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Cet article caractérise les mécanismes incitatifs optimaux dans un modéle
simple de type principal-agent ot sélection adverse et hasard moral inter-
viennent simultanément. Dans un cas simple, on montre que la solution op-
timale peut &tre obtenue en utilisant des schémas incitatifs ou la rétri-
bution de 1'agent dépend linéairement du résultat observé. La solution
optimale est également caractérisée dans le cas général et on démontre
que celle-ci peut étre approximée aussi précisément que 1'on veut par

des schémas incitatifs quadratiques. Enfin, le modéle est appliqué a
différents problémes d'incitations : politique de régulation d'entreprises,
dont les colts de production sant observables, contrats de services ban-
caires, planification décentralisée par objectifs.

Mots clefs : Incitations, sélection adverse, hasard moral.

ON THE DESIGN OF INCENTIVE SCHEMES UNDER MORAL HAZARD AND ADVERSE SELECTION

ABSTRACT

This paper aims at characterizing optimal incentive mechanisms in a simple
principal-agent model with both adverse selection and moral hazard.¥hen a
monotonic hazard rate property is satisfied it is shown that an optimal
solution is using incentive schemes where the agent's reward depends Tine-
arly on observed outcome. The optimal solution is also characterized in the
general case and we show that this solution can be approximated as closed
as desirable by means of quadratic incentive schemes. Lastly, the model is
5pp1ied to a.riumber of incentives problems including the regulatory policy
for firms under bost_observgbi]ity, optimal investment banking contracts

or decentralized planning with production targets.

Nomenclature JEL : 020



I. INTRODUCTION.

Moral hazard and adverse selection are both fundamental features of
principal-agent relationships, Moral hazard results from the inability of the
principal to monitor agent's actions while adverse selection corresponds to

the inability of observing agent's private information.

Many principal-agent problems involve simultaneously moral hazard and
adverse selection. For instance in the owner-manager relationship, the owner
may be unable to observe the effort level of the manager and, simultaneously, some
profitability parameters may be private knowledge to the manager. Likewise, an
insurer may be unable to identify high risk individuals and low risk indivi-
duals and he will not observe the level of care taken by the insured individuals...

Although considerable attention has been paid to understanding the
principal-agent problem under either moral hazard or adverse selection, few
researches have focused on the interactions between these two sources of
inefficiency in ressource allocation. Worthy exceptions include the income tax
model of Mirlees (1971), the literature on the new soviet incentive scheme
(Weitzman, 1976) and more recent papers by Baron and Holmstrom (1980), Baron
(1982), MeTumad and Reiéhe]stein-(1984, 1985) and Laffont and Tirole (1985).

In particular, Laffont and Tirole (1985) haQe ana]ysed the design of
an optimal regu]atory,p61icy for private or public firms when a coSt parameter
is private knowledge to the fifﬁ and an unobservable effort variable is
introduced. Under suitable assumptions (and, in particular, assuming risk-
neutrality and, a well behaved distribution function for the cost parameter)
they show that <inducing truthful revelation of the firm's private information
prevents the attainment of a full optimﬂm. They also characterize an optimal
incentive scheme which is Tlinear in ex-post cost.

This papervaims at extending these results.

First, an optimal incentive scheme is characterized»in the framework

of a principal-agent model where moral hazard and adverse selection are
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combined in a simple way. For a given cost report from the agent to the prin-
cipal, this incentive scheme defines the agent's reward as a function of
observed outcome. As in the Laffont-Tirole's paper, there exists an optimal
linear incentive scheme when the distribution function of the cost parameter
satisfies amonotonic hazard rate property. However, the iodel highlights
also possibie discontinuities of coefficients of this linear scheme because
of an eventual non convexity of the principal's objective function.

Secondly, the optimal agent's decision is characterized for any distri-
bution function of the cost parameter. It is shown that this optimal solution
does not depend on random disturbances and can be approximated as closed as
desirable by using incentive schemes which are quadratic in expost outcome.
Both linear and quadratic incentive schemes include a fixed transfer (which is
higher for Tow cost agents then for high cost agents) and a bonus which depend
(1inearly or non linearly) on the difference between expected and observed
outcomes.

Lastly, a number of simple extensions of the basic model are proposed,
including the control of regulated firms, the design of investment banking
contracts and decentra]ized planning with production targets.

The paper is organized as follows. Section 2 presents a principal-agent
model which may be formally viewed as a simplified version of the Laffont—
Tirole (1985) model. The principal's optimization problem is developped in
section 3. Section 4 solves for the optimal Tinear incentive scheme and the
general case is developped in section 5. Extensions of the model are presented

~in section 6 and some concluding comments are given in the final section.



II. THE BASiC FRAMEWORK

We consider a simple principal-agent model which can be described as
fo]]ows. The agent's decision is a level of effort. Effort issupposed to be
an unobservable variable which cannot be contracted upon. Effort creates a
direct disutility for the agent and, simultaneously with a random state of
nature, determines a monetary outcome.. It will be assumed that the distribution
of the outcome . depends also on a cost parameter which is unknown to the prin-
cipal but perfectly known to the agent. The principal can neither monitor the
agent's level of effort nor observe the cost parameter so that both moral
hazard and adverse selection are simultaneously considered in this paper.

A simple application of this model is to the case of the relationship
between the owner and the manager of a firm. The owner is the principal and
the manager the agent and the owner delegates the running of the firm to the
manager. The intrinsic profitability of the firm is not perfectly known to the
owner and is characterized by the cost parameter. For a given state of nature,
profits depend simultaneously on the manager's level of effort and on the cost
parameter.

Formally, let x € R, a € RY and e €n = [60,61] denote respectively
the monetary outcome of the principal-agent reTationship, the agent's level

of effort and the cost parameter. We will assume that the outcome writes as |
xX=a-86+c¢e (1)

where ¢ 1s a random variable with zero mean and a compact support
Q=[- ao,el] with €9 >0, € > 0 . Let 02 be the variance of ¢ and
g{e) be a density function for € .

