f~nction Wi are 

linear with the same discount factor 8, i.e., 

From equation (2) of Et one has and ei = ei 
t 0 

V i , V t 

One can easily check that d . 1 (0i) epend cont1nuous y on and 
0 

since the Jacobian rnatrix of equations (1) and (3) is the following 



"2" . (i I' 

A -­
ax2 

- gr.w F 
X 

- grad F 
X 

---------------- _____ T _____ ----
1 

t 1 
grad F ...• t d 1 

0 . x gra F 
X 

and is obviously non-singular (see proposition III.2). 

Let us assume 

= = 0 

By differentiating equations (1) and (3) of Et, one gets 

d ;\ = --
t H 

where,if denotes the vector ( é)F dF 
V 

ax ' 
. . . 

' ~ 
, ... 

1 m 

[ . az i a
2
F ] and J the negative definite matrix el. __ u_ - À-

0 ax2 ax
2 

By differentiating equation (5) , and replacing 

by the 

2 
,Q, 

+ l 
,Q, 

+ 8 

expression obtained above, one gets the following 

( aF aF 
ay. ak,Q, 

+ 
J 

( [ 2 
À H a F 

ay}yt 

1 
l 

,Q, 

ÀH 

+ 

a
2

F ) 
ay}ki 

dk,Q, ,t 

aF aF 
] + 8 [ 

aF c)F 
ay. ay,Q, ak. aki 

+ À H 
J J 

2 ) ÀH . a F dk 0 ~k ~ 0 ,t+2 = a j oy ,Q, J<, 
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dF aF) , ax· ' ... ' ax 
1 m 

' 
H = _tV J-1 V > 0 

d À 
t and d \+ 1 

system: 

:iF ] ) akjaki dk,Q,,t+1 

Obviously, this system can be rewritten in the following matrix form: 

B dk L + (A+ : (') dkt+ 1 + (j tB dkt+2 = 0 where A and C are symrnetric, 

. 
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It is well-known (Levhari and Leviatan [1972])that if a is a characteristic 

root of det [ a 2B + (A + B · C) a+ 8 tB ] = 0 1 then aB is another one, if 

one has the following assumption: 

Bg : qet B "'f 0 

Moreover if the matrix ( A B) is positive definite, then, when 8 = 1 , 
tB C 

the corresponding characteristic roots are not on the unit-circle (see Levhari 

and Leviatan (1972]); therefore for 8 near one the steady-state is a saddle-

point. 

We prove now that the matrix 

(t: B 
) is positive definite. 

C 

Tedious computations show that 

+ ( l 
J 

where L is the hessian of 

Since aF ay. = 
J 

élF 
- B -- at ak. 

J 
relation is equal to 

a 

F with respect to (k,y) at a steady state. 

steady state, the L.H.S. of the previous 

and, hence, 1s strictly positive, if (tx•ty) ! 0. 



A method similair to that of Scheinkman's [1976) can be used to show 

that the regularity condition is fulfilled for B sufficiently close.ta 

one. 

One can sumrnarize the results established above in the following corollary 

COROLLARY IV.2: 

UndeP assumptions w1 - w4 , those of Theopem III.1 and s9, thePe 

exist s1 > 0, s
2 

> 0 suoh that, if one has: 

Vj • "i • Il ax;~YJ ~ "1 • Il a.,;~kJ ~ "1 
and 1 - s2 ~ B < 1 

i 
then the optimal, path ((;:et), kt) oonvePges when t -+ 00 • 

Rema/tk IV .4 : 
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ln the case of linear aggregator function with the same discount factor, 

one has a continuum of stationary points which depend on (ai) except when 
0 

the production function is separable. In that case the steady state of ths 

path (kt) given by Euler's equations is independent of (8!) . 



Appendix 1 

Lemma A.1. 

Let G be a continuous, convex compact valued correspondence form ]Rm 

into JR.m. Assume x0 E int G(k0
), then there exist a neighbourhood V(k0

) 

of k0 such that for every k in V(k0
) , 

0 x belongs to G(k). 

