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DYNAMIQUE DE PRIX ET SPECULATION OPTIMALES
AVEC UN BIEN STOCKABLE

RESUME

On analyse 1°équilibre d’un marché confrontant d’un cété le vendeur
monopolistique d’un bien stockable, qui doit adapter son prix a 1’inflation
environnante mais pour lequel les changements de prix sont colteux, et de
1"autre ses clients, qui spéculent constamment sur les dates d’ajustement du
prix, cherchant a stocker juste avant ces augmentations. Le probléme est
modélisé comme un jeu dynamique A& horizon infini entre vendeur et
spéculateurs. On montre qu’il existe un seul équilibre Markovien parfait et
1'on caractérise complétement les dynamiques de prix et de stockage qui en
résultent. Celles-ci. comprennent en général une phase de stratégies mixtes,
pendant laquelle le vendeur essaye de déjouer la spéculation en introduisant
de 1’incertitude dans son prix, tandis qu’un nombre croissant de spéculateurs
stocke, culminant parfois en "ruée” spéculative généralisée sur le bien. On
examine ensuite les conséquences macroéconomiques de ce type d’équilibre,
calculant les colts sociaux du tandem inflation-spéculation et établissant
d’autre part un résultat d’agrégation des stratégies de prix aléatoires d’un
grand nombre de vendeurs identiques. Les résultats du modéle montrent en
particulier qu’en situation de concurrence imparfaite, la spéculation peut
étre déstabilisante, et surtout ils fournissent un fondement théorique a
1"idée fréquemment rencontrée - et confirmée empiriquement - que 1’inflation,
méme anticipée, engendre de 1‘incertitude sur les prix.

Mots clef : inflation, spéculation, incertitude des prix, jeu dynamique.
Codes J.E.L. : 020, 130
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OPTIMAL PRICE DYNAMICS AND SPECULATION
WITH A STORABLE GOOD

ABSTRACT

This paper analyses the optimal price and storage strategies on the
part of, respectively, the seller of a storable good, who must keep pace with
inflation but incurs a cost to changing his price, and his customers, who
speculate on the timing of price adjustments to buy and store just before. The
problem is modelled as a game with infinite horizon between firm and
speculators. A unique Markov perfect equilibrium is shown to exist, and the
resulting price and storage dynamics are fully characterized. They generally
involve a phase of mixed strategies, during which the firm tries to elude
speculation by injecting uncertainty into its price dynamics, while
speculators store in increasing numbers, with possibly a final generalized
“run” on the good. The welfare costs of inflation-generated speculation are
analyzed, and macroeconomic conclusions are drawn. In particular, the
stochastic price policies of a large number of such firms are shown to
aggregate back to a price index growing at the rate of the environing
inflation in response to which they arose. Thus, a constant rate of inflation
at the macroeconomic level can at the same time generate and cover up
significant uncertainty and social costs at the microeconomic level. The
‘results of the model establish that speculation can be destabilizing, even in
a context of perfect information ; most importantly, they provide a
theoretical foundation for the often mentioned (and empirically verified)
claim that inflation causes price uncertainty.

Keywords : inflation, speculation, price uncertainty, dynamic game.
J.E.L. codes : 020, 130.



INTRODUCTION

" Very soon, nobody knew how much things cost any more. Prices
were jumping up in a completely arbitrary manner; a box of matches
cost, in a shop which had increased its price at the right moment,
twenty times as much as in another one, where a decent fellow was
still selling ‘is merchandise at the previous day's price. As a
reward for his hdnesty, his shop was emptied within an hour, because
the word was passedvvoh, everyone rushed and bought what was for

sale, whether they needed it or not." (Zweig, [1944])

This account of the Austrian hyperinflation of 1921 dramatically
:illustrates two important aspects of inflationary economies: sellers face
a crucial and repeated problem of when to adjust their prices, while
buyers gpeculate on the timing of these increases to go on a buying-for-
storage spree just before. Less extreme situations, such as oil shocks,
the removal of subsidies, or even steady but high enocugh inflation also
provide ample evidence that most goods can, and indeed will be stored if
buyers expect their price to go up significantly (or shortages).!

The quotétion also confirms that most prices are adjusted at discrete
intervals and not continuously; Mussa [1981] also found that the frequency
of price increases for four selected commodities during the German
hyperinflation of 1923 was, in a sense, small in comparison to the speed
of inflation. 1Indeed, changing prices entails some costs: new information
pust be gathered, price tags, lists and catalogues updated, contracts and
éollusive agreements renegociated, etc.; price changes may also trigger
§eérch by customers.

The optimal price policy for a monopolistic seller of a non-storable
yood wvho faces a fixed cost of changing his price was characterized by
Barro [1972] when the price must adapt to demand shocks, and by Sheshinski

and Weiss (1977, 1979, 1983] when it must keep pace with environing



inflation. The solution was shown to be an (S,s) rule, according to which
(in the latter case) the real price is readjusted to some ceiling level §
every time inflation has eroded it below some floor level s; with constant
inflation, such adjustments occur with fixed periodicity. But storability
endows the price adjustment problem with a new, speculative dimension,
which generally renders such deterministic price policies suboptimal: if
consumers knew that their supermarket or gas station adjusted its prices
every Friday morning, they would store just the day before, thereby
depriving the seller of his sales at the peak and increasing them at the
lowest point of the real price cycle. This prospect would in turn give
him an incentive to advance the price increase to Thursday morning; buyers
would then try to store on Wednesday instead, etc.

This paper solves the problem of the optimal price and storage
strategies for a firm selling a storable good and its customers as the

Markov perfect equilibrium of a dynamic game with infinite horizon. It is

shown in particular that the firm may find it profitable to inject
randomness into its price dynamics, while, as time goes by before the
price adjustment occurs, buyers store in increasing numbers, with possibly
a final generalized "run" on the good. The first result provides a
theoretical foundation for the often-mentioned link between inflation and
price uncertainty, and the second an accurate description of buyer
behaviour in inflationary situations, as well as a proof that speéulation
may be destabilizing, even in a context of perfect information.

The model is presented in section I, which also establishes a result
restricting the existence possibilities of deterministic price adjustments
in equilibrium. Section II fully characterizes the possible types of
equilibria, while section III establishes existence and uniqueness.
Section IV relates the equilibrium to the no-storage case, and examines
its comparative dynamics with respect to the rate of inflation. It draws

several important welfare and macroeconomic consequences from the results,



examining in particular the cross-sectional distribution and aggregate
price indices resulting from the optimal price strategies of a large
number of firms. Proofs are gathered at the. end of the paper, in
apprendices corresponding to the different sections. The main results are

illustrated on Figures 1 to 2.3, in Section II.

I-THE MODEL

I.1 Description of the market

The firm: A monopolistic’firm sells a storable good 2 which lasts for
two periods. The firm faces an inflationary environment: all other
prices, in particular its costs and the aggregate price level, increase at
a constant rate of m per period. With all nominal prices deflated by the
aggregate price index, the firm operates with constant real costs, which
are: a production cost of ¢ per unit and a fixed cost of changing prices
(so-called "menu cost") of B.® The firm is risk-neutral, infinitely-lived
and maximizes in each period the expected present value of its profits,
with a discount factor of &=1/(1+r)<1.

Buyers: There is a unit continuum of infinitely lived, risk-neutral
buyers (consumers, retailers, or other industries), who maximize in each
period the expected present value of their instantaneous utilities, with
the same discount factor & as the firm. Each of them requires one unit of
the good per period, provided the real price is below a common reservation
value S > c.4 In each period, buyers consume any previous inventories,
then buy from the firm to satify their current needs (if inventories were
inexistent or insufficient) as well as for storage until the next period,
if they so desire.® Storage is costly because of foregone interest on the
value of goods stored, and 6f a constant real storage cost per unit.

The degree of speculativeness of the market will be parametrized as
follows: there is a fraction 1-x (0<x<1l) of buyers who can store at a cost

a < 35S (hereafter referred to as speculators, or speculating customers),



while the remaining x (non-speculators) face a storage cost a'> 5S, which
renders storage always unprofitable.® A perhaps more familiar
interpretation of the same model is that consumers cannot store but
competitive speculators are active on the market, storing and reselling
the good with a total capacity equal to a fraction 1-x of demand. This
latter structure is very common in models of speculation (for instance
Hart-Kreps [1986]), and the former one is easily seen to be equivalent:
because of satiation (and assuming that transactions costs prohibit
resales by low storage cost customers to high storage cost onés), when
some customers store in anticipation of a price increase in the next
period, they never want to store more than one unit each; thus total
storage is bounded by 1-x. Customer heterogeneity (or eqﬁivalently, the
capacity constraint on storage) is introduced to encompass these more
general market structures, but also to allow an assumption on x (cf.

section I.3) which yields an important simplification of the problem.

I.2 The game between firm and customers

In every period, buyers observe the current price, then make their
purchasing and storage decisions; in the following period, the firm,
having observed inventories, sets a new nominal price or keeps the same
6ne; buyers then come back, etc.? If the fixed cost B prevents the firm
from inflating its nominal price by =x every period, inflation will
gradually erode its real price below the monopoly level S, until an
adjustment occurs. The possibility of storage then transforms the problem
from one of optimization of the frequency of price changes, into a game
between firm and speculators: the latter will store if they know that a
price adjustment is likely, while the former will try to take advantage of
periods when inventories are low to implement its price increase.

I.2.1 Necessity and meaning of mixed strategies

As discussed above, deterministic price and storage strategies will

generally not be optimal. More likely, the firm will adjust its price at



random intervals (or by random amounts, but such is not the case here) to
try and elude speculation, while only a fraction of speculators will store
(one unit each) in every reriod. The usual criticism of mixed strategies
of course applies here: in a situation of indifference, the firm must
randomize with the right probabilities, and buyers must store in the right
propbrtions. It is, however, subtantially weakened by the results of
Harsanyi [1973] and Milgrom and Weber [1985), showing that a mixed
strategy equilibrium in a game of perfect information can be interpreted,
and formally justified, as the limit of pure strategy equilibria in the
same game perturbed by an infinitesimal amount of incomplete information.

I.2.2 The equilibrium concept

The equilibrium should be subgame perfect: whatever the previous
history of price and storage decisions, firm and speculators must maximize
their respective objective functions from there on, given the other side's
strategy. .  This perfection requirement rules out non-credible threats, but
the set of admissible strategies must be further restricted. One will
follow here Maskin and Tirole [1982], [1985] by retaining the concept of

Markov perfect equilibrium, which allows each player's strategy to depend

only on those historical (or state) variables which are payoff relevant,

i.e. those which "physically” matter to him because they directly affect
the current and future payoffs from his decision.® One essential reason
for this choice is of course simplicity, not in the analytical sense
(Markov strategies are typically much more complicated than the usual
"trigger" strategies of supergames) but in the sense of eliminating the
plethora of equilibria (Folk theorem) which arise when all history-
dependant strategies are allowed, and among which a necessarily arbitrary
selection then has to be made.® 0f equal importance, however, is a
concern for robustness: Markov perfect equilibria are more robust to
renegotiation among players, and most importantly, to the choice of a

finite or infinite horizon, than equilibria based on threats of punishment



for deviant behaviour.1?© These desirable properties arise precisely
because players react only te those variables which constitute a physical
intertemporal link in the game and not to "immaterial" past behaviour (for
detailed discussions, cf. Maskin and Tirole [1982] and Gertner [1986]).

I.2.3 The state variable and strategies

The payoff to customer i in period k is:

G1 (k) = max(S-P(k),0) + qf (k-1)min(S,P(k)) - qf (k) (P(k)+a)
where P(k) is the current real price, qf(k-1) and qf (k) repectively
his previous and current storage decisions. The only state variabie which
is payoff-relevant for the choice of qf (k) is therefore P(k). In
particular, previously accumulated inventories qf (k-1) are not payoff-
relevant for the storage decision (although they are for the current
consumption decision), whether or not they are completely consumed when
qf (k) is chosen. In the following period (k+1), the firm's payoff is:

Gr (k+1) = P(k+1) [1 + (1-x)(q' (k+1)-q'(k))] - BA(P(k),P(k+1))
where q'(k)= /-]qi(k)di and q'(k+1)= /1 qf (k+1)di are the quantities
stored by speéglators (on average) ino the previous and current periods
respectively; 1 - A(y,z) denotes the Kronecker function, equal to 1 if
y=z, and to zero otherwise. The only payoff-relevant state variables for
the choice of P(k+1l) are therefore P(k) (because of the adjustment cost)
and q'(k) (the stock of inventories to be consumed at the expense of new
sales). According to the Markov restriction, the firm's strategy f(k+1)
can only depend P(k) and q'(k). Its strategy space can even be further
restricted, by virtue of the following remark. In order to find the
Markov perfect equilibrium paths of the game, it is sufficient to restrict
attention to subgames which exclude simultaneous deviations by a positive
mass of buyers in the preceding period *'; in any such subgame, each
qi (k) , hence also q'(k), is a function of P(k) only, therefore P(k+1)

can be specified as function of P(k) only. The market is thus completely

described by -and players' strategies conditioned on- a single state



variable, the current real price, or more conveniently, its logarithm.