The principal's utility is x - t(6,x) where t(5§x) :AXxR>RU {-=}

denotes the agent's compensation.(l)

o~

(1) In what follows we restrict ourselves to incentive schemes t(6,x)
which are continuously differentiable almost everywhere over the set
{(8,x) € A x R such that t(8,X) # -} .
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This compensation depends on the outcome x and on a cost report ]
from the agent to the principal, which may differ from the true cost parameter © .
Implicitly t(8,x) = - means that an agent whose cost report is % precommits
to yield an outcome different from x .

The principal and the agent are both supposed to be risk neutral. When
the incentive scheme t(§,x) is used, the principal's expected utility Wt
writes as

Qt(e,ﬁla) =a-6- JQ t(®,a-06+¢)g(e) de (2)

The agent's utility is written as t(8,x) - y(a) where y(a) denotes
the disutility of effort. Function y 1is defined over R" and is twice

continuously differentiable and satisfies
p'(a) >0 if a>0
p'(0) =0
y"(a) > 0 for all a

-

The agent's expected utility 0. writes as

t
Gt(e,%‘,a) = f t(®,a - 6 +¢) g(e) de - y(a) (3)
Q
and we have(l)
ﬁt(e,'é',a) =a-6-yp(a) - @t(e,ﬁ,a) (4)

When reporting his cost parameter and choosing his level of effort the
agent behaves strategically. However, further developments are highly simpli-
fied by the Revelation Principle which allows to restrict the design of

incentive schemes to mecanisms where truthtelling belongs to the set of optimal

(1) If t(§,a-6+¢€)=-= forsome e in Q we have Wt(e,ﬁ,a) = + o and
ﬁt(e,ﬁ,a) -« . Furthermore, under previous assumptions, functions Qt(e,ﬁ,a)
and Gt(e,e,a) are differentiable over the set {(8,8,a) € A x A x R® such
that t(§,a - 06+ ¢) # - forall e in Q}

YAl
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strategies of the agent. To define completely feasible decentralisation proces-
ses an individual rationality constraint has also to be introduced to be sure
that the agent is willing to participate. These conditions will be summed up

in a definition : we will say that an incentive scheme t(6,x) implements an
effort function a(p) if two conditions are satisfied : first, the agent is
wi]]iﬁg to tell the truth when reporting his cost parameter and he finds opti-
mal to choose a(6) if his parameter equals 6 . Secondly, the agent's expec-
ted utility is nonnegative so that he is willing to participate. Formally, we

have the following definition

DEFINITION. The incentive scheme t(6,x) : A x R+ R implements the effort
function a(e) : A= R_ if for all 6 in A

(i) (9.a(8)) € Arg Max {J t(8,3a - 6 + €) g(e) d e - Y(A)}
a€ R+ Q

Ben

(1) | #0.2(0) =8 4 ) 5(e) g ¢ - v{ale)) z 0

From (i), the agent is willing to report truthfully his cost parameter 6
and he picks the level of effort a(6) when his cost parameter equals © .

From (ii) his expected utility is non negative.

In what follows we will say that an effort function a(6) and an incen-
tive scheme t(6,x) define tbgether a mecanism. Let ua,t(e) - respect. wa,t(e) -
denote the agent's - respect. the principal's - expected utility for the meca-
nism {a(.),t(.)} when t(.) implements a(.) and the cost parameter equals 6 .

We have

uy t(e)

)

14(0,0,2(0)) = [ £(6:(6) = 8.+ €) 9(e) d e - u(a(e))  (5)

and

a(e) - o - JQ t(6,a(8) - 6 +€) g(e) d ¢

a(6) - 6 - y(a(8)) - u, ,(6) (6)

W, (8) = W (68,6,a(8))

s



Conditions (i) and (ii) can then be rewritten as

~,

(i) (8,a(8)) € Arg Max u,(6,8,3)
FER
Ben

(11) u, 4(6) 20

Lastly it will be assumed that the principal has a subjective prior proba-
bility distribution for the unknown parameter 6 . We let f(6) and F(6) be
repectively the density function and the cumulative distribution function for 6

with f(8) >0 for all & in A . The principal's expected welfare W 1is thus

written
W= f Wa,t(e) f(6) do (7)
A
We are now in position to characterize the principal's problem and to derive his

optimal strategy.

IIT. THE PRINCIPAL'S OPTIMIZATION PROBLEM.

Two preliminary Temma will be useful to define the principal's optimization
problem. First, lemma 1 shows that a simple relation lies the effort function

a(.) and the agent's expected utility function Uy t(.) when t(.) implements

a(.) -

LEMMA 1. For any mecanism f{a(.),t(.)} which satisfies

(i) (0,a(0)) € Arg Max {u,(0,8,2) ,2€Rr, ,B€n}

t
(2i7) t(B,a(8) - 6 +€) # = for all € in R

we have
e1

ua,t(G) =ua’t(61) +Je V'@ (s)) ds forall 6 in A (8)

Proof. Assume that (i) and (iii) are satisfied. From (iii), ﬁt(e,ﬁ;a) is dif-

ferentiable at ¥ =6 and 3 = a(e) for all o and (i) implies



du,
T2 (6,0,a(6)) =0 for all o (9)
U,
— (6,6,a(6)) = 0 for all o (10)
20
From (3) we have
au du
-—é-E (G,G,a) = - '5‘5‘2 (esesa) = qﬂ(a)
and thus from (9)
Ay
55 (6,0,a(0)) = - p'(a(e)) for all 6 (11)

Differentiating u

2,t0) = at(e,e,a(e)) and using (9),(10) and (11) give

du
dea’t(e) = - y'(a(e))

which implies (8).
g.e.d.