PMoo : Let x0 
E int G(k0

) • 

at 0 
X and with radius p 

Then there exists a ball 0 
B(x , p) centered 

included in G(k0
) , Since G is lower semi-

continuous, there exists a neighbourhood of k0 such that for every k in 

0 0 
V l (k ) , G(k) n B(x , p) ;/- ip • 

Assume that the conclusion is false. Then there exists a sequence 

kn -+ k0 such that G(kn) n B(x0
, p) ':/: i1' but x0 

(/. G(kn) • 

Let 
.-n 
X denote the projection of 0 

X on 

-n 
X 

and let n y be diametrically 

opposed to -n 
X in 

0 B(x , p) , so that is also the projection of 

Then, Il ~n - x
0 Il = min { Il z - x0 Il , z E G(kn) } -+ 0 as n -+ 00 

Thus -n 
x converges ta x . On the other hand, let y be a cluster point 

on 

of the sequence n 
y We have d(y,G(k0

)) ~· lim d(y ,G(kn)) > p 
n n -

y (/. G(k 0
). On the contrary by construction y E S(x0

, p) c G(k0
) a 

so that 

contradiction. 



APPENDIX 2 

Proof of the "reqularity condition" in example I, p.J2 

It has been shown in BP-nhabib et ali [19851 that the Euler s~stem in a 

neighbourhood of the steady state is equivalent to : 

The Jacobian matrix OF calculated at the steady state has the following 

form 

OF = [ 0 Ail 
-f' I 

Where A and I (identity matrix) are (n x n) - matrices and f' is a 

positive scalar. It has been proven in Benhabib et ali C19851 that 

i) OF has 2 n eigenvalues r., i=1, ... ,2n ; 0 < lr.l < 1 for , n, and 
1 l 

lr 11 > 1 for i > n. 

ii) Ais similar to a positive definite matrix with positive eigenvalues 

1 1 strictly greater than + f', 

Let E1 denote the stable subspace of OF. 

It can be defined as follows 

E1 { (0 1 v, o2 v), v E Rn} 

where Q1 and 02 are (n x n)-matrices. 

One has to prove this assertion 

n n 
~~ER , 3 v € R , ~ = o, V, 

or in other words det o1 '# O. 



2 

If it is not the case, and s1nce E1 1s n-d1mensional, then there ex1sts 

CO, vl , with v • 0, which belongs to E1• That means that 0ft (:) • 0 when 

t ..... 

Then 

Since there exists P such that 

Let CW.) be the coordinates of W. 
1 

One can easily check that 

-1 p V f. 0, 

I l t ( 0 ) = (c f3 • t W. > , C f3 i , t+ 1 W.) l 
r W 

1
' 

1 i=1, ..• ,n 1 i:;:t, ••• ,n 

where the sequence {f3;,t} verifies the induction relation 

f3. t 1 = 1 · (3. t - f' f3. t 1 
l,+ l 1, 1,-

with initial values f3. 0 = 0, f3. 1 = 
l , l , 

t t 
Thus : f3, t = À. 1 r. 1 + À. 2 r. 2 1, 1, ,, 1, 1, 

where r. 1, r. 2 are the positive roots of the characteristic equation 
, I l 1 

r
2 ~ 1· r + f' = O. 

1 

Furthermore r. 1 < 1 , r. 2 > 1 
l , 1 , 

Since, P;,o = 0, and f3;, ,= 1 one has À1, 2 t. 0 

As W t. O there exists ; 0 such that lp
10

,t w
10

1 .. + 00 when t .. 

yielding a contradiction. 

+ .. , 

CJ 



Lemma A2 - Let r be the correspondence from Rm into m n CR+> defined as + 

follows : r<x) = {cxi) € ( Rm>n n i } ris compact convex r x = x • Then + , 
i=1 

valued and continuous. 

Proof ris trivially compact convex valued and has a closed graph. 

Let-us show that it is lower semi-continuous 
A A A A 

Assume x 1 = ••• = x1 = 0 and xl+t > 0 ••• xm > O. 

let Q be fixed fn Rm •. 
+ 

Let Cxi> e r<~> ie r xi= Q. This impl1es x~ = 0, ~i, ~h :1 •.. l • 

Let Q 
V 

Î\ 
--+ x. 

Let 1 , h, 

A 
En particular xvh-+ 0 for h = 1 ••• 1 • 

1, define x' 1 = vh then x~~-+ 0 and r 
f 

Let h > 1 + 1, then there exist j(h), e > 0 such that x~> e. 