Definition I.1: For any te (R, the market is said to be in state t

if the real price charged by the firm is Pt = S(1+47)-t = So-t.

Note the distinction between P(k) (real price in period k) and P:
"(real brice in stéte,t). Along the equilibrium path, only integer states
telN will be observed, and t will be the number of periods elapsed since
the real price was last adjusted to S; to establish perfection, however,
oné must also consider real prices above S (states t<0) or ouside the grid
{s,8/(1+n) ,s/(1+7)2, ...} (states t¢ N), since the firm could always
choose such a price, or it could be the initial condition of a sﬁbgame.

I.3 The complete and simplified versions of the game:

The most general strategy space for the firm it the set of functions
associating to any state tc R a probability distribution Ft over

( R+)x{0,1}, (real prices‘and the action of closing down, which brings the
game to an end when future expected profits are neqatiée). Bénabou
[1986a] treats the game in this general form, and shows in particular
that, as long as the cost of price adjustment ié smaller than the maximum
revenue from non-speculating customers (x(S-c)>B), attention can be

restricted to a simpler game, where in every period the firm only decides

between adjusting its real price back to the reservation level S and not
adjusting it. Specifically, the unique equilibrium of the simplified game
is then also an equilibrium of the general one; it is the only equilibrium
when a = ¢ = 0, and always the only one involving adjustment to a constant
level; if other equilibria of the larger game exist, they must involve
ad justments to (variable) real prices which are close to S. For
expositional clarity and brevity, only the simplified version of the game

- will be presented here, and throughout the paper it will be assumed:

Assumption A: x(S-c) > B.



Attention will thus be restricted to states tcR+ 12 and strategies:

* for the firm: gq: R+ -->[0,1}, specifying the probability q:

of a price adjustment following each state t.
* for buyers: q':R+ -->{0,1], specifying the proportion qi

of speculators storing in each state t.
If no adjustment takes place, a transition occurs to state t+l; after each
adjustment, the game is back in state 0 and starts a new "cycle". In each
state t, let pt = Pt-c denote the real price net of production costs. The
set of functions from R. into [0,1] will be denoted by [0,1]%+. bror all
ye;m, let Int[y] denote its integer part, and K{yl=~Int[-yl=min{ke N|k2yl.

I.4 The equilibrium conditions

Let {(q,q')e([0,1]®+)2 be an equilibrium, and consider»the market in
some state tec R+, at some date ke N; the real price is P(k)=Pt,
speculators store (1-x)q'(k)=(1-x)q¢{, and in period k+1, the firm sets a
new real price P(k+1), equal to S or Pi+: with probabilities q: and 1-qt.
As explained above, both speculators' and the firm's decisions are
independant of q'(k-1) (which is not payoff relevant for anyone), and can
therefore be computed as if q'(k-1) were zero. Let V: (resp. Wei) denote
the expected present value of the firm's profits (resp. of speculator i's
uéility), given that the current state is t, that it was entered with zero
inventories, and that all players play their equilibrium strategies from»
there on. The function [t-->V:] thus satifies the following &ynamic
programming equation, which also determines the optimal qt:

Vi = Max{p: (1+(1-x)qt)+8[q(Vo-p-(1-x)qipo)+(1-q) (Ve+1-(1-X)qipt+1)]}

~over qe<[0,1] (1)
The first term represents net total sales, for consumption and storage, in
state t. The last two are also simple to interpret: with probability g,
the firm adjusts its real price to S=Po, achieving a valuation equal to
Vo minus the adjustment cost B and the net value (1-x)qipo of sales at

the new price lost because of storage; with probability 1-q, it lets its



real price fail to Pt+:, and achieves a valuation of Vi+: minus the net
value {l-x)qgipt+1 of lost sales.

Similarly, customer i chooses his pure strategy qfi1€{0,1}, given qt,
(over which, being negligible, he has no influence) by solving the dynamic
progranming problem:

(2) wti‘=:MaXlS—Pt‘Qf(Pt+d)+6[ﬂt(W01+pro)+(l—Qt)(wtf11+prt+1)]}

over qiel0,1}
The term S-Pt¢ represents current utility and the following one is fhe cost
of storing one unit. If the firm raises the price in the next period,
this customer achieves a valuation Woi, plus savings of Po if he had
stored; if the real price falls to Pt+3:, he achieves a valuation Wi+11,
plus savings of Pi1+«1 if he had stored; hence the third term.

The necessary and sufficient conditions for the 1linear maximization
problems in (1) and (2) are:

* Buyers:
g if Pi+a > 83(qtPo+(l~q1)Pt+1) then qfi1i=0 (¥i), or: qi{=0

5(qtPo+(1-qt)Pt+1) then qii1ci{0,1} (¥i), or: qic[0,1]

(3) { if Pyv+a ¢ 8(gqiPo+(1-qe)Pt+1) then qti=1 (¥i), or: qi=1"
( if Pi+a
Thus, speculators simply compare the cost of buying an extra unit
toGay at the price P: and storing it at a cost a, with the discounted
value of the price expected to prevail in the following period. In case

of equality, each of them is indifferent between storing and not storing,

so any proportion may decide to do so.

* Firm
if gf (1-x) (po-pt+1) < Vo-P-Vit+1 then qit=1
(4) g if qf (1-%) (po-pt+1) > Vo-B-Ve+1 then q1=0
v 1f q¢ (1-x) (po-pt+1) = Vo—P~Ve+1 then qr[0,1]
The firm thus reaches 1its decision by comparing the increment in

valuation Vo-B-Vi+1 which results from adjusting the net price from pt to

pe 1instead of letting it fall further to pt+:, with the increment in
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expected lost revenues resulting from this decision (pe is lost rather
than pt+1, on a fraction q¢ (1-x) of customers). When equality prevails,
it is indifferent and this decision can therefore be randomized.

I.5 Equilibrium and continuation value equilibrium

A Markov perfect equilibrium of the game is a pair of strategies
(q.q') satisfying conditions (3) and (4), where [t--> Vi] is the firm's
valuation function, itself generated by q' as the solution to the
functional fixed-point equation (1). The proofs of existence and
characferization of the equilibrium proceed in two stages.

First, one will treat Vo, which appears in the right-hand side of (1)
and in (4), as an exogenous parameter Ve R+; this is equivalent to
replacing the original game by one which terminates when the‘firm adjusts
its real price back to S, at which time it receives an exogenously given
(continuation) value V, but must buy back all inventories at the real
price S. The advantage of this method is that the latter game can be shown
to end in a stochastic but bounded time (in contrast to the original one

which is cyclical) and that its equilibria, henceforth termed continuation

value equilibria, can be solved for backwards and fully characterized.

Definition I.2: A continuation value equilibrium is a triplet

(q.q9',V)€([0,11%+)2x R+ such that (q,q') satisfy equations (3) and (4),
where Vo is replaced by V and [t--> Vi:] is a solution to the funcfional

equation (1), where Vo is replaced by V on the right-hand side.

In the second stage of the construction, equilibria of the original
game are derived as fixed points. Note first that if a pair (q.q') is an
equilibrium of the original game, then (q,q'.Vo) is a trivially a
continuation value equilibrium. Conversely, to every continuation value V
is associated a continuation value equilibrium (qv,qv,V), under which

the firm's valuation in state zero (i.e. Vo, given recursively by the
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modified equation (1)) can be computed as a function f(V); then, by
~ construction, (qv.qv) is an equilibrium of the full game if and only if
Vo=f (V) coincides with V. The method of proof adopted here thus allows to
replace an infinite-horizon game by a family of finite horizon ones, and a

fixed-point problem in ([0,1]®+)2 by one in R.

I.6 The inexistence of deterministic price adjustments

The firm's's£rafegy will be said to involve a deterministic price
adjustment if the probability of adjustment jumps from 0 to 1 in some
state t: gt-1=0 and qt=1 (g-1=0).

Let qt=1; the condition required by (3) for buyers' indifference in
state t becomes: Pt+a=3Po or 6-!'=d-a/S. Since a<3S, define:

(5) T = Log[1/(3-a/S)]/Log(e)

When faced with a sure price adjustment in the following period, all
speculators store if t>7, none do if t<t, and they are indifferent if t=t1.
Indeed, only after the real price has fallen sufficiently (beiow P:), do
the savings realized by storing justify the necessary costs, even if it is
‘certain that the real price is about to increase back to S.' If storage
costs or the real interest rate are too high (i.e. if the assumption
‘a(l4r)<S is not satisfied), the price differential never justifies storage
(r=+w) and the game reduces to the optimization by the firm of the
frequency of price adjustments (Sheshinski and Weiss [1977]). This result
also justifies the interpretation of x as the fraction of customers whose
storage cost is some a'23S.

Consider now whether a deterministic price adjustment giving rise to
storage by all speculators can be optimal for the firm: let gt=1 and t>T,
so qi{=1, inflicting on the firm a sure loss of (l-x)(Bpo-pt).v If it is
tooc large, the firm will try to avoid reaching state t by implementing the
price increase earlier, with positive probability (qt-1>0, if t21),
thereby precluding a deterministic adjustment in state t. If it is small,

on the contrary -say if there are few speculators (xxl)- the firm could be
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willing to forfeit this loss in order to economize on adjustment costs.
Since (Spo-pt) ‘increases with t, intuition suggests the existence of some
threshold p such that deterministic price adjustments with storage by all
speculators can be sustained by the firm only in states t<y. The
following theorem indeed establishes that:

(6) M = Log[(1-z/0)/(1-2)]/Log(0), where z = 1/(2—x).‘

Theorem I: There exists 71(a/S,5,7)>0 and up(x,n)>0 such that, in any
continuation value equilibrium:

1)  (¥t, 0st<r) (gf{=0)

1) (¥t t>71) (qe=1 =) gi=1)

iii) (¥t21) (t>max(t,p) and qe=1 => qt-150)

iv) 0r/6a’)0; 01/0r>0; 0dr1/07¢0; Ou/dx>0; Ou/dn<0 and p<l/(1-x).

Proof: cf. Appendix I.

These results can be interpreted as follows. There is an upper bound

T+l on the period of nominal rigidity which can exist between two
consecutive deterministic price adjustments without storage (i 1la
Sheéhinski and Weiss); this upper bound is shorter, the lower storage
costs and the real interest rate, and the higher the rate of inflation.

Moreover, that same 7+l is a lower bound, and there exists an upper bound '
u+l on the period which can exist between two deterministi¢ price
adjustments with storage by all 1-x speculators: this upper bound is
shorter, the higher 1-x and the rate of inflation. Finally, the most
important result is that there can be no deterministic price adjustment in

a state t)max(r,p), and in particular, no periodic price adjustment of
frequency less than 1/([max(t,u)+1], Qhatever the value of the adjustment

cost B. It will be assumed from here on that 7¢ N and ue N, or

Int[t]<r, Int[pl<y, which holds generically.
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II1-CHARACTERISATION OF THE EQUILIBRIUM

Equilibria of the game (and more generally, continuation value
equilibria) will now be fully characterized; in particular, they will be
shown to consist of three distinct phases, separated by threshold states
T and T: pure strategies during [0,T), then mixed during [T,T), then again
pure strategies during [T,+o). The chain of reasonning proceeds along the
‘féllowing three main .stages. First, the phases of pure strategies are
examined; it ié sho.wn: in particular that there exist T* and T, T*<T<+o,
such that qi=0 for t< min(T*,t-1) and q=1 for t>T. The intermediate
mixed strategy phase is then analyzed; q: is shown to be a given function
& of the state t, derived from (3), while q! is obtained as the
solution Qv to a linear difference equation with variable (state-
dependant) coefficients, derived from (4) and (1). Finally, this system
is solved backwards from T to determine T<T*.

II.1 The phases of pure strategies

Assume first that buyers never store. The opportunity cost of
postﬁoning the price adjustment for one period is then (1-6)(V-B), while
the gain from that postponement is next period’s net real revenue pi+:.
The firm therefore adjusts its price, with probability one, in the state
T* such that these two quantities are equal;'®it thus follows an (S,s)
rule, with s-c=pr¥:1=(1-8)(V-) (as in Sheshinski and Weiss ([1977]).
Similarly, if the 1-x speculators always store, the loss from postponing
the adjustment for one period is (1-8)(V-B-(1-x)po), and the optimal

policy is an (S,s) rule, with s-c equated to that expression.

. Definition IT.1: Let I=[(po-6B)/(1-68), po/(1-6)1). For all VeI, define
T* (V) and T(V) by: |

(7) pr¥vi+1 = (1-8)(V-B); prcvisr = (1-8)(V-B-(1-x)po).