The next lemma will characterize the principal's expected welfare.

LEMMA 2. If t(.) implements a(.) , the principal's expected welfare writes

as
W= J (a(B) - 8 = P(a(0)) - z(0) Y'(a(®))) f(6) db - u(el) (12)
A :
. _F(8)
with 2(0) = ?757

Proof. From (6),(7) and (8) we have
%1
W= IA (a(8) - 6 - p(a(e))) f(6) db - J (J P'(a(s) ds) f(e) de - u(el) (13)
A
and (12) is obtained by integrating by parts the second integral in (13).
qg.e.d.

The principal's problem is to choose a mecanism {a(.),t(.)} such that

t(.) implements a(.) so as to maximize the expected welfare W . Using



lemma 2, this problem writes as

Maximize J (a(8) - 6 - v(a(8)) - z(8) v'(a(e))) f(6) do - u. .(6;)
a(.)st(.) ‘A :

subject to

(i) {6,a(8)}€ Arg Max ﬁt(e,ﬁ;g) for all 6 in A .
a€Rt
Bea

(i) Uy t(e) 20 forall 6 in A

From lemma 1, u, ,(8) 1S nonincreasing if (i) and (iii) are satisfied.
As (ii) implies (iii), conditions (i) - (ii) are equivalent to (i) - (iii)
and ua,t(el) 20.

Furthermore, one easily checks that uy t(el) = 0 for the optimal

mecanism(l) so that the principal's problem can be written as

Maximize J (a(6) - & - p(a(e)) - z(8) v'(a(s))) f(e) do
a(.),t(.) ‘A _

subject to

(i) {6,a(8)} € Arg Max ﬁt(e,g;g) for all 6 in A
~_
aeR
Ben

(11') u, (8]) = 0

(iii) t(6,0 + a(8) + €) # -~ forall e in @ , for all © in A .

In what follows we will say that a mecanism {a(.),t(.)} is efficient
if conditions (i),(ii') and (iii) are satisfied, that is
- the incentive scheme t(.) implements the effort function a(.)

- the agent's expected utility equals zero when the cost parameter is at the

~ (1) Consider a mecanism {a(.),t;(.)} which satisfies (i),(iii) and wu, . (6,) > 0.
Let t2(.) be defined as tz(e,x) = tl(e,x) " Uyt (61) for all o . The

mecanism {a(.),tz(.)} satisfies (i),(iii) and 1 ua,tz(e
a higher welfare level then {a(.),tl(.)} to the principal.

1) > 0 and provides



highest level elA.

From previous developments, the optimal mecanism {a*(.),t*(.)} necessar-
1y belongs to the set of efficient mecanisms. Clearly “"efficiency" is restricted
here to a class of incentive compatible mecanisms and no ambiguity should arise
from this terminology : if the cost parameter were common knowledge, such
"efficient mecanisms" would be dominated by other decision rules.

Usually if {a(.),tl(.)} is an efficient mecanism, there exists another
incentive scheme tz(.) such that '{a(.),tz(.)} is also efficient and both
mecanisms provide the same expected utility to the principal. However, of
particular interest is the case of incentive scheme which are linear in X

and this case is considered in the following section.

IV. OPTIMALITY OF LINEAR INCENTIVE SCHEMES.

£fficient mecanisms with linear incentive scheme will be characterized in
a first proposition. In a second proposition, we will show that using linear
incentive schemes is indeed an optimal strategy when function z(6) 1is non

decreasing.

PROPOSITION 1. Let t(0,xz) = K(8)x + G(0) . The mecanism {a(.),t(.)} 1is

efficient if and only if
(a) al(9) is noninereasing for all 8

(b) K(8) = y'(a(b)) 6
1

w(a(el)) - K(Gl) (a(el) - 61) + J K'(s)(al(s) - s) ds
0

(e¢) G(8)

1

Proof. Since t(6,x) = K(8) x + G(&) , we have

K(B) @ - 0) + G6(B) - y(a) (14)

uy ¢(e) = K(6) (a(e) - 8) + G(s) - w(a(6)) (15)

<D
-
el
-
a4
~—
il

1/ Assume first that {a(.),t(.)} is efficient. Conditions (i),(ii') and (iii)
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are thus satisfied. (i) implies
ut(e,e,a(e)) < ua,t(e) for all 6 and B

which gives using (14) and (15)

uy () - ua,t(ﬁ) 2K(B) (§-0) forall 6 and © (16)
and symmetrically
ua’t('é') - u, 4(6) 2 K(e) (6 - B) for all & and § (17)

(16) and (17) imply together
K(e) (6 - B) < ua’t(ﬁ) - “a,t(e) < K(B) (8 - B)

which proves that K(8) 1is nonincreasing and ué’t(e) = - K(6) . Since

ué’t(e) = - y'(a(6)) from lemma 1, conditions (a) and (b) are satisfied.
Lastly, differentiating (15) and using lemma 1 give (c).

2/ Conversely, assume that conditions (a),(b) and (c) are fulfilled. Let

us prove (i),(ii') and (iii).