There exists v0 such that v > v0 

Let X
,j A A Xj 
vh = xvh - xh + h > 0 and for 1 # j(h), x~~ = x~ 

Then r and 0 

Proposition - The correspondence from X into Xm 

+Cx) ,.., = { C ~i > e xm, ~ ~i = ~ } i s cont i nuous. 
1 

Proof - Xm being endowed with the product 

that each "coordinate map", ~ --+ {<xt> e 

topology, it suffices to show 

C R:)n, r x~ = xt} is continuous. 
i 

This last map is the composite of the '"'th· projection" with r defined above 

and is therefore continuous. 



R E F E R E N C E S 

Aubin J.-P., Ekeland I. (1984) - Applied Nonlinear Analysis, Wiley -
Inter science. 

Beals R. and Koopman T.(1969 - 11Maximisit1g_ Stationary Utility in a Constant 
Technology"- S.I.A.M. Journal of Applied Mathematics, 17, 
1001-1015. 

Becker R. (1980) -"On the Long-Run Steady State in a Simple Dynamic Madel 
of Equilibrium with Heterogeneous Households"- Quarterly 
Journal of Economies, 95, 375-382. 

Benhabib J., Majumdar M. and Nishimura K. (1985) -"Global Equilibrium 
Dynamics with Stationary Recursive Preferences"- Working 
paper. 

Benhabib J., Jafarey S. and Nishimura K. (1985) -"The dynamics of efficient 
intertemporal allocations with many agents recursive 
preferences and production"- Working paper. . 

Benveniste L.M.and Scheinkman J.A. -"On the differentiability of the value 
function in dynamic model of economics"- Econometrica 
vol. 47 n°3, May 79. 

Bewley T. ( 1982) -"An l1i.tegration of Equilibrium Theory and_ turn_pike theory"­
Journal of Economie Theory 10, p.233-267. 

Broek, W. (1973) -"Sorne results on the uniqueness of steady states 1.n 
multiseètor models of optimum growth when future utilities 
are discounted"- International Economie Review - f4, 
n°3, 535-559. 

Burmeister E. (1980) - Capital Theory and dynamics Cambridge University 
Press. 

Cales J. (1985) -"Equilibrium turnpike theory with constant returns to scale 
and possibly heterogenous discount factors"- International 
Economie Review 26, 671-679. 

Cales J. (1986) -"Equilibrium turnpike theory with time-separable utility",. 
Journal of Economie Dynamics and Control 10 (1986) 367-394. 

Koopmans T. ( 1960) - "Stationary Ordinal Utility and Impatience 11
-

Econometrica, 28, 287-309. 

Iwai K. (1972) -"Optimal Economie Growth and Stationary Ordinal Utility, 
A Fisherian Approach"- Journal of Economie Theory, 5, 121-51. 

Levhari D. and Liviatan N. (1972) -"On Stability in the saddle-point sense"­
Journal of Economie Theory, 4, p.88-93. 

Lucas R. and Stokey N. ( 1984) - "Optimal Growth wi th Many Consumers "- Journal 
of Economie Theory, 32, 139-171. 



Magill M.J.P. (1981) -"An equilibrium existence theorem"- Journal of 
Mathematical Analysis and Applications, 84, 1, 162-169. 

Mangasarian O.L. (1966) -"Sufficient conditions for the optimal control 
of nonlinear systems"- S.I.A.M., Journal on Control, 4, n°1, p 

Mas-Colell A. (1983) -"ThE price equilibrium existence problem in Banach 
lattices"- Working paper, Harvard Unive1;s1.ty. 

Mas-Colell A. (1985) - The theory of General Economie Equilibrium: A 
Differentiable Approach- Econometric Society Monograph, 
Cambridge University Press. 

Montrucchio L. (1984) - "Optimal decisions over time and Strange Attractors" -
Rapporto interno, n° 9, Politecnico di Torino. 

Negishi T. ( 1960) -"Welfare economics and existence of an equilibrium for 
a competitive economy"-Metroeconomica, 92-97. 

Pallu de la Barrière R. (1966) - Cours d'automatique théorique - Dunod. 

Scheinkman J, (1976) -"On optimal steady states of n-sector growth models 
when utility ·is discounted"- Journal of Economie Theory, 12, 
p. 11-20. 

Yano M. (1984) -"Competitive equilibria on turnpikes in a Mc Kenzie economy I. 
A neighbourhood turnpike theorem"- International economic review, 
25, n°3, p. 695-717. 

Yano M. (1985) -"Competitive equilibria on turnpikes in a Mc Kenzie economy II. 
An asymptotic turnpike theorem"- International economic review, 
26, n°23, p. 661-669. ---.-