For all Ver: (1-8)(V-f-(1-x)pe) 2 pol1-(1-8)(1-x)]1-B > xpo-B > O by

-
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Assumption (A); hence (7) is always licit. Moreover, O<T*+1<T+1 (the
dependance on V will not be explicited when no confusion arises). These
threshold states, which determine adjustment in the above benchmark cases

can also be shown to provide bounds on the true time of of adjustment:

Lemma II.1: Let (q,q’,V) be a continuation value equilibrium, with Ver.
For all te R::

i) if t<min(T*,t-1), then q: =0.

ii) if t>T or t=T<z, then q: =1.

iii) if t=T>t, then qi>(P:+a-6Pi+1)/[6(Po—Pi+s)] and gf=1.

Proof: cf. Appendix II.

Thus}, the game starts with a (possibly empty) phase of pure, inactive,
strat‘egies (qt=q¢{=0 for t<min(T*,t-1)) and ends with a phase of pure,
active strategies (qi=q{=1for tdmax(T,t)). In particular, if the price
has not been adjusted by T, the adjustment occurs with certainty in the
following period, even though all speculators have stored: the firm cannot
wait any longer and gives up its attempts at a surprise adjustment.

IT.2 The phase of mixed strategies

By (3), the probability q« of a price increase in the next period
which leaves speculators indifferent between storing at the price P: (t>t)
and not storing is defined by: Pi+a=5(qiPo+(1-qe )Pt+1) or:

(8) Qt = (Pe+a-8Pi+1)/[8(Po-Pr+1)] = [8-t(1/6-1/0)+a/6S)/[1-6-(t+1) ]
which is less than one, since t>t, or Pi+a<6Ppo. Similarly, the fraction
q! of speculating customers storing in state t which leaves the firm
indifferent between the real prices Po and Pi+1 in the next period is
given by (4): qf=(V-B-Vi+1)/[(1-x)(po-pt+1)]. But by (1):

Vier 2 pron(14(1-x)qds 1 )+6(V-B-(1-x)qf+1po ), with equality if qvs+1>0.
Hence, during a mixed strategy phase, q{ obeys the difference equation:

(9) al = [(6po-pre1)afsr + ((1-8)(V-B)-pt+1)/(1-x)1/(Do-Pt+1).
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Definition I1.2: Define the following functions:

i) For all teRs, & = min(1l, [6-t(1/6-1/0) + a/8S1/11-6-(++1)})
ii) For all VeI, [{(t,y)-—>Y¢,v(y)] defined on [t-1,+0) x R by:
T, v(y) = [(8po-pt+1)y + ((1-8)(V-B)-prt+1)}/(1-x)1/{(pPo-Pr+1).

at+1y + brer, v

During,a mixed strategy phase, g =@ and qf=Vt (af+1) by (8) and (9).

. The following .-resulﬂ;.generalizes {9) to the boundaries of such a phase.

Lemma II.2: For any continuation value equilibrium (q,q’,V) and any te R :
i) (V=B=Ve+1 )/[(1-X)(po~pt+1) ]S Pe (qf+1), with equality when qt+120.
ii) If q€(0,1) and qi+1>0, then gf = ¥t (qf+1).
iii) If qe=1, then gf < ¥t (qi«1).
- If @ =0 and q:+1>0, then qf 2 ¥t (qd+1).

Proof: cf. | Appendix IT.

For t > max(T(V),t), @f=1 by Lemma II.1 and Theorem I. From this
terminal condition, one can construct, by backwards induction, a solution
@,v on [t-1,T(V)] (when it is not empty) to the difference equation:

(10) QA,v = at+1Q+1,v + brer, v

Definition II.3: For all VeI, define [t --> @,v] on [t-1,+») by:14

i) Q,v = 1 on [max(t-1,T(V)),+o);
ii) @,v = %,v(&+1,v) on [z-1,T(V)), or more explicitly:
Q{pv = v" vooo0°7t#k,v(1), Whel"e k = min {jEN|t+j+IZT}.

" IT1.3 The form of the optimal mixed strategies

Unlike & , the functions bi+1,v, %t,v and @,v depend on V; this
index will be dropped for notational simplicity, when no confusion is
possible. Anticipating slightly on the proof that q=@ and qf=Qf
during a unique, continuous, mixed strategy phase of the equilibrium, the

following lemma describes the dynamics of @& and Q.
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Lemma II.3: i) The function @& 1is continuous, equal to 1 for t<r and
then decreasing to its limit Qo = a/6S>0.

ii) For all Vel such that T(V) > t-1, the function @/, v restricted

to [7z-1,T(V)] is continuous and increasing.

Proof: cf. Appendix II.

During the mixed strategies phase, the (conditional) probability @ of
a price adjustment in state t is decreasing. This somewhat surprising
result can be explained as follows. Not only does the real gaih 5Po -Pt —a
realized by storing before a price increase become larger over time, but
the loss Pi+a-6Pi+1 incurred if the adjustment does not materialize
becomes smaller; to keep speculators indifferent between storing and not
storing, the probability of realizing the gain must decrease over time.1%

The increasing fraction (1-x)@& of buyers who store during the phase
of mixed strategies, on the other hand, accords well with intuition.
However, this does not occur because successful storage becomes
increasingly profitable, but again because @& must keep the fiim
indifferent between adjusting and not adjusting its price. The
incremental benefit from adjustment (with respect to doing nothing) is
'Vo -B~Vi+1, while the corresponding loss is po-pt+1 per storingv customer.
Both quantities increase with t (because Vi+1 and pi+1 decrease with ts,
but the first one increases faster (intuitively, adjustement grows more
urgent), so that the total gain rises faster than the loss per customer.
To achieve indifference on part of the firm, the number (1-x)Q{ of
storing customers must be increasing.

I1.4 Characterization

The time T at which the active phase of the game (during which q:>0
and q/>0 if td>t) effectively starts can now be computed, by moving
backwards from T, and looking for the unique zero (if any) of the

decreasing and continuous function Q.
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Definition II.4: For all VelI', define T(V) as follows:

i) If T*(V) T* (V).

IA

t-1, T(V)

1

ii) If T*(V) min {te[t-1, T(V)]| &,v 2 O}.

v

-1, T(V)

Note that 0 < T+l < T+l. The three phases of the equilibrium, separated

. by T and T, can new be linked together through the following definition.

Definition IT.5: For all VeI', define the following non-empty sets:

i) Qr(V) = {qe[0,1]®%+ |¥t20: qu=0 if te[0,T); qiel0,& ] if t=T;
a=Q if te(T,T); qiel@ ,11 if t=T; qi=1 if te(T,+o)}.
ii) Q¢ (V) = {q'€l0,1]R+|¥t>0: q/=0 if te[0,max(t,T)); qf=0 if t=T>t;
al€l0,Q1 if t=t>T; qf=@{ if te(max(t,T),+w)}.
iii)
(V) = (2r(V) 0 {ql qr=Qr})x Qc(V) if T=t-120 and Ve-1(qt)>0
(V) =9 22(V) = (2r (V) 0 {ql qr=0}) x Qc(V) if T=t-120 and V«-1(qt)<0
Q (V) = Qr (V) x Qc(V) in all other cases.

The correspondance Qr uniquely determines the firm’s strategy q¢ in
all states te R+ except possibly T and T, while Qc uniquely determines
customers’ (aggregate) strategy gf in all states except possibly z.

The following characterization result is central to the paper.

Theorem II.1: For any VeI and any strategy pair (q,q’), the triplet

(q,q’,V) is a continuation value equilibrium if and only if (q,q’)€ .(.?(V);
Moreover, T(V) £ T*(V), with strict inequality if and only if T*(V) > z-1.

Proof: cf. Appendix II.

The fist part of the theorem, together with Definition I1I.5, confirms
that equilibrium strategies are first equal to zero, then mixed according

to & for the firm and Q' for speculators, then equal to one. The
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second part is quite intuitive: if T*+1<t, the firm can adjust its price
at T*+1 before any speculation becomes profitable (T+1=T*+1); if Ts+1l><t,
on the contrary, speculators; try to store before the price increase, while.
the firm tries to adjust its price before too many of them store; as in
many models of asset price determination (foreign exchange, gold, etc.),
_ this results in part of the price change’s (here, the total change but
with probability less than one) taking place earlier than it would in the ,,
absence of speculation (T+1<T*+1). In addition to advancing the potential
price increase, the firm randomizes it, when t<I<T; but since both sides
play at discrete intervals te N, mixed strategies will not be efffectively
implemented along the equilibrium path unless [T,T) contains an integer,
or K[T(V)I< K[T(V)] (recall that Klyl=min{ke Nik2y}, Vye R). The

following result gives a sufficient!® condition for this to occur:

Proposition II.2: If max(t,u) < K[T(V)], then K[T(V)] < K[T(V)].

Proof: cf. Appendix II.

IT.5 The four possible forms of equilibrium

Using the results of section II.4, one can completely describe
continuation value equilibrial? -and in particular any full equilibrium-

of the game: they can take one of the four basic forms illustrated in

Figures 1 to 2.3 (corresponding to the paragraphs below), on which the

solid dots indicate the discrete states te N in which players act.

1-Pure Strategy Equilibrium: When T<t, an equilibrium involves only pure

strategies: the firm increases its price if the time elapsed since the
last adjustment is greater than T, and speculators store if it is greater

thar <. The firm in fact adopﬁs an (S,s) rule, resulting in price
adjustments of periodicity K[T]+1.

}M: when K[T]<Int[t], this adjustment occurs without any storage; it is

the discrete time analog of the adjustment of Sheshinski and Weiss [19771,

who deal with the limiting case t=+o (so that T=T*=T); cf. Figure 1.
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1.2: when K[Tl=Int[t]+1 (which requires K[T(V)]1<Int[u]), the adjustment
occurs with all speculators storing; this case is identical, for all
practical purposes, to 2.2 below, and is therefore not illustrated.

2-Mixed strategy equilibrium: When T>t, there is a phase (max(<t,T),T) of

mixed strategies on both sides; given that players act at discrete
intervals, three types of outcome are possible.

2.1-Mixed strategy equilibrium with deterministic outcome and no storage:

When K[T]<Int[t], the outcome is again an adjustment of periodicity
K[(T]+1<Int[t]+1 and no storage. Only if the firm deviated —voluhta.rily or
by mistake- so that the real price dropped below P¢, would mixed
strategies be implemented (cf. Figure 2.1).

2.2-Mixed strategy equilibrium with deterministic outcome and full

storage: When K[TD>Int[t] and the interval (T,T) contains no integer
(which requires that K[T]<Int[p]<1/(1-x)), the phase of mixed strategies
is so short that players’ actual moves "skip over it" to the final phase
of pure strategies, and the outcome consists of price adjustments of
periodicity K[T]+1, with storage by all 1-x speculators. This case occurs
when 1-x is small (so that p is large): the firm maintains a deterministic
(S,s) rule, forfeiting the small loss from storage for the benefit of
| charging the maximum price to non-speculators (cf. Figure 2.2).

2.3-Mixed strategy equilibrium with stochastic outcome and increasing

storage: The case where K[T]>Int[t] and the interval (T,T) contains at
least one integer (which is guaranteed by KIT]>max(Int[t],Int[ul)), gives
rise to a radically new type of outcome. The firm might be said to follow
an (S,%) real price rule, where the tilde indicates a random variable,

which here has support in [Pr+1, P¥+11.'°The nominal price remains pegged
for K[T] periods; in every following period there is a probebility q: that
a price increase is about to take place; if it still has not occured after
K[T] periods, it then takes place with probability one in the next period.

As to buyers, they store in increasing numbers until the adjustment takes
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place; if it has not occured after K[T] periods, there is a generalized

"run” on the good (cf. Figure 2.3). 19

IIT-EXISTENCE AND UNIQUENESS

ITI.1 Existence

An equilibrium of the game is a pair of strategies (q,q’) such that
(q,q’,Vo) is a continuation value equilibrium, where Vo, is the expected
present value of profits in state zero generated by strategies (q,q’)
-which will now be computed. For all Ver and any q’€Qc(V), define from
here on K=K[T], K*=K[T*] and K=K[T]. Since t¢ N2°, K#t hence at is W
the same for all q’€Qc(V), and it is legitimate to define: '
(11) £(V) = Sk-o 85pk + 88qf (1-x) (px-6po) + 6K+1 (V-p)

Moreover, Definition II.5 indicates that qk=qi=0 for k<T(V) and that two
cases are possible in state K2T: either T¢ N, so K>T and ak=Qx >0, or

K=Te N, hence T#t-1, so qge[O,Qi(_];f{O}. In both cases, adjusting the
price is one of the firm’s preferred actions following state K (and never

before), and its valuation in state zero is therefore Vp=f (V). Thus, for

(a,9’) to be an equilibrium, Vo must be a fixed point of f.