Function a(6) 1s nonincreasing and thus differentiable almost every-

where. Differentiating (15) and using (b) and (c) yield
ué’t(e) = - K(6) a.e. (18)
Moreover, using (b) and y" > 0 gives
(6,8,3) for all 2,6,6
and thus from (14)

~ e

u, (8 ,8,3)

~

(®) + (¥ - 8) K(B) for all 3,50 (19)

A

YaLt

Using (18) and (19), we deduce

ut(e,3;3) < ua,t(e) - [ K(s) ds + (8 - 8) K(B)
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and thus

o

-

8
0y (0,8,3) s u, (0) - Je (K(s) - K(B)) ds for all 6,8,3 (20)

- if B 20, (a) and (b) imply K(s) zK(p) for all s in [6,6] and thus
from (20) Gt(e,ﬁﬁa) < ua,t(e)

- if 8 < 6 , we have from (20)

-~

6
3,(0.5,3) su, ,(6) + J@ (K(s)K(B)) o5 5 uy 4(6)

which proves (i).
Furthermore, (ii') results from (c) and (15). Lastly K(6) and G(6) are

finite for all 6 and (iii) is satisfied.

q.e.d.
Proposition 1 yields a simple characterization of efficient mecanisms
with linear incentive schemes : for such mecanisms,' a(8) is nonincreasing.
Furthermore, there exists a single linear incentive scheme associated to a
given nonincreasing effort function and this incentive scheme is defined by
conditions(b) and (c).
We will show now that using a linear incentive scheme is indeed optimal

- when function 2z(6) 1is nondecreasing.

PROPOSITION 2. When 2(8) <is nondecreasing for all © , an optimal mecanism

* *
{a (.),t ()} <s defined as

a (6) € Arg Maz {a - W(a) - 2(8) V' ()} for all 6 (21)
<z€ﬁ#
%* * L
£ (0,2) = K (8)x + G () | (22)
with
* Rk
K (8) =y'(a (6)) (23)
8

* * * * Y -y *
G (0) = Y(la (61)) - K (61)(a (61) - 61) + J K (s)(a (s) —s8) ds (24)
6
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Proof. An optimal mecanism maximizes the principal's expected welfare i

over the set of efficient mecanisms. For any efficient mecanism we have

W= JA (a(e) - 6 - w(a(e)) - z(e) v'(a(8))) f(e) do (25)

let {a*(.),t'(.)} be defined by conditions (21) to (24). Function a (.)
maximizes the integral (25) so that proposition 2 will be proved if {a*(,),t*(.)}
is efficient and thus (using proposition 1) if a*(e) is nonincreasing. Let

us show that a*(e) is actually a nonincreaéing function if z(6) 1is non-
decreasing.

let 6 €A, di=1=1,2. We have from (21)

201y - w(a¥(61)) - 26y vr(at(eh) = a%(e) - wialed)) - z(6T) wi(aT(e%)) (26)

[\

and

*

a*(6%) - p(a®(8h)) - z(e%) v'(a’(e7) (27)

v

a*(09) - y(a* (%)) - 2(e%) v (@"(e))

(26) and (27) imply together

IA

2(6%) 1 (a¥(69))= v(at(61))1 < a*(8%) - a(67) - y(a"(67) + v(a®(0")

1y roratre) o
2(0') [y'(a (7)) - v'(a(6")] (28)

A

Since y" is positive and z(®) is nondecreaéing; (28) gives
* J * i h] i j i
a (6¥) >a (6') =>1z(8") <z(6)=>06" <86

which implies that function a*(e) is nonincreasing.
q.e.d.
Proposition 2 characterizes the optimal solution of the principal's
problem when function z(8) is nonincreasing over A . This assumption is
satisfied for a nﬁmber of usual probability distributions (for example the
uniform or the exponential law). Let us proceed to a brief analysis of this

optimal solution.
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*
From (21), the optimal effort function a (8) satisfies the first order
optimality condition |

1 - p'(a(8)) - z(8) ¥"(a (8)) 5 O
(29)
=0 if a(8) >0

and (29) implies
* .
y'(a (0)) <1 if 0> 8,

At any level of the cost parameter except the lowest, the marginal disu-
tility of effort is inferior to the expected marginal return of effort (which is
equal to 1). Equivalently, the optimal Tevel of effort a*(e) inferior to
the full information solution w'-l(l) .

We also have from condition (b)

6 s K'(8) = y'(a(8)) <1 of 8> 8,

The agent receives a part of the outcome K*(e) and a fixed fee G*(e).
* ’ *
As a (8) s nonincreasing, K (8) is nondncreasing : the higher is the
cost parameter, the lower is the proportion. which goes to the agent.

Straightforward calculations show also that t* can be rewritten as
]

) \ 1,
£ (0,x) = v'(a%(8)) (x - x5(8)) + W(a (8)) + je v(a*(s)) (30)

where xe(e) = a*(e) - 8 is the optimal expected outcome : the agent's compen-
sation includes a fixed fee which decreases with the cost parameter and a varia-
ble transfer which is a parentage of the difference betWeen realized and
expected outcomes.

This optimal incentive scheme can be compared to the solution that would
prevail if the cost parameter were common knowledge . In this case, an optimal

solution is to use a linear incentive scheme t(g,x) = x + w(wl'l(l)) - ¢"1(1)+(L

When facing this incentive scheme, the agent finds optimal to choose the efficient
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level of effort w'_l(l) and the individual rationality constraint is binding

for all 6 .
For illustrative purpose consider the following example. Assume
2
y(a) = %T" Assume also that © ds uniformly distributed over A = [0,1] so

2
that 2(8) = 6 . We get a (6) =1 -6 , t(8,x) = (1-8) x + L5— while
the full information solution is a(8) =1 and £(6,x) = x + 6 - %—.

Let us come back to the general result of proposition 2. From (21), the

*
optimal effort function a (8) is deduced from

a*(e) € Arg Max we(a)
a€eRt

with o (&) = a - y(a) - z(6) v'(a) .
It is worthwhile to notice that function ©g(a) may not be concave and
the first order optimality condition (29) is not sufficient to characterize the
*

optimal effort function a*(e) . Function a (6) may be discontinuous and the
following example will i%}ustrate this eventuality.