‘Lemma III.1: Let VeI; for any sequence (VA),e x converging to V, the
sequence of functions (&, vn)ae n converges to &', v on [t-1,+o)

for the norm of uniform convergence.

Lemma IIT.2: The function f is continuous and has a fixed point in I.

Proofs: cf. Appendix III.

Let Vo be such a fixed point. ~ For any (q,q')e Q(Vo)#®, (a,q’,Vo)
is a continuation value equilibrium, satisfying conditions (3) and (4) in
all states (by Theorem II.1). Moreover, Vo=f(Vo) is the initial expected

present value of the firm’s profits under the strategies (q,q9’). Hence:
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Theorem III.1: There exists a Markov perfect equilibrium of the game.

Proof: cf. Appendix III.&VQ ‘

I1I.2 Uniqueness

By Theorem II.l1, there is only one equilibrium (except for
indeterminacies at threshold points) corresponding to a given value Vp; in

fact, two equilibria with different valuations cannot exist either.

Theorem III.2: The Mark_qv perfect equilibrium of the game is unique®!, up

to possible indeteminébies of speculators’ strategy at their thresfg:ld
point t, and of the firm’s strategy at its threshold points T and T.

Proof: cf. Appendix III.

IV-WELFARE AND MACROECONOMIC IMPLICATIONS

IV.1 Destabilizing speculation:

‘The effects of speculation on price dynamics are best undestood by
comparing the equilibri%iﬁn outcome to the optimal periodic adjustment in
the absence of storage (Sheshinski and Weiss [1977]). Let therefore Kns
be the state in which the price is adjusted with probability one when no

customer can store, i.e. the value of K=K*¥* when x=1 or when «>6S.,

Proposition IV.1: In equilibrium:

i) if Kns<Int[t], then K=K*=Kas<K
ii) if Kns>Int[t], then Int[t]<KSKns<K¥<K
iii) if Kns>max(Int[t],Int[u]) then K<k-1

Proof: cf. Appendix IV.

These results have a simple interpretation:
1) If, at the time Kns+l when the firm would adjust its price in the

absence of storage, the magnitude of the price increase does not justify
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storage by speculators (Kns+1<Int[t]+1), this deterministic policy remains
optimal (Figure 1 applies).

2) If the price increase at Kes+l is sufficient to induce storage by
speculators but the total loss which they inflict on the firm is not too
large (Int[r]+1’<K“+1SInt[p]+1) -because for instance there are few of .
them- adjustment at Kns+1 remains optimal®?, although all speculators have
stored (Figure 2.2 applies).

3) If, on the contrary, the threat of speculation is effective
(Krs+1>max(Intit]l,Int{u]l)+1), the firm must implement a different
strategy, leading to either a deterministic adjustment of shorter period
Int[t]41 (Figure 2.1 with K=Int[x]), or a randomized adjustment which also
attaches more weight to earlier dates (Figure 2.3). The price increase
will thus generally occur before Krs+l, as the outcome of a phase of price
uncertainty and increasing amounts of storage by buyers, which may
culminate in a generalized storing spree.

In this last case, speculation is destabilizing, of both prices and

quantities, in any sense that one can think of; section IV.3 will show
that it reduces social welfare as well. Moreover, these striking results
arise in the absence of any stochastic shocks or private information, from

the sole optimal dynamics of imperfect competition. Agents were assumed

risk-neutral, for analytical tractability, but the essential results 6f
the model would remain with risk-aversion, since even risk-aversé buyers
will store when faced with a certain and large enough price increase.
Randomisation is therefore still required to elude speculation, in spite
of the welfare costs it may entail for the firm and its customers.

IV.2 Inflation causes price uncertainty:

Inflation lies here at the origin of speculativé storage. The
comparative dynamics of the equilibrium with respect to the rate of
inflation n are therefore of particular interest, both to ascertain

whether speculation increases with n, and to shed some light on the
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positive relationship between inflation ‘and relative price uncertainty
which features prominently 'in macroeconomic discussions of the cost of.
inflation {(cf. Modigliani and Fischer v[1978], Fischer [1981a,b], [1984]).

" Such a correlation is confirmed by many empirical studies (surveyed in
Fischer [1981a] and Taylor [1981]), but no theoretical basis has been
offered for itZ2? The mecﬁéhism analyzed here, by which an optimal type and

level of noise are injected into price dynamics in order to elude
speculation, provides such a foundation. It is worth noting, moreover,

that price randomness is here endogenous; ‘in contrast to the models of
~ Sheshinski and Weiss [1983] or Caplin and Spulber [1985] where inflat}gp

is an exogenous stochastic process, and to models which rely o;'x a
combination of misperceptions or staggered coﬁtra.cts with exogenous shocks

to generate attenuated naise in the price system.?1*

The equilibrium unfortunately depends on 7 in too complex a manner to
allow comparative dynamics to be performed analytically, as. can be done
with B or a (cf. Bénabou [1986al). The problem must be solved
numerically, and Tables 1 and 2 report the results of some of these

computations, which point to the following characteristics.

Results of simulations: As the rate of inflation increases:

i) The support {E+1,..,'}f+1 } of the random period T of price rigidity
separating consecutive price adjustments shifts down by steps; its
expectation E( ?) decreases with large enough Iincreases in =, but may
increase wi tb small ones (when the support remains unchanged). |

ii) The amount of speculation increases in every period.

iii) The variance of the following period’s price increases with n» in all

periods preceding the occurrence of the adjustment; thus, more inflation

causes more uncertainty.?2¥%

It is also interesting to note that, for any given inflation rate, the
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Table 1 (1.1 to 1.3): Variation of the equilibrium outcome with the rate

of inflation.

For each value of =m, the upper line gives the unconditional

probability fk of a price change in each period (fk+1=(1-go)..(1-qk-1)ax

for all k21), while the lower line gives the proportion qi of

.speculators who store. The symbol "-" stands for zero. The basic period

is a week, but n is given here as an annual rate.

parameters are fixed:

The followingk

B/5=.25, ¢/8=.0, a/S=.02, x=.5, r=.05 per year,

Table 1.1
k|13 14 15 16 17 18 19 20 21 22 23 24 25 26 I[t]+l Kns+l E(T)
4 - - - - - - - - 4 - - - -1.0 29 26 26.00
5 - - - - - - - - - -1.00 - - 23 23 23.00
7 - - - -1.00 - - - - - - - - 17 20  17.00
8 - - - .96 .04 .004 .001 - - - - - - 15 19  16.05
L~ .37 .70 .91 1.00 - - - - - - .
10| -.9 .09 .01 .006 - - - - - - _ _ 12 17 14.13
.26 .65 .89 1.00 - - - - - - _ _ _
Table 1.2
™kl 4 5 6 7 8 9 10 11 12 13 I[t]+l Kes+1 E(T)
20 - - - - - _ .71 .19 .06 .04 7 13 10.44
- - - - - .3 .77 .98 1.00
3 | - - - - .65 .20 .08 .01 - - 5 11 8.56
- -+ - .23 .74 .981.00 - - -
50 | - - - .53 .22.25 - - - - 3 9 7.72
- - .66 .97 1.00 - - - - -
100 - .52 .21 .27 - - - - -  _ g 7 5.75
49 .94 1.00 - - - - - - _
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Table 1.3 (Table 1 continued)

k| 2 3 4 5 6 7 Iltl+l Kes+l E(T)

200 - - .50 .50 - - 2 5 4.50
- .57 1.00 - - -

300 - - .45 .55 - - 1 .5 4.55
- .8 100 - - -

500 | - .53 .47 - - - 1 4 3.47
.50 1.00 -~ - - -

1000 - .48 .52 - - - 1 4 3.52
183 1.00 - - - -

Table 2: The one-period ahead variance of the real price (x10%)

and the rate of inflation (annual rate, in %)

Table 2.1
Ak 7 8 9 10 11 12 13 14 15 16 17 18
8 - - - - = - - - ,23 .55 .88 1.20
0| - - - - - - .591.001.41 1.81 -

20 - -2.463.294.114.92 - - - - - -
30(3.55 4.80 6.04 7.72 - - - - - - - - -

Table 2.2

\k 2 3 4 5 6 71 8
40 - - - - 4.65 6.33 7.99
50 - - -~ 7.02 9.10 11.16
100 - -10.38 14.51 18.53 - -
200 6.z 2012 - - - -
300 - 25.29 35.73 - - - -
500 |24.00 39.76 - - - - -

1000141.66 65.10 - - - -
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uncertainty faced by buyers increases over time, until it is suddenly
resolved by the occurence of the price adjustment. Inflation thus
generates -and when it increases, exacerbates- growing price uncertainty,
a shortening of the price cycle (E("i") <Kns+1 in general, cf. Table 1)), and
mounting speculative storage.?®These results confirm and give precise
meaning to the following description by Buchanan and Wagner [1977] (quoted
in Fischer [1984]):

"Inflation detroys expectations and creates uncertainty;...it

prompts behavioural responses that reflect a general shortening of
the time horizon".

IV.3 Some "new'" welfare costs of inflation:

The storable nature of most commodities provides each price-maker with
an incentive to inject some @certainty into the price system (price
competifion betweén oligopolists may have similaf but weaker effects; cf.
Maskin and Tirole [1985]). Such a private incentive to make one’s price
noisy could be the source of a price uncertainty exterhality, which no
ones likes to experience but all contribute to generate. Even in the
absence of risk-aversion, price uncertainty has a cost, because it
prevents the synchronization of ‘price decisions between suppliers and
their customers (synchronization of output price adjmtment with wage
contracting, for instance); as a result, inflationary pressures may
propagate relative price distortions and misallocations throughout the
economy (Blanchard [1983]). While an analysis of these phenomena would
require a multisectorial model, the present one already explicitly
identifies several other costs of inflation, to be added to the lists

drawn by Modigliani and Fischer [1978] and Fischer [1981]1. Indeed:

Proposition IV.2: Expected intertemporal social welfare is:

S-c B + (1-x)(a+c(1-6)) SE-x 65(1-qg)...(1-qx-1)qk]
(12) SWy = — - -
1-6 [1-6 ZF-x 6%(1-gx)...(1-Qx-1)qk]

Proof: cf. Appendix IV.
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The first term is welfare in the absence of inflation; the second one
is therefore the total socj.al Qost of inflation (or of the speculation it
.induces) s which has three components: price adjustment costs, storage
costs and the intertemporal misallocation of production due to speculative
purchases. These three effects are linked together by the stochastic
process governing the date of price adjustment, so that a change, say in B
or x, induces changes in the whole sequence (q,q’) and therefore in all
components of the welfare loss. Apart from this social cost, a stochastic
equilibrium gives rise in each period to a significant amount of income
redistribution between f 1rmand customers, dei)ending on whether the price
increase materializes or not.

IV.4-long run equilibrium and aggregation

The preceding sections showed how disé;)htinuous and even randomized
price dynamics arose at the level of individual price-setters in response
to a constant rate of increase in the general price level. This raises
two important and related questions, which were addressed by Caplin [1985]
in the context of (S,s) inventory policies and Caplin and Spulber [1985]
in that of (S,s) real price rules. First, are these individual strategies
consistent with the assumed general .inflationary process, both
individually (a given firm’s price should ‘increase, on average, at the
rate n) and in the aggregate (an index of many such firms’ prices should
increase at the rate x)? Secondly, what is the cross-sectional price
distribution generated by the individual strategies of many such sellers?

IV.4.1 The steady state distribution of real prices

Consider a sector ‘)obf an economy, consisting of a continuum of
:identical monopolistic sellers of (non—substitutable") storable goods,
‘which engage in optimally randomizea (8,8) real price policies with
respect to some common aggregate price index. P* (for instance the cost of
labor) .28 These firms will be indexed by i€[0,1]. For all te N, define
h(t) = (he(t),..,hg(t)), wherg hx (t) is the proportion of firms in

state k, i.e. with a real price of Px=S(1+x)-k, in period t (h(t) can also
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be interpreted as an unconditional prior on the state of a single firm at
time t). Because firms form a continuum, if hx(t)>0 there is an infinity
of them in state k; by the law of large numbers, the fraction of these who
implement a price adjustment in period t+1 is equal to the probability qx
of such an adjustment for an individual firm among them; the remaining
fraction l-qx let theif real price be eroded to Px+1i. Thus:

: “ho (t+1) = Z-0 qgxhk(t)
(13)

h; (t+1) = (1-gj-1)hj-1(t) (Vje{1,..K)) or:
(14) h(t+l) = h(t)M,
where:
Q0 1-qo 0 . . . . 0] -
k¥N
ax 0 1-qa 0 . . . 0
(15) M = ax O . 0 1-gx O . 0
gg-1 O . . . . . 1-gg-1
10 . C . . 0]

The dynamics of the cross-sectional distribution of real prices are
therefore characterized by a Markov chain with transition matrix M, which
cleé.rly also governs the evolution of any individual firm's real rrice.
Under certain conditions (examined below) the long-run behaviour of the
system (single firm or continuum) can be precisely described bf the
invariant, or stationary, probability distribution of this Markov chain
(cf. Feller [1968]1). By (14), a distribution h is invariant over time if

and only if h=hM, i.e. if it is a left-eigenvector of M with eigenvalue 1.

Proposition IV.3: The Markov; chaiﬁ governed by M has a unique invariant
probability distribution h*= (h§,hf,..,h¥), defined by:

(16) (Vke(0,..,E}): h¥* = (1-qo)...(1-qk-1)/H,

where: H = ZF-0 (1-qo)...(1-qx-1) = E[T] (and q-120).

Proof: cf. Appendix IV.
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This invariant, or steady-state, distribution is uniform (h§=1/H)
over the real prices {Po,..Px} belonging tov the phase of non-stochastic
adjustment (as in Caplin and Spulber [1985]), then decreasing
(approximately geometrically) over the real prices {Pg+1,..Pk} which are
reached through randomized adjustments. The analysis of individual and
aggregate price behaviour will be focused mainly on the long run, by
assmni'ng that real prices or priors aré initially -and remain- distributed
according to h. When price strategieé are non-stochastic (S,s) rules,
this restriction is somewhat arbitrary, because the distribution
h(t)=h(0)M* does not generally converge to h* as t tends to ian;nity, R
since M is then cyclical (of index K+1). In particular, a non—negligible}fk
group of firms starting with the same real price will remain synchronized
forever, generating a component of the cross-sectional distribution which
cycles'through all _sté;ges and causes any aggregate index to be
discontinuous. In the case of effectively randomized (S ,'é_) rules,

on the contrary, firms sort themselves out through different random

drawings, so that:

Theorem IV.4: If firms’ common (S,3) price strategy is randomized,
i.e. if qx<1, the cross-sectional distribution h(t) of their real prices
converges to the invariant distribution h* , for any initial h(0).

Proof: cf. Appendix IV.

Similarly, when gk <1, any unconditional prior over the state of an
individual firm converges to h*. With either interpretation, one is thus
Justified in identifying the long-run with the steady-state distribution.

IV.4.2 Individual price strategies and general inflation

Denoting by E*[+] the expectation operator with respect to the
distribution h*, one can compute the average (unconditional expectation)

inflation rate of an individual firm’s nominal price:
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Proposition IV.5: Let Pi(t) denote firm i’s nominal price at time t.

Then, for all i€[0,1]: E*[Log(Pi (t+1)/Pi (t))] = Log(1l+rn).

Proof: cf. Appendix IV.

As in Caplin and Spulber [1985], who deal with the case of a
deterministic (S,s) policy in a given stochastic inflationary environment,

Ph (t+1)/Ph(t) is therefore a geometric mean-preserving spread of the

aggregate inflation rate. Models of fixed costs of price adjustment thus

seem to possess the general property of being noise-amplifying (and even

here, endogenously noise-generating): the resulting price dynamics are .
mo.re ‘noisy than the inflationary process in response to which they arise .}}'
This feature stands in sharp contrast "to the noise~-dampening
characteristic of models based on misperceptions of nominal and real
signals (& la Lucas) or on any type of convex adjustment costs, where the
only uncertainty in the price system is a fraction of the exogenous noise
injected into the model. The consistency of individual pricing strategies

with the initial assumption of smoothly inflating aggregate prices will

now be established.

Probosition IV.6: If firms’ real prices are distributed according to the

invariant distribution h*, any index of their nominal prices of the form

P(t) = G[ _/(;1 w(Ph (t))di] which is homogeneous of degree one, grows at

the rate =x. If adjustments are randomized (qi.r(l), any such index
converges over time to an exponential trend of rate =, for any initial

distribution of real prices.

Proof: cf. Appendix 1IV.

The indices covered by this proposition include in particular the
arithmetic and geometric averages. The individual randomized (S,3)

price policies of a large number of monopolistic firms thus aggregate
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back to a price index inflating at the same rate x as the one in response
to which they arose, and this result has important macroeconomic .
implications. First, even a constant aggregate rate of inflation can at
the same time generate and "cover up" a large amount of uncertainty and
misallocations at the microeconomic level; thus, potentially large

social costs are incurred even in a smoothly inflating economy, such as

»6ne where the growth rate of the money supply is constant. As was seen in
sections IV.1 to 1IV.3, these include menu costs, storage costs,
distorsions in the timing of production and sales, and price mcerﬁainty.
Secondly, although price—setters keep pace with inflation in a growth rate
sense (increasing their prices, on average and in the aggregate, at the
_same rate as the rest of the economy), inflation alters ‘the relative
prices of a sector where (S,s) or (S,3) rules prevail and the rest of
the economy; indeed, both P*(t) and any appropriate aggregate index of
(S,8) firms’ prices, such as for instance the arithmetic average Pe,
grow at the rate =, bl_Jt the ratio:

a7 e/ = [ B (0di = SEF b (1em)-x)

clearly depends on xn, and is not equal to 1 except by coincidence. This

non-neutrality of the inflation rate with respect to relative prices can

serve as a basis for a model of the Phillips curve (Naish [1985]) or of
search market equilibrium with optimal price dynamics (Bénabou [1986b]).

Finally, it is worth noting that on the transition path to the si:eady
state (following for instance an unanticipated general inflationary
shock), the time varying cross-sectional distribution of real prices will

generate a (dampened) cycle’ in aggregate inventories.

IV.5 A related topic: exchange rates

A country which tries to peg its exchange rate, but has a positive
inflation differential with its trading partners, will have to devalue
repeatedly in order to maintain purchasing power parity or trade balance

in the long run. Since devaluations are costly, politically or because



30

they require international bargaining (as in the case of the European
Monetary System), and cannot _ta.ke place at predictable dates because of
speculation, the situation is very similar to the price adjustment problem
treated here. A variant of the model could therefore be applied to the
game opposing speculators to a central bank which tries to peg the
exchange rate between occasional devaluations, and is able to use partial
capital controls to limit the total amount of speculation (only allowing,
for instance, speculation with trade receipts and payements) as well as
the adjustment of the interest rate. The model predicts in particular
that the central bank will generally inject randomness into its exchange
rate policy; this could explain endogenously the time pattern of interest
~rates which Giavazzi and Pagano [1985] observe within the European
Monetary System and attribute to the realization of exogenous shocks on
certain parameters.
CONCLUSION

The optimal price and storage strategies for a firm selling a storable
good in an inflationary environement and its speculating customers were
derived as the Markov perfect equilibrium of a dynamic game with infinite
horizon. It was shown that the firm generally introduces randomness into
its price dynamics, while customers store in increasing numbers, with
possibly a final generalized "run" on the good. These results establish
that speculation can be destabilizing, even in a context of perfect
infoxmtion, and provide a theoretical foundation for the often-mentioned

claim that inflation causes price uncertainty.
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APPENDIX 1:

Proof of Theorem I:

i,ii) Proved in the text.
iii) The following result will prove useful many times:
(A1) (¥t2t~1) (pt + 1 Spr=6S-a-c<6(S—c)=6po )
Let now t21 such that t)>v, qi-1=0 and q:=1; then q{-1=0 and q{=1 from
| (ii}). Moreover, as qt+1=1 is always feasible, (1) implies:
Vier2pe+ 148 (V-B)+af+1 (1-x) (Pt +1-6po ) . |
Since qi=q{=1, (4) requires: |
(1-x)(po-pt+1)= qf (1-x)(po-pt+1 ) SV-B-Ve+1 =>
(1-x) (Po-pr+1)< (1-8) (V-B)-pre1+qf+1 (1-x) (6po-pe+1) <=>
(1-8) (V-8)2(1-8af+1 ) (1-x)po +(1-(1-x) (1-qf+1 ) )Pt +1 .
Since qi=qg{=1, Vi=(2-x)pt+§(V-B-po (1-x)); since qi-1=g{-1=0, (4)
requires: |
V-3-V: <O(po-pt ) or: (1-8)(V-B)<(2—x)pr -(1-x)8po, =>
(2=x)pe = (1-x)8po 2(1-8qf+1 ) (1-x)po +(1-(1-x) (1-qf+1 ) )pr+1 <=>
(2—x)pe = (1-x)po 2(1-qf+1 ) (1x)8po +(1-(1-x) (1-Qf ¢ 1 ) )Pt +1 >Pr +1
by (Al). Hence: F(t;0,x) = pr~(zpt+1+(1-2z)po) > O,
yhere z=1/(2-x). Equivalently, since px=S6-k-c:
u(n,x) = Logl(1-2/8)/(1-2)1/Log(8) > t.
Therefore, q:=1 and qg-l'?O is impossible for t>max(t,u). q.g.d.
iv) The sign of the derivatives of t are staightforward algebra, and so is
that of ou/dox. As to du/dn=du/00:
8(1-2/8) (Log(6))20u/38 = Log(6)z/6+Logl(1-2)/(1-2/0)1(1~-z/6)
< Log{z6/6+[(1-2) (1-2/0)/(1-2/6)1} = O
because z/0€(0,1/2) and the Log function is concave. As a consequence :

u(e,x) < %imﬁ(p(e,x)) = z/(1-z) = 1/(1-x) qg.e.d.
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APPENDIX II
Notations: from here on, let o(V)=(1-8)(V-B) and &(V)= (1-8)(V-B-(1-xX)po);
the dependance of o and & on V will be omitted when no confusion results. |

Proof of lLemma II.1:

i) Since t+1<t: g{+1=0 and: Vi+12pt+1+6(V-B)+0. Hence:
V-B-Vi+1<(1-8) (V-B)~pt+1=0-Pr+ 1 =pr¥+1-pt +1 <0, so0 q=0 by (4). q.e.d.
ii) Claim 1: (Vte Re) (2T => qi>0). Indeed, let qi=0 for such a t.

X One cannot have qi+1>0, otherwise: |
Vis1=pr+1+8(V-B)+af+1 (1-x) (pr+1-6po) and since it is always the case
that: af+1(pt+1-6po )<0 (the first term is .zero when t<{t and the second
is negative when t2t by (Al)), this would imply: Vi+1Spt+1+8(V-B), hence:
V-B-Vi +120-pt +1 >8-pF+1=0, contradicting (4) with q:=0.

X One cannot have (V¥n€ N, qi+0=0), otherwise:

(Vn)' Vi+n=pt+n+8Visn+1 S0: Vie1= k% OSKpr+1+k<pr+1/(1-8)<V-H
since (1-8)(V-B)=o>&=pF+12pt+1. Thus, again: V-f-Vi+1>0, which
contradicts q:=0. Thus Claim 1 is established.
Claim 2: (Vte Rv) (t>T and qu€(0,1) => qu+1€(0,1)). Indeed, if q:€(0,1)
and git+1=1 for such a t, then:
Vis1=pt+1+8(V-B)+qf+1 (1-x) (pt +1~8po ) , hence:
V-B-Vi+1=0-pt+1-af +1 (1-X) (Pt +1-6po ) >0,
because the first term is positive since t+1>T+1>T*+1, and the second is
non-negative due to (Al). If t<zr, qf{=0, so (4) and the above inequality
imply qt¢=1, a contradiction. If t2t, qt+1=1 implies g{+1=1, hence:
V-B-Vi+1=0-(2-X)pt +1 +(1-x)6po =af (1-x) (po—prt +1 ) S(1-X) (Po~pr+1)
by (4), hence: pi+120-(1-8)(1-x)po=8=pF+1, contradicting t>T. Thus
Claim 2 is established. To prove the first part of (ii) by contradiction,
it is therefore sufficient to show’ that qt€(0,1) is impossible for
t>max{T,t). Indeed, qi€(0,1) would imply: qt+1€(0,1), gf+1=1 and:
V-B-Vi+1 = 0-6po (1-X)=pr+1 (2-X) = &—pr+1+{(1-x)(po-pr+1) > (1-x)(po-pt+1)

so qt=1 by (4), a contradiction. Therefore, for all T, gt =1 is the only
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possible case. We now prove the second part of (ii). For 0<t=T<t, qr+1=1
from what precedes, so: Vi+1<pt+1+8(V-B) hence:
V-B-Vt+120—pu1>§-pn1=0.

If t<t, q¢{=0 so q¢=1 by (4); if t=t, q:<1=@¢ would imply q{=0, hence
at =1, a contradiction. q.e.d.
iii) By (ii), qt+1=1, and by Claim 1 above, q:>0. Thus either q.=1, and
then af=1, or qt€(0,1), so:

V-B-Vi+1=0~(2-%)pt + 1+(1-x)6po= qf (1-x) (po~prt+1).
Therefore qf <1 would imply: #<pi+1, a contradiction. It is thus ‘
necessary that gq{=1, hence by (3): qt2(Pt+a-6Pt+1)/[6(Po-Pt+1)]. q.e.d.