Assume ¢(6) = % a® and, as in the previous example A = [0,1] and
z(8) =6 . We have

3
p,(a) = a - Z-a -6a
8 3

™|
o} =

The graph of Vg is drawn on figure 1, by distinguishing the cases

5 and §-< 6 <1

6§9<§ 3

AXCY

FIGURE 1 0 A,
— (LVE '

Ofwn
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Function we(a) is negative over RY when %-< 8 £1 while it can be

strictly positive if 0 £8 < é—. We get

8
2 (0) = % — 8
_a*(e) =0 if 8 2 %

* *
so that function a (6) - and consequently K*(e) and G (8) - are discontinuous

_5
at 6 = g

Proposition 2 has shown that a linear incentive scheme is optimal if
z(6) s non increasing for all 6 . We now turn to the more general case where
this assumption is not necessarily satisfied. In such a case, using a non linear

incentive scheme may be an optimal strategy for the principal.

V. OPTIMALITY OF NON LINEAR INCENTIVE SCHEMES.

Considering the general case where function 2z(8) -may be increasing,
proposition 3 will provide a simple characterization of efficient mecanisms.

To simplify matters, attention will be Timited to continuous effort functions.

PROPOSITION 8. For any continuous effort function a(.) , there exists an

incentive scheme t(0,x) such that {a(.),t(.)} is efficient if and

only if the function 6 > a(B) - 6 <s nonincreasing.

Proof.
1/ Assume first that {a(.),t(.)} 1is an efficient mecanism. Conditions (i),

(ii') and (iii) are thus satisfied. From (i) we have

-~

u (0,8,3) < uy (8) for all 6,0,a

and in particular

u, .(8) 2 Gt(e,ﬁﬁa(ﬁj -8+ 0) (31)

a,t(
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0y (6,5,2(8) - T+ 0) = u, () + 9(a(®) - ¥(a(B) - T+ 0)
(31) gives

uy ¢(8) = uy 1(8) 29(a(®) - w(a(B) - T+ 0) | (32)
and symmetrically

Up,t(8) - Uy ¢(8) 2 ¥(a(8)) - w(a(e) - &+ %) (33)
Let

n(8,8) = v(a(e) - 0 + ) - w(a(e) - w(a(®) + ¥(a(®) - § + o)

From (32) and (33), we have

n(e,8) 2 0 forall 6 and B in A (34)
We also have
n(6,6) =0

N (6,8) = p'(a(e) - & + ) - v'(a(F)) a' () +y'(a(®) - T+ 0)(a'(®) - 1)

96

at any point where function a(8) is defferentiable. We thus have
52} (6,6) =0 a.e.
06

For (34) to be realized, a necessary local second order conditions must hold and

this condition writes as

2
30 (6,6) = 2 v"(a(e)) (1-a'(8)2 0 aee.
96
which gives 1 - a'(6)2 0 . Since a(0) is supposed to be continuous, function

a(e) - 6 isnonincreasing.
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2/ Let us assume now that function 6 -+ a(e) - & is nonincreasing.

Consider the following incentive scheme.

s(6) if x €a(6) -6 +Q
t(0,x) =

- «» otherwise

we will show that function s(6) can be chosen so as to satisfy (i), (ii')
and (iii).

Let a(6,0) denote the level of effort chosen by the agent when his

cost report is © and the true cost parameter is 6 , i.e.
a(6,8) € Arg Max ut(e;g;i) (35)
aeR

If «(6,0) were different from a(®) - 3 + 6 , we would have
a(6,8) -0 +¢e g a(® —~F+q forsome e in Q and thus ut(e,ﬁ,a(6;§)) = -,

But we have

.

u (8,8,2(8) - ¥+ 0) = u,(8,8,2(8)) - v(a(®) - T+ 0) + w(a(®) > - =

which contradicts (35). We thus have

[[]
[«}]
X
[ ]
™
+
<D

a(6,8) (36)

Let U(8,8) =

]
=
[«7)
>
—~—
=
c'.
P}
D
.
a?
-
24
g
-
[«1]
w
o
)

1l

s(B) - v(a(®) - T + 08)

Ut(e,ﬁ) js the agent's optimal expected utility when the cost parameter © and

the cost report is ® . Let us derive a function s(8) such that

6 € Arg Max U

r 8,8) for all & in A (37)
6EA

£
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which will imply (i).
We have at any point of differentiability

Uy . - o~ o
r (6,8) =s'(®) - v'(a(®) -6+ 8)(a'(®) - 1) (38)

and a first order condition for (37) to be realized writes as

s'(6) - v'(a(8)) (a'(e) - 1) =0 a.e

which gives
6

1
(6) = - [ ¥ (@) () -1 65 v sy

we then have

BUt

—
~

96

(8,8) = (v'(a(®) - v'(a(®) - T+e)) ('@ -1) (39)

Since function a(8) - 6 s nonincreasing, (39) gives

au
6 if —= (6,8) 20 (40)
36

VA

]

Since a(®) is continuous, (40) implies (37). Condition (i) is thus satisfied.

Furthermore, we have
u ¢(07) = s(og) - ¥(a(8y))
and (ii') is satisfied if S(el) = w(a(el)) . Lastly we have

t(6,6 + a(8) + e) = s(e) for all e in @ and (iii) is a1§o satisfied.
q.e.d.
Proposition 3 deserves a number of comments. Let us observe first that
the characterization of effort functions which correspond to efficient mecanist
is quite independent of the distribution of the random disturbance € . In
particular, this characterization includes the case of no uncertainty, that

is ¢ = 0 with probability 1. So, proposition 3 shows that the principal can
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obtain the same welfare level when the relation between the level of effort
and the outcome is stochastic and when it is noise]ess(l).

In the noiseless model we have a = x + 0 if the agent reports truth-
fully his cost parameter 6 observing the outcome x 1is equivallent to
observing directly the level of effort a . The problem is then reduced to a
pure adverse selection problem where inefficiency results only from the
inability of the principal to observe the cost parameter. Consersely, when
there is a random disturbance, different levels of effort correspond to the
same outcome and observing the outcome provides an imperfect information about the
agent's level of effort. However, proposition 3 shows that the same welfare

level is obtained in both cases.