Proof of Lemma II.2:

Since: Vis12pt+148(V-B)+qf+1(1-x)(pr+1-6po), with equality
when qt+1>0, then:

V-B-Vi+1 £ 0-pre1=qf+1(1-X)(pr+1-6po) = (1-x)(po-pe+1)¥e (qf+1)
by definition, hence (i); (ii,iii) result from (i) and (4). = q.e.d.

Proof of Lemma II.3:

i) Continuity is straightforward. For t2t, -(0Gi /6t) has the sign of:

1/6-1/8 a/8S
-1/6 11 =1/6-1/6(1-a/88) > 1/6-1/8>0 q.e.d.

,ii) The proof of monotonicity and continuity proceeds in three steps.
First it is shown by backward induction that:
(A2) (Vte[v-1,T+1)) (& 2 (o-pt)/[(1-8)(1-x)po 1,
with strict inequality on [t-1,T).
Indeed, for te[T,T+1]: Q/=1, and the inequality is equivalent to
P 29=pF+1, so the property is true. Suppose now that it holds for t2t:
(1x)Q¢-1=[(8po~pt ) (1-x)Q¢ +a-pt 1/ (po~pt )
2[ (8po~pt ) (0-pt )/ (po—6po ) +o-pt 1/(po —pr )
=[(o-pt ) (8po—pt +po—6po ) 1/ [ (po-pr ) (Po 810 ) ]
=(c-pt )/ (po-8po ) > (0-pr-1)/ (po-8po ) -
hence the property holds for t-1, and (A2) is established. It implies:



34

(A3)  (¥te[t-1,T]) (& > (o-po)/[(1-8)(1-x)p] = y).

Secondly, the function ¥:(t,y)--> Yt (y) is not only clearly
continuous, but also increasing in both arguments on [t-1,+®)x(y,+®o).
Indeed, it is affine in y. with a positive coefficient by (Al), and
decreasing in pi+1 because the determinant:

-1-(1x)y o+{1-x)y8po
-1 pol = o-po (14(1-x) (1-8)¥)=po (1-x) (1-8) (y-¥) .
is negative for y>y.

Finally, (ii) can now be established by backward induction on
successive intervals Ik = [max(t—l,"i‘-—k),-'l_‘-(k—l)]. On the semi-open
interval [max(tz-1,T-1),T), by definition: @=¥%: (1) which is continuous
and increasing due to the above properties of § (note that y<1). As the
left limit ¥57(1) of & at T is easily seen to equal 1=QF, these two
properties are also true on the closed interval I,. Suppose now that the
proposition holds up to rank k. On Ik+1=[max(t~1,T-k-1),T-k],

A=%: (Q+1); since Q+1 is continuous and increasing on Ik, and
%: continuous and increasing in both arguments (by (A3) Q+1>y), &
also possesses these two properties. q.e.d.

Proof of Theorem II.1:

‘Since @ =1 for t<t, Lemma IT.1.ii,iii and Definition II.2 imply:

(A4)  (¥t20) (If te(T,+o), qe=1; if t=T, qeel@,11).

(A5) (Vt20) (If te(max(<,T),+o) or t=Toz, af=1=).

Thus, there only remains to characterize q« on [0,T) and gf{ on [z,T)
when T>t, on {t} when T<t (by definition, [a,b)=§ if a2b).

Case A: T+l<t

This implies T*<t-1, so T=T* by definition and q:=0 on [0,T*) by Lemma
IT.1.i. Moreover, by (A4), q«=1, so by definition of ©, gt can take any
value in [0,11=[0,Q}]. It remains to examine q. for te[T*,T] N R .

On (max(T*,T-1),T) NR+: qu+1=1 and q¢+1=0 imply Ves+1=pt+1+8(V-B), hence

V-B-Vi+1=0-pt+1>0; thus qu=1 by (4), since gqf=0. Applying this proof to
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successive intervals (max(T*,T-k),max(T*,T-k+1)) n R yields

by induction: (¥te(T*,T) n IR., qt=1). Fiﬁally, when T*=T20: qr¥.1=1,

q#*:1=0 S0 V-B-Vr¥.1=0-pr¥:1=0 and thus qr*€[0,1]=[0,@] is the only

restriction imposed on gr=qr¥ by (3)-(4). This finishes to establish that

(q,9’)€ Qo (V), with T=T*<t-1.

Case B: T+l>t

Note first that: [0,T1=[t,T] U {(z~1,min(z,T)] n Re} U [0,5-1],

and that all the intervals on the right-hand-side are disjoint.,

Depending on whether the function @ has a zero on I=[t-1,T] or not,

(cf. Lemma II.3.ii), two subcases are possible.

Subcase Bl: (Vte[t-1,T)) (€(0,1))

By Definition II.4, T is in this case equal to min(t-1,T*¥).

Claim 1: (A6) (¥te(r,T))(qe=&, qf=a).

The proof is by inductién (assuming (t,T)##). For any t in

I, =(max(t,T-1),T)#0, Q+1=1 by Definition II.3, therefore one must

have qt >0, or else : 0=q¢{2%: (qf+1)=%: (1)=Q{ by Lemma II.2.iii, a

contradiction of hypothesis Blf Similarly, qi <1 or else by the same

lemma: 1=qg{<%: (1)=Q¢+1, another contradiction. Therefore q:€(0,1),

which by Lemma II.2.ii requires: qf=V: (af+1)=Q{€(0,1); this in

‘turn implies qt=Q:, by (3). Suppose it has been established that:
(Vtelx=(max(t,T-k),T)) (q=Q:, af=%: (al+1)=Q¢).

Let te€lkx+1; since qt;xngfl>0, if q@ were zero, Lemma II.2.iii would

imply: 0=qf2¥: (qf+1)=%+ (X +1)=Q, a contradiction; similarly,

if qe=1, then 1=g{<T: (qf+1)=¥: (X+1)=Q¢{, again a

contradiction. So qi€(0,1), which implies q{=Q{€(0,1) by Lemma

I1.2.ii, and thus qi=& by (3); this finishes to establishes (A6).

Claim 2: (A7) (¥te(t-1,min(t,T)] N R, qu=Q=1; qi<Q})

Let t belong to the above interval. If t+12T, qi+1>0 (by (A4);

if t+1<T, qt+1>0 (by (A6). Thus in both cases, by Lemma II.1.ii:

V-B-Vi +1=(po-pt+1) (1-x) Ve (qf +1 ) =(po-pr+1 ) (1-x)Q¥ >0.
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Thus q¢ <1, implying q{=0, would also require qi=1 by (4), a
contradiction. Moreover, from q:=1 and Lemma II.2.iii:
qi<¥<(q%+1)=Q%, i.e. q} can take any value in [0,Q%].
Finally, there only remains to examine q: for t€[0,t-1], in the case t21.
Bl.1 It T*<t-1: By Lemma II.1.i: (Vt<T*, qi=0). Let us now show:
Claim 3: (A8) (Vte(T*,z-1] n R+, qe=1). |
Indeed, for te(max(T*,t-2),T-1] N R+, either t+1>T, so qi+1=1 by (A4), or
t+le(t-1,min(z,T)] N R, so qi+1=1 by (A7). Hence:

| Vi+1=pt+1+8(V-B)+af+1 (1-x) (Pt +1-6po ) <pt +1+8(V-B)
by (Al), because the last term is zero unless £+1=t. Therefore:
V-B-Vi+120-pt+1>0. But q/{=0, so by (4): q=1=x . An induction identical
to that of Case A above completes the proof of (A8). Finally, gr¥.i1=1 and
qf%+1=0 imply: V-B-Vr¥,;=0-pr%:+1=0, so (when T*20) gr¥ can take any
value in [0,11=[0,Qr*]. Thus we have shown: (q,q’)€ 20 (V), with T=T*<¢-1.
Bl.2 If T*=7-120: then q.=0 on [0,T*)=[0,t-1) by Lemma II.l.i. If ©T,
qe=1 by (A4); if ©<T, q:=1 by (A7), hence:
V-B-Ve=(1-x) (8po ~pr) T ¢-1 (q%) =0-pr+(1-x)qt (8po -Pr) = (1-x)qt (6po -pe) -
Therefore, either ¥:-i1(q%)=0, i.e. qt=0, and then (q,q’)e Q0 (V); or
else ¥¢-1(q%)>0, i.e. qi>0, and then qr=q:-1=1 by (4), so
| (9,9’ )€ Q1 (V). In both cases, T=T*=t-1.
B1.3 If T*>t-120: by Lemma II.1.i, =0 on [0,t-1)). Moreover, by (A7):

V-B-Ve=(1-x) (8po —Pr) V-1 (q¥) =0-pe+(1-x)qt (6po -p¢) . ‘

Since qt can take any value in [0,Q%], V-B-V: can take any value
between g-p<0 and (1-x)(po-p:)Qt-1>0 (by hypothesis Bl). Therefore,
by (4), (q,q’) belongs to Qo (V) if Ye-1(q%)=0, to @ (V) if
¥+-1(q%)>0, and to Q2 (V) if ¥¢-1(qt)<0, with T=t-1<T* always.
Subcase B2: ( 3!'te[t-1,T))(Q=0).
This requires: T-1<t<T*. Otherwise, maEmax(T*,t-1) satisfies &po-pw+1>0,
0-pm+120 and Q2<0; but (1-x) (po—Pw)QE=0-Pun+1+(5p0 —Pu+1 ) (1-X)Qd+1 ,

requiring @Qa+1<0. By induction, this implies: Qi+2%50, Qd+350,..
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.., M+ k<0, where kamin{ne Nimn>T}. But Qi+n=1 by definition, hence a
contradiction. Since T*2t-1, Definition II.4 then states that
T=te[t-1,T*}). The function @ is negative on [t—l,I)i and takes values
in (0,1) on (T,T). |
/ a) Let us first examine (T,T). The induction used in Case B.1 to
prove (A6) can be applied to the intervals JxE(mx(t,I,-'I':—k),T) to show:
(A9) (Vte(max(<,T),T)) (qu=Qe; qf=Q¢).
Similarly, one proves, exactly as for (A7):
(A10)  (¥te(T,T] N Re, qe=1=@; qt<Q%).
b) Let us now examine t=T (when T20). If T>t-1, q+1=Qf+1 by (A4),
(A5) and (A9), so: Vr(qf+1)=Q#=0, hence by Lemma II.2.i: V-B-Vr.,<0.
Therefore, q#=0, and by (3): qre[0,Qr]1. If T=t-1, qiRQ% (By (A10))
implies: ¥+¢-1(q%)<Y+:-1(Q%)=Q%t-1=0. Therefore, by Lemma II.2.i:
¥ if q=Q%, i.e. Yv-1(q%)=0, then qre[0,Qr];
¥ if qi<Qt, i.e. V¢-1(q%)<0, then qr=0.
c) Finally, it will be established by induction that qs=0 on [0,T).
For te[T-1,T) NR:, by (A9) and (A10): Qi +1=Qe+1>0 and qgf+1 <X +1 (with
equality except perhaps at t-1). So by Lemma II.2.i:
V-B-Vi+1=(po-pr+1) (1-x)¥e (qf+1 ) S(po-Ppt +1) (1-x)QH <0
Ihence Q=0 by (4). Assume that the proposition holds on [T-k,T) N R:, and
let te[T-k-1,T-k) N R+. Then qt+1=q{+1=0, and by Lemma II.2.i:
V=B-Vi s 1 $(1-x) (Po—Pr+1) % (@ +1)=(1-x) (po~Dr + 1) ¥t (0)=0-pr +1 <0
since t+1<T+1<T*+1. Therefore q:=0, which finishes to prove that,
for all te R.:
¥ If te[0,T), qu=0; if te(T,T), qu=@; if te(T,+»), q=1.
¥ If t=T, qt€[0,Q: ], with the additional restrictions that q:=0 when
t=T=t-1 and ¥:-1(q%)<0, or qi=« when t=T=t-1 and ¥.¢-1(qi)>0;
¥ If t=T, qeel@,1].
¥ If te[0,max(t,T)), qf=0; if te(max(t,T),+®), of=Q¢;

if T<t, qt€[0,Qz]); if T2t, qi=0.
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Equivalently: (q,q’) is in @i (V) if T=t-120 with Y¢-1(q%)>0, in Q2 (V)

if T=t-120 with Y¢-1(q%)<0, and in Qo (V) otherwise. The condition
(a,q’)e @(V) is therefore necessary for (gq,q9’,V) to be a continuation
value equilibrium. Since the requirements of (1), (3) and (4) have been
used and exhausted state by state in this proof, this condition is
sufficient as well (this is also easy to check directly). Finally, the
only cases where T=T* are Cases A, Bl.l1 and Bl.2, where T* <T-1.

Proof of Proposition II.2:

Let O<max(t,u)<K=K[T]; then Qk=1 and PR+1<pf+1=%, s0:

(1-x) (po-pR)X-1 = (6po-pr)(1-x) + o - DR

v

(6po-pr ) (1-x) + pE+1 + (1-8)(1-xX)po - Px

(1-x)po + pR+1 - (2-x)pk = -(2-x)F(K;0,x) 2 0
because K>p (cf. proof of Theorem I.iii). Therefore, T<XK-1 by
Definition II.4, hence the result. q.e.d.

APPENDIX III:

Proof of Lemma III.1:

Define: bP+1Sbi+1, vn, bes1=bier, v, TRET(VR), Ye=, vn,
=% ,v, &¥r=Q!,vn, and &=,v. By Definition II.3, &*®
and & are equal on [max(t-1,T,Tr),+»). Let us compare them on
[t-1,max(F,T))=[v-1,min(T,T)) U [min(T,Tr),max(T,T=))
(when non empty), for n large enough to have JTe-TI<1.
é.) For all t[-c—l,min(?ﬂ,'-f)), by Definition I1.3:
&=Vt (K+1)=...=Veo...0¥tsk(1),
where ke N is defined by T-1st+k<T. Similarly:
Q=92 (X P1)=...=TRo...0o¥+kn(1),
where kre N is defined by: Te-1st+ka<Te. Moreover: :"'I'"ﬂ—-'f:v<1 implies
that |k-kr|<2, so three cases are possible:

1) kozk: Qe -] € arer |QIP1-Q+1 | + IDR+1-Drsenl

IA

An|WP1-Qs+1l + IbRes1-br+r) Sove

IA

(Bn)k* 1 JQ¥P1+k—+1+k] + Z¥=0 (aw)i IDRe1+;-brers;l
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by induction, where ae=(8po-pe)/(po-pe)€(0,1) is the limit, reached from
below, of the function a: (cf. Definition II.2) at t=+o. But since k=k@,
QP1+x=H+1+x=1 so the first term is zero, while for the second: |
IbBs1e;-brarsy 1=2(1-8) IVa-VI/[(1-%) (Po-Pr+1+5 )1 IVE-VI/[(1-X)po ]
for all je N and t>t-1, by (Al). Therefore:
(A11) Qe Q¢| < IVa-Vi/[(1-x)(1-ae)po ]
2) kozk+1: The same formula applies, but now Q{+1+x=1,
XPr+k=YP+1+x(1l), sO:
1991+ x-Qs1+x] = 1(1-8)po—(0(VR)-Praxs2)/(1-x) 1/ (Po-Prexsa)
= 18(Va)-prexs2 /0 (1-X) (po-Prsk+2)] = IDTRe1-Praxs2 1/[(1-X) (Po-Preksz)]
But since kozk+l, Tn<t+k+2<Tr+1, and t+k+22T+1 so:
0<Te +1-(t+k+2) ST -T<1, and:
1Pk Qe1sx] < [pTner—pFea 1/[(1-%) (Po-Ptexez)]

(1-8) IVe-V|/[(1-x) (po-Ppr+x+2)] < IVP-VI/[(1-X)po ],

which leads, with (All), to:
(A12) Q2 -Q¢ | < (141/(1-80)) IVR-VI/[(1-X)po]
3) knzk-1: The induction of case (1) still holds up to rank k-1, so:
1A} < (8e)k |k exl+ Z¥=d (aw)d |DRe;~bre; |
and 1Pk +xl=l1-Feen (1) 1=1pPe1-Preksr §/[(1-X) (Po-Draxer)]
S IPFe1-pines 1/L(17%) (po-prexes)] < IVEVI/[(1-X)po ],
because krzk-1 requires: Tn+1<t+k+1<T+1; so once again (Al12) holds.
b) For all te[min(T®,T,max(T*,T)), either:
(=1, &o=%2(1)), or (=1, Q=% (1)),
according to whether To2T or T2Ts; the proofs of (a), Cases 2 and 3
respectively, can then be replicated to finish establishing that (A12)
holds for all te[z-1,+w). , q.e.d.

Proof of Lemma III.2:

a) Continuity: Note that it suffices to show separately that f(vmn)
converges to f(V) for sequences (Vr) converging to VeI from above and from

below. The following cases must be distinguished.
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Case 1) T<t-1. It must be that T=T*<z-1, so K=K*<Int[zl<z, qi=0 and:

f(V)= £¥-0 6 p; +85+1 (V-B).
1.1) px*>0(V)>pg*+1; for n large enough, px*>c(Ve)>px*.+1 so K® is equal
to K*; hence KnzK, so f(Ve)-f(V)=8k+1(Vr-V) which yields the result.
1.2) pe¥>a(V)=px*:1; equivalently, K¥=T*<t-1. If (V®) converges to V from
above, K¥n=zK*, and one is back in Case 1.1. From here on in the rest of
Case 1 it will therefore be assumed that Va<V for all n, which implies
that K¥n=K*+1 for n large enough.
1.2.1) K*+1<Int[z]; f(Vr)= Z¥t3 & p; +6%+2 (Vr-f) converges,
as n-—>+o, to: TF-o0 & p; +6%+1 [pr¥e1+6(V-B)] .

= Z¥-o & p; +85+1[(1-8)(V-B)+8(V-B)]1= £(V).

1.2.2) K*=Int[t], so K*r=Int[t]+1; since T<z-1, it must be (cf. proof of
Theorem II.1, subcase B2) that: (¥te[t-1,T]: @ >0). Lemma III.1 then
implies that, for large enough n: ((Vte {z-1,T1, &»>0). Therefore,
Tn<t-1, while on the other hand: Vn<V, so T*2>T*=K*=Int[t]>t-1.
Definition II.4 then requires Tr=t-1, Kr=Int[t]}=K*=K, and convergence is
again immediate.
Case 2) t-1<I<Int[t]; This implies that K=Int{tl}>t-1, and therefore:
(Vte [Int[t],T], @®>0). Then by Lemma II1.1, for n large enough:
‘ (¥te [Int[t],T], &»>0), therefore Kn<Int[t]. On the other hand,
T>t-1>Int[t]-1, so for n large enough, Tr>Int{<c]-1, K»>Int[t]-1; hence
Kr=Int{t]=K, and convergence is again immediate.
Case 3) T>Int[t]. This requires: K21 and: ( 3!T, Int[t](I(T)(Qi:O).
3.1) If T¢ N; or equivalently: Qi-1<0, Q¢>0. By Lemma III.1, for n
large enough, Q21<0 and @*>0, hence Ke¢=K and:
f(Vn)= ZF-0 8ip; + 6%(px-6po)(1-x)Q4n+ 8K+1(Ve-f8)
which converges to:

T¥-0 8ip; + 8%(pg—6po) (1-x)Q +8%+1(V-B) = £(V).
3.2) If Te N; equivalently: @=0; if (Vm) converges from above, it is

easy to verify (by induction) that: (Vte [t-1,T), A®»>®); in
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particular: Q® >Q¢=0. Moreover, Lemma III.1 still implies, for n
large enough: Q§?,<0; therefore Kr=K, which brings back to Case 3.1.
From here on, it will be assumed that (¥n, Vo< V), implying that
Qt"<0. But since I_§+1>ti Qt+1>Q¢=0, hence by Lemma III.1, for n
large enough: Q¢?:1>0. Thus K*=K+1, and:
f(Ve) = T¥t} &ip; + 65+1QtP: (1-x)(pr+1-6po) + 6%K+2(Vn-f)
| which converges to:

L¥z0 65p; + 6%*1[pger + Qk+1(1-x)(pPr+e21-6po) + 8(V-B)]

= E¥-0 8ip; + 8%+1[V-B —(1-x)(po-pr+1 )Tk (Qh+1)].

Since Yx (Qd+1)=%=0, this last expression is equal to f(V).
Case 4) T=Int[t]. Equivalently: Qat; r1=0. If V» converges to V from
above, @At v1 >0, so Ke<Int[t]; moreover, T=Int[t]>t-1, which
requires: T*>t-1, hence T*a>t-1, Tr2¢-1, Kr2Int{tr]l. Thus Kr*=Int[t]=K, and
the result is immediate. Now if Ve converges from below, then for n large
enough, Kr=Int{t]+1=K+1, and the proof is the same as in Case 3.2. q.e.d.
b) Fixed point: By (11), for all Verz[(po-68)/(1-8), po/(1-8)1:

(V) < [(1-86%+1)/(1-8)]po + 8%+1V < po/(1-8).
By construction, f(V) is the payoff obtained by the firm in the
continuation value game under its optimal strategy {q: |t€ R:} (given that
‘customers play {gflte R+}). It is therefore at least equal to the payoff
received by adjusting in state 0, given {q’'|te R+} (note that gé=0):

f(V) 2 po+8(V-B) 2 po + 8(po-B)/(1-8) = (po-68)/(1-8).
Thus f is continuous and maps I' into itself, hence the result. q.e.d.

Proof of Theorem III.2: Let there be two equilibria with initial firm

valuations V§ and V§ -in short Vi, V2- with VI > V2, Then

o(V2)>a(V1), &(V2)>8(Vt) hence T(V2)>T(V1), and by a straightforward
induction: (¥Wte [t-1,+®): Q{,v1 2 @, v2), from which follows:

(Vte Re: qgf, vl 2 qf,v2) where aqf,vi, je{1,2}, denotes speculators’
strategy in the equilibrium with firm valuation Vi. This implies in turn:

T1=T(V! )<T(Vo )=T?, and thus K!<K?. In particular:
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(Vk<K': O = gk, vl = q&,v2) and: qf1,v! 2 qg',v2 2 0.
Hence: qi1, vl (8po-px1) 2 qi1, v2 (6po-px1), because Spo-px! 20 unless

Kl <t, but then qi1,v1=0. Therefore, (11) and V1=f(V!) imply:

Vi-B = [ZK-o Skpk + 86X qft,v! (1-x) (px! ~8po) - B1/[1-6K'+1)]

A

[z#lo 8kpx + 6% qft, v2(1-x) (px' -8po) - B1/[1-8¥ +1)]

The last term is the firm’s payoff (minus ) under a strategy of periodic
adjustments in state K! (with probability one), given speoulatorsf
strategy {ql,v2)te R«}. By definition, it is no greater than its payoff
from the optimal strategy given {qf,v2|te IR.}, i.e. the equilibriun
payoff (minus B) V2-B. Hence V1-f < V2-f3, a contradiction. q.e.d.
APPENDIX TV

Proof of Proposition IV.1:

Some preliminary results on the firm’s intertemporal payoff under various
strategies -in the presence and in the absence of speculation- must first
be established. For all keN, let M(k) denote this payoff when speculators
play their equilibrium strategies {q{}te R.} but the firm adjusts its
price periodically (with probability one) when state k is reached:
(A13) M(k) = [Z¥:8 &85 (ps + @l (1-x)(p;s -6ps+1))

+ 8% (pk + ak(1-x)(px-6pe)) - B1/[1-8%+1)]
" Since qf=0 for j<K and Vo=f(Vo), (11) can be rewritten: Vo-B=M(K). Thus
periodic adjustment at K is optimal (given {g{lte R.}). Moreover:
(A14) (Vk<K) (M(k) < M(K), with strict inequality for k<K),
because adjustment in a state k<K is strictly suboptimal (given
{gf 1te R+ }) since: Vo-B-Vi+1<(1-x)(po—px+1)%<0 by Lemma II.2.i and
Definition II.5. Consider now the limiting no-storage case (x=1), with
all variables superscripted by "ns"'. The system (3)-(4) is then identical
to what it would be with x€(0,1) but a26S (i.e. t=+®):
(3%) (¥£20, qf=0).
(4') (¥t20, q1=0, qt=1 or qt€[0,1], according to whether

Vo—-B-Vi+1<0, Vo-B-Vi+1>0 or Vo-B-Vi+1=0).
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Indeed, x=1 or a26S both mean that no one can ever store profitably.
Therefore, when x=1, thg game still has a unique solution, which is the
same as when a26S, and yields an equilibrium payoff V§s to the firm. It
is easily seen, from Definitions II.1 and II.4, that this equilibrium is
alsp the limit of the solutions with a<§S and x tending to 1 from below,
and that: Tws=Tns=Tns, Kns=Kns=Kns, For this equilibrium, (Al4) yields:
- (A15) (Vk<Kes) (Mms (k) < Mms (Kes), with strict inequality for k<Kns),
where Mrs (k) is the firm’s payoff to periodic adjustment in state k, given
thatv customers never store. Note that Mes (k) is given by (A13) with all
(@) )’s replaced by zero; in particular, M(K)<vms (K), with equality if
and only if q¢=0. It will now be shown that:

(A16) K < Kns < K%,

Indeed, if Kes<K: Mns (K2s) = M(Kms) < M(K) < Mns (K), contradicting (A15).