Secondly, a step of the proof of proposition 3 is using the following

incentive scheme :
s(6) if x ea(8) - 6+ 4
t(0,x) =
- » otherwise

6
1
with s(8) = - {e p'(a(s))(a'(s) - 1) ds + w(a(el))

At(8.x)

S(8) |- onoeenn

v
*

)-9*&1

-—---®or--- -+

|

(1) This neutrality of the introduction of noise has been demonstrated in a
different framework by Melumad and Reichelstein (1984). Laffont and Tirole (1985)
argue that this property holds in their model for a well-behaved distribution
function (z(8) non decreasing). More generally proposition 3 shows that the
neutrality of noise holds for any distribution function of the unknown parameter.
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In the noiseless-model, this incentive scheme coincides with the "knife-edge"
transfer schedule introduced by Laffont and Tirole (1985). If a random distur-
bance € is introduced, using the previous incentive scheme requires a precise
knowledge of the distribution of € . The problem is highly simplified here by
assuming that the support of € is compact. Nevertheless, the principal is
supposed to know exactly parameters €0 and € which define the support

Q= [so,e1] . If the principal makes a small error when estimating parameters
€5 and € > the incentive scheme is no more efficient. This unpleasant proper-
ty justifies seeking for an incentive scheme which requires less information
about the distribution pf the random disturbance. In this respect, Proposition 4
will show that any efficient mecanism can be approximated as closed as desirable
by using a quadratic incentive schemes the coefficients of which.depend only

on 02 and © .

PROPOSITION 4. If {a(.),t(.)} <s efficient and a(.) 1is continous, for all

n > 0 there exists an efficient mecanism {a(.),t(.)} such that
(a) l|a(8) - a(8)] £ n forall 6 in A (41)

(8) E(,x) =§’ ((z - 7200)% = ) + 9'(a0))(x - T2(0))
e‘l

L

+ Y(a(b)) + J Y'(als)) ds (42)
8

where T (6) = a(8) - 8 denotes the expected outcome . Furthermore 'pdrameter

H 1is nompositive and depends only on function a(.) and parameter n .

The proof of proposition 4 is rather tedious.and is therefore developped
in appendix. ‘
Observe that t(g,x) may be interpreted as a bonus-penalty system including
a fixed transfer (which is higher for low cost agents than for high cost agents)
and a bonus (or a penalty) which depends non linearly on the difference between

observed and expected outcomes.
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. Function t(6,x) coincides with the optimal Tinear incentive
scheme of the previous section if H can be chosen equal to zero, which is the
case when a(6) is .nonincreasing. In the general case, we have
%g (6,x%(6)) = v'(a(®) : when the realized outcome equals the expected one,

the quadratic incentive scheme T and the linear 1néentiVe scheme developped

in proposition 1 coincide and their slope equals the marginal disutility of
effort. When x is greater (respect. lower) than x%(8) » the marginal reward
ot . -

= (6, x) s lower (respect. greater) than ¥'(a(6)) and may even be negative

for large values of X . We also have by total differentiation
F(0,3%0) = v'(a(6)) @(0) - 1) 5 0

When the cost report increases, the quadratic incentive scheme

decreases or remains unchanged, at Teast at x ='Ye(ef : induc{nd truthful
revelation requires using an incentive scheme which is less favorable to high-

cost agents than to low-cost agents.

Lastly it is worth observing that the quadratic incentive scheme t is much

more robust to errors on the distribution of € than the discontinuous function
of proposition 3. Assuming that an upper bound 6 for o is known to the princi-
pal and o taking the place of o in T , the resulting incentive scheme still
implements a(.) and the involuntary increase in the agent's expected reward

. H -2 2
is -5 (0" -0 ) .

Using previous resu}ts, the princﬁpa]'s probTem writes a§.(1)

Maximize) [ (a(8) - 6 - w(a(6)) - z(8) w'(a(v))) f(8) do
A

a(.),t(.
subject to : a(®)

® s nonincreasing for all ©

a(e)

v

6 for all- ©

(1) In what follows the optimal effort function is supposed to be continuous.
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This problem is formally similar to a number of usual problem in the theory of
incentives. In paréicular, it belongs to the class of principal-agent problems
studied by Guesnerie and Laffont (1984) and the optimal effort function can be
explicitly obtained by means of the algorithm developped by these authors : the
function a(®) - 6 is locally constant over a finite number of intervalls
where "bunching" occurs and it is strictly increasing for other values of © .
From a different standpoint, we will show that using a method similar to

Baron-Myerson's (1982) provides the optimal solution, at least when function

y(a) is quaaratic. Let
() =z (F1(8)] + F ()]
for any ¢ between O and 1 . Let ’

¢
MW)=hm@)d$

and let M(¢) be the convex hull of M, that is M(¢) is the highest convex

function on [0,11 such that M(¢) s M(¢) for all ¢ in [0,1] . Let

m(¢) = M (o)
(1)

‘extending m by right continuity when M' is not defined .
Finally let
Z(8) =m[F(6) - ©

we then have the following lemma.

LEMMA 3. There exists a continuous function T(8) : A~ R such that T(6) 20

for all © , 2(0) +6 s locally constant whenever T(8) >0 and

! a(8) 2(8) £(6) do =[ a(8) 5(8) £(6) dO -f T(6) d(a(8) - 8)
A A A

+j 0(z(6) - =(0)) de (44)
A

(1) Observe that M is convex and thus differentiable almost every where.



- 23 -

for any function a(®) such that a(8) - 6 <s non increasing. Furthermo-
re, () + 0 is a non decreasing function of © , and if =2(8) + 8 is

a non decreasing function of O then 2(0) = z2(8) for all 8 .

Proof. The function T(8) in the lemma is T(8) = M(F(e)) - M(F(8)) and

the proof is quite similar to the proof ofBaron-Myerson's lemma 3 (1982).

Using lemma 3, we are now in position to derive the optimal solution of

the principal's problem in a simple case.

2
PROPOSITION 5. If WY(a) =-5%—, k >0 and =z(8) §-% for all © , the optimal
effort function is
% 1=k (O
a (8) =-Z~—7-<—7-<-ﬂ—)- for all 8

Proof. From lemma 3, the principal's expected welfare writes as

say2 .
W= IA (a(8) - 6 -k aée) - k z(e) a(e)) f(e) de
e[ re) dtate) - 0) - k [ otzo) - 7o) ae (45)
A A
maximizes the first integral in (45) and a*(e) is non-
negative since z(6) é-% . Furthermore, since z(0) + 6 is nondecreaging,
a*(e) - 9 4s nonincreasing. From lemma 3, I'(6) is nonnegative~ so that the second
integral in (45) is nonpositive for any function a(8) such that a(e) - o
is nonincreasing.. Since z(8) + 6 is locally constant whenever T(®) >0,

we have
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f r(8) d(a(6) - 8) = - [ r(8) d(z(e) +6) = 0
A A

*
Since the third integral in (45) does not depend on a(8) , functions a (6)
maximizes W over the set of nonnegative function a(®) such that a(6) - 6

is nonincreasing.

To illustrate proposition 5 assume k =1, A = [0,1] and f(8) =

06 <-% , o) = %- if -% £0<1.Wehave z(6) =g if 0<6 <.% and

1 1

z(8) = 6 - 3 if 5s6<1. Computations give

M(6) = Min {26° , E%E +.%} for all ¢ in [0,1]
and

M(6) = 2¢° if 0 s ¢g§t%£:§

o) = 33 o -2 3302 4p 303 (4103

'M(¢)=3%2-+% if 1+8‘/—5<¢§1

we obtain

Z(8) =6 and a () =1-¢ if 0§e§—3-:|'-2—\/——?3

]

z(6) 3%\/—3--6 and a*(6)=35\/§+e if it‘lgé <5+\/§

*

(8) =6 - + and a (8) =

-3 -eif§+‘/§ge§1

N|
n

wi
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VI. EXTENSIONS.

Assume now that the agent's decision process includes picking a level of
effort and also choosing the value of an observable variable y . This variable
wii] be relevant of a number of applications.

When reporting a cost parameter 8, the agent commits to take decision
y(@).(1) The agent's utility does not depend on y and writes still as
t(F,x) - o(a) with x=a -6 +¢ .

The principal's utility is supposed to write as

Aly) + uly)x = t(8,x)

(1) Implicitly, t(8,x) = - for all x if y # y(8) .
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and functions A(y) and p(y) satisfy A"(y) <0, u"(y) < 0 . A mecanism

will describe the observable decision y(8) , the level of effort a(6) and

the agent's reward t(6,x) . A mecanism {y(.),a(.),t(.)} 1issaid to be efficient
if {a(.),t(.)} satisfies (i),(ii') and (iii).

The principal's expected welfare writes as
W= J (A(y(8)) + u(y(e))(a(e) - 8) - yla(e)) - z(e) v'(a(e))) f(s) do (46)
A

Ignoring implementability constraints and maximizing W gives the following

* *
necessary conditions at an interior optimum y (6),a (6) (1) :
* * *
A(y ) +u'(y ) (a -86) =0 (47)
* * *
uly ) -y'(a) - z(8) v"(a) =0 : (48)
and a Tocal second order condition implies that the determinant of

A(y) +u(y )" - o) u'(y")

>
I

* . * *
u'y) - ¥"(a) - z(8) ¥"'(a ) ¢
is non negative. :
Differentiating (47) and (48) gives
* * * * * ] * 2
da _z'(8) v"(a )(\"(y ) + (a - 6) u'(y ) -u'(y)
dé det (A)

*
and a sufficient condition for a to be non increasing is z'(e)g-o(z) . Then

* * *
{a ,t } satisfies (i), (ii') and (iii) 4if t dis a linear incentive scheme

(1) As in the basic model of previous sections, the integrand in (46) is not

concave so that first order conditions are not sufficient to define an opti-
* *

mum Yy , a

(2) We assume a*(e) -9>0 forall 8 in A .
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defined as in prcposition 2 by conditions (22),(23),(24) or (30). We thus

have proved :

PROPOSITION 6. If =2(8) s non decreasing, an optimal mecanism

W 0. ), ()Y eatisfies conditions (22),(23),(24) ~(30),(47),(48)

and (49).

This extension of our basic model is relevant of various applications and
examples are sketched in what follows. Function z(8) is supposed to be non
decreasing so that proposition 6 holds. If this assumption were not satisfied,

using a technique similar to section 5's would provide the optimal mecanism.

In particular, using a quadratic incentive scheme would allow to approximate

the optimal mecanism as closed as desirable.

a/ Reqgulating firms under cost observability.

Requlation procedures for firms when the planner can observe cost but
cannot monitor effort have been studied by Laffont and Tirole (1985) and
fundamental results of these authors can be obtained as consequences of
proposition 6.

Assume that the agent is the manager of a regulated firm which produces
a public good q at cost C=-xgq= (6 - a-€)g . We have here y =q .
The level of effort a decreases the initial marginal cost 6 - € . The
principal is a public regulator who observes and reimburses the cost C and
pays in addition a net monetary transfert t . The public good provides a
“consumer surplus S$(g) (S' > 0,S" < 0) and the principal's welfare is
S(q) - (t +C) = S(q) + xq - t . We thus have A(q) = S(q) and u(q) = q .