(1-8) (V#=-B) = (1-8)Mns (Kns)

Moreover: prfiS.+;

v

(1-8)Me= (K) 2 (1-6)M(K) = 0 = pr¥e,.

implying Tms <T% , and Kes<K*, Proposition V.1 can now be proven.

(i) When Kns<Int[t], then K<K®»s<Int[t] by (Al16) and two cases arise:

a) K<Int[t]l-1, implying T<t-1, which by definition requires T=T*<t-1.

Hence K=K*=Kns, by (Al6).

E) K=Int[t]<t; since K»s<Int[t], (A16) then requires K=Kns,hence:
prnsey = (1-§)Mrs (Kns) = (1-5)Mes (K) = (1-8)M(K) = 0 = pr¥ss,

because K<t implies q¢=0. Thus: Trs=T*%, Kt=zKns:zK, q.e.d.

(ii) When Krs>Int[t], assume that K<Int[t]; as in (a) above, this implies

K=K*; but (A16) then requires K>K»s>Int[t], a contradiction. q.e.d.

(iii) Results directly from Proposition II.2, since K2K#2Kns. q.e.d.

Proof of Proposition IV.2:

Define for all ke N: Yx=px+qf (1-x)[px-6(qpo+(1-gx )px+1)]. Since the
price is adjusted with probability qx in state k, and qx=1, (1) yields:

[SE-0 6%(1-Qo)...(l-gk-1)Yx -B]
(A17) Vo- =

[1-6ZF-0 6%(1-go)...(1-qx-1)qx]
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where g-1=0 by convention. Similarly, defining Wo (resp. W¢) as the
average expected present value of speculators’ (resp. non-speculators’)
utility in state zero (with no initial stocks) and, for all ke N:

Zx = S-Putqr {~a-Px+6[qxPo+(1-gx )Px+1 1}, one can compute:

[ZE-0 6%(1-qo)... (1-Qi-1)Zx ]

(A18) Wo

[1-6ZF-0 8%(1-Qo)...(l-qk-1)ak]

[2B-0 6%(1-Qo)...(1-Qk-1)(S~Px)]

(A19) Wé -
[1-6ZK-0 8%(1-go)...(1-gk-1)qk]

Total intertemporal social welfare (net of the first adjustment cost)
is SWo =xWé +(1-x)Wo + Vo-B, or:

[ZE-0 6%(1-Go)...(l-qk-1)(X(S~Px)+(1-x)Zx+Yx)) - B8]
SWe =

[1-6ZF-0 8%(1-Qo)...(1-gk-1)ax]
But,‘for all ke N: x(S-Pk)+(1-x)Zg+Yx=S-c-(1-x)qg (a+c(1-8)), and:
(1-86)ZF-0 85(1-go)...{(1-Qk-1)

1+2E-y 6%(1-go)...(1-gk-1)- ZE-0 8k+1(1-go)...(1-Qx~1)(1-gx+qx)

1-62-0 6%(1-qo).. «(1-gk-1)gk, so that:

S-c  [B+(1-x)(a+c(1-8))Zk-0 6(1-go)...(l-qx-1)qg)
(A20) SWp = — - -
1-8 [1-6 ZK-0 6%(1-go)...(1-gk-1)qk]

which, given that qx=0 for k<K, completes the proof. q.e.d.

Proof of Proposition IV.3:

The resolution of the equation h*M=h* is straightforward. Normalizing the
coordinates to sum to one requires: H = If-o (1-go ) .. (1-gr-1).

This expression can be factored, starting from the last terms, yielding:
H=zF-0 (1-qo)...(1-qu-1)ax (k+1) = E[T]. q.e.d.

Proof of Theorem IV.4

Claim 1: All eigenvalues of M have modulus no greater than 1.

Indeed, for any complex matrix A=(s;;)1%,;< (cf. Varga [1965], p.17):
vl < max{ Z¥-1 laisl, 1<jN) |

where v is any eigenvalue of A. Since the second term is equal to 1 for

A=M (with N=K+1), and ht M=h*, M has radius of convergence equal to one.
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Claim 2: M is non-cyclic, or primitive (i.e. it has only one eigenvalue
equal to its radius of convergence) if and only if gg<1.
The proof rests on the following theorem (cf. Varga [1965], p.44):

Theorem (Frobenius): An irreducible square matrix A with non-negative

coefficients is cyclic of index n(A) (i.e. has n(A) eigenvalues with
modulus equal to its radius of convergence), where n(A) is the greatest
common: denominator of the differences in successive degrees appearing with
non-zero coefficients in its characteristic polynomial.

The matrix M has non-negative elements.. By definition (Varga [1965],
p.ZO) it is irreducible if and only if it has a strongly connected
graph,i.e: for any pair (i,j)e{l,..,K+1}2 there exists a sequence
(io=i,i1),(i1,i2),+«.,(in,in+1=j) such that the corresponding coefficients
of M are non-zero (this will be denoted as i~j). By definition of K, for
any i<K, mii+1=1-qi -1>0 , therefore i~j for any (i,j) with J >i.

Moreover, mg+1,1=1, so i~1 for all i; but 1~j for all j>1, hence the
result. Let us now compute from (15) the characteristic polynomial of M:
G(X) = -XE+1 + XKqo + XE-1(1-qo)qu +...
+..0+ X(1-go ) .. (1-GR-2 )g&-1 +(1-Go)..(1-Q&k-1)
Moreover, since qx=0 when k<K, qk€(0,1) if I_(Sk(ﬁ, and gg=1:
G(X)= -XK+1 + qgXK-E
+ (l—qg)[XE"‘lqg_u + XK-K-2 (1-qg+1)QEez+...
+eoet (1-gx+1)(1-gg+2)..(1-gK-1)]
If 0<qg<1, G(X) has non-zero coefficients on K-K and K-K-1, so n(M)=1 by
Frobenius’ Theorem; if qg=1 (K=K), then n(M):f(-l-l, hence Claim (b).

To conclude the proof of the theorem, let ax#1, and éonsider the
hyperplane L={ze RE*1|L§t} zx=0}. For any probability
distribution h, h-h*eL. Moreover, [h-->hM] maps L into itself, therefore:

(Vvhe RK+1) ( JueL) (¥ne N) (|h.Mr-h*| = ju.Me| < Bajul)
where B is the radius of convergence of M’s restriction to L. But, since

h*¢L, Claims 1 and 2 imply: |B| < 1, hence the result. q.e.d.
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Proof of Proposition IV.5:

With probability h{, the firm is in state k; Log(Ph) then increases by
zero with probabilityvl—qk and by Log[(14n)k+1] with probability qx; thus:b
E* [Log(Ph (t+1)/Ph (t))] / Log(l+n) = {ZK-0 hkax(k+l)}
- (ZE-x (1-a0)..(l-gx-1)ax(k+1))/H = E(TI/H = 1. q.e.d.

Proof of Proposition IV.6:

By homogeneity:

- 1 ] 1 .

B(t) = P*(t)GI j; w(Ph (£)/P ()] = P*(O)GL [ w(Be))di,

, 1 :

and by assumption P* grows at the rate n. Moreover: j; w(Pi¢)1di is
the expectation of the random variable w(z) with repect to the image
measure by [i—->Pi+] of the Lebesgue measure on {0,1], i.e. with respect
to the probability distribution h*. This index of real prices is thus

independant of t, hence the result. q.e.d.
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NOTES
(1) Goods which are not storable but for which intertemporal substitution
of consumption is possible will give rise to similar behaviour.
(2) Unlike durable goods, which are not themselves consumed but yield a
flow of services over time, storable goods disappear after consumption.
(3) Indexed contracts may arise when the firm sells to a few large
cusﬁomers, but are too costly to draw and enforce with many small buyers.
(4) Buyers have instantaneous utility U(z,y) = y + S-min(z,1), where z is
consumption of the firm's good and y real income spent on others; their
real income in each period is I 2 S. Their instantaneous indirect utility
function (in the absence of storage) is thus W(P,I) = I + max(S-P, 0).
(5) As will be made clear below, whether inventories are consumed before
or after new purchases are méde is in fact irrelevant.
(6) One could also interﬁret X as a flow of transient customers, renewed
every period, or as the fraction of customers which the firm succeds in
rationing when they try to store.
(7) Because individual buyers are negligible, it makes in fact no
difference at all whether the firm has observed previous storage when it
sets the new price (alternating moves) or not (simultaneous moves).
(8) Formally, a state variable z is payoff relevant for player j, whose
decision variable and instantaneous payoff are y; and GJ (y;,y-3:2z), if for
some couple of distinct values (yij,yzs), the function:
[z --> Gd(y1y,¥-4:2) - GI(y23,¥-35:2z)] is not constant. In the
. differentiable case, this takes the form: 0%GJ/dy;oz # 0.
(9) A Hirkov perfect equilibrium is still perfect when arbitrary history-
dependent strategies are allowed; it is simply one where all players
disregard payoff irrelevant variables (cf. Maskin and Tirole, [1982]).
(10) In a context of perfect information, and no multiple Nash

equilibria.
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(11) This remark draws on Gul, Sonnnenschein and Wilson [1986]. Perfect
equilibrium strategies for speculators: [P --»> ¢gi{**(P)] and the firm:
[(P,q') —-> P**(P,q')] must be mutual best responses in any subgame, and
in particular in those which do not result from simultaneous deviations by
buyers. Conversely, consider strategies [P --)> q{*(P)] and

{P -->P*(P)] which are mutual best responses in any such subgame; extend
them to subgames which follow a simultaneous deviation, i.e. where
initial aggregegate inventories q' differ from their prescribed value
q'*(P) =‘/1 qi* (P)di, by prescribing equilibrium behaviour in the
subgame. (;he resulting strategies form a (Markov) perfect equilibrium
with the same equilibrium path as the original strategies. 1In the present
‘model, equilibrium strategies in any subgame following a simultaneous
deviation (i.e. with arbitrary inherited inventories q') are easily
obtained by replacing qf by q' in equation (4) below, while keeping
everything else (in particular the value function [t -->Vi]) unchanged.

(12) Attention could even be restricted to tc N, but it is more convenient
to keep tc R+ and use functions instead of sequences in the proofs and on
the graphs. Also, the game is thus solved for any initial price p < S.

(13) Since the firm plays at discrete intervals of time, it will in fact
adjust the price when the state K[T* (V)]=minfkeNIk2T* (V)] is reached.

(14) Throughout the paper, [a,b)=(a,b)=¢ for .all (a,b) with a>b.

(15) While this result may not remain when customers are suffici?ntly
heterogeneous (with for instance a continuous distribution of storage
costs) it is an important warning against the fallacious intuition that
the price increase should always grow more and more likely.

(16) The condition is allmost necessary as well: when 1t SK[T] <y,

0 ¢ T-T < 1, but [T,T) may still happen to contain an integer.

(17) For all Vel; for values V¢TI, cf. Bénabou [1986a].

(18) With a more general (elastic) demand, the optimal pblicy would

involve randomization over the upper bound as well ((§,8) policy).
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(19) The full equilibrium of the game can indeed take any of the four
basic forms identified here f&r continuation value equilibria, depending
on parameter values: cf. Table 1 in Section IV and footnote (25) below.

(20) This condition holds generically and avoids the possible multiplicity
of solutions which may arise if state T can be reached along the
equilibrium path (in this state, speculators faced with a sure price
increase are indifferent between storing and not storing).

(21) In fact, generically unique: it was assumed that v¢ IN and p¢ N..

(22) cf. footnote (16).

(23) The usual (S,s) model generates relative price variability but not
uncertainty. Moreover, with constant returns to scale, only uncertainty
‘induces misallocations, and empirical studies and discussions of the costs
of inflation indeed interpret variability as evidence of uncertainty.

(24) Even if exogenous uncertainty is generated by parameters such as 7 or
B, the firm must still "process"™ it so as to leave speculafors indifferent
(25) Note also that for 7<5%, the equilibrium is of type 1 (pure
strategies, no storage), because K=Krs<Int[r]; for 7=7%, it is of type 2.1
(mixed strategies, deterministic outcome without storage), because K=
Int{r]<Kes=K; in all other cases it is of type 2.3 (stochastic outcome).
Type 2.2 (deterministic outcome, full storage) occurs only for high values
of x; for instance, x=.95 with 7=30% yields Int[r]=4, K=Kns=K=11.

(26) Or intertemporal substitution of consumption; cf. footnote (1).

(27) When firms are competing, the adjustment level (here S) becomes an
endogenous function of the distribution of prices; cf. Bénabou [1986b].

(28) This index may include the firms' own prices, but gﬁgg also include
some outside good(s), if the model is to be consistent in level as well as

in growth rate (cf., for instance, equation (16)).
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