Conditions (47),(48) and (30) become respectively

St q) =6 -a ‘ (47%)

*

q = w'(a*) + z(8) w“(a*) (48")

0
* ' 1 * * * 1 *
t¥(0,0) = ¥@ (®)) (c*(g) - ) + w(a (8)) [ 0 (a7 (s)) ds (30)

q (6) 6
* * * * *
where C (8) = (8 - a (8) q (8) is the expected production cost. (q ,a)
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can be compared to the solution (g,a) which would prevail if the cost para-

meter 6 were common knowledge, i.e.

which implies q*(e) < g(e) 2nd a*(e) < a(e) for all o6 (except eo) .
(48') implies 0 < _ﬂﬂéi_) <1 and from (30') a variable fraction of

realized cost is reimburseg to the firm.(1)

The analysis applies if the product is sold on a market at a price P(q) .

The consumer's gain is the consumer's surplus minus the firm's subsidy, i.e.
9
[ P(q) dg + x q - t
0

q ~ Card
and in this case we have X(qg) = J P(Q) d9 and wu(q) = q . (47) now become
0

so that marginal cost pricing is optimal but costs are calculated for a
suboptimal Tevel of effort.

b/ Investment banking contracts for new issues.

Another application of the model is to the case of the relationship
between an investment banker and an issues of new securities as studied by
Baron (1982) and Baron and Holmstrom (198¢). This problem is rather specific
but may be viewed as an example of producer-retailer contracts.

When placing a new security issue the banker obtains private information
about the capital market through preselling activities. Furthermore, the
banker's distribution effort may, in some extend, generate demand for the

issue. As underlined by Baron and Holmstrom, in such a framework, "the task

(1) Under suitable assumptions on function ¢, it could be shown that the fract
: *
C ]
of reimbursed costs - which is equal to 1 - EL§3~) - decreases with the cost

q
parameter (see Laffont-Tirole (1985) for details).
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of the issuer is to design a contract that both induces the banker to use
(his) informatioﬁ to the issuer's advantage and provides a disincentive for
the banker to price the issue too low in order to reduce the effort required
to sell the issue".

Consider a as the banker's level of distribution effort and © as a para-
meter negatively: correlated with the demand for the issue. Assume that the
proceeds from the sale of the issue depend simultaneously on the offer price =

and on the stochastic parameter x = a - 6 + ¢ . Proceeds R will be written as
R=km+ x y(m) y's 0

Proceeds may be linear for offer prices such that the issue is oversubscri-
bed. They will be increasing and then decreasing for higher offer prices.
Furthermore, the higher is the parameter x , the higher is the offer price T

which maximizes proceeds and the higher are corresponding proceeds.(l)

'R

FIGURE 4

> W

o

We have here y = m and Am) =k , wm) = y(w) . Conditions (47), (48) and
(30) become respectively

k = (6 - a*) y'(n*) v (47")

Y(r') = v'(a") + 2(8) v"(a") e (48")
Vgt * 1 *

£*(0,R) =U-i—(—§l)—(k - R"(8)) + w(a'(6)) + [e y'(a(s)) ds (30")

(1) Baron (1982) studies a similar model but does not derive the optimal incentive
scheme.
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while the first best solution (T3) satisfies

k= (6-3) v'(7)

y(m) = y'(3)
which implies E*(e) < w(6) and a*(e) <7a(8) for all & (except 6) :
becquée of the asymmetric information, the issuer lowers the offer price and
the banker lowers the level of effort. Furthermore, the banker receives a
fixed payment and a part of the proceeds from the sale of the issue. When 6
converges to 60 , the incentive scheme converges to a commitment contract
in which the issuer receives a fixed payment independent of realized proceeds.

¢/ Two-level planning witn production targets.

Another example combining adverse selection and moral hazard is described
in the litterature on incentives in central planned economy (see Weitzman (1976)
on the new Soviet Incentive Scheme).

Assume that the principal is a central planner who'a110cates a scarce
ressource (say labour) to decentralized firms. For any firm, using £ units of
labour provides a net output Y = x h(2) with h' >0 , h" < 0 . Assume that
f(8) reflects the objective distribution of the cost parameter over the set

of decentralized firms. A feasibility constraint is

[ 2(0) f(8) do <L (50)
A

where L 1is the available labour force. The planner's objective is to maximize
the agregate output net of transfers to firms. Under incomplete information

this problem writes as

Maximize [A ((a(8) - 8) h(%(8)) - w(a(6)) - z(6) v'(a(8))) f(6) do

subject to the feasibility constraint (50). Introducing a Kuhn-Tucker multiplier
optimality conditions are given by (47)-(48) with y =2 , A(%) =- 8 % and

u(2) = h(2) . An optimal interior mecanism satisfies
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(a -8)h'(2) =8 (47"")
h(e") = ¥ (a") + 2(0) ¥'(a) (a8"")
* 6,
t(0,¥) = LLOU (v - ¥¥(0)) + w(a" (o) +J b (a'(s)) ds (30")
h(% (8)) 6
where Y*(e) = (a*(e) - 9) h(R*(e)) is a production target which depends on the
cost report © .

Since a*(e) is nonincreasing, (47"') show that 2*(9) and thus Y*(e)

are both nonincreasing functions of 6 . 61
* *

From (30"'), firms receive a fixed transfer y(a ) - [ y'(a ) ds which
is higher for low cost firms than for high cost firms. They 2150 receive a bonus
or pay a penalty which is proportionnal to the difference between realized and
targeted output 1eve]s.(1)

To evaluate the consequences of incomplete information on the allocation
of labour, consider the following example. Assume that 6 is uniformly distri-

buted on A = [-2,-1] (2) » P(a) = %T and h(L) = 21/2 :

-~

The full information optimal solution i(e),a(e) is given by

-1 2
Maximi ze f ((a - 0) 212 - 3y o
-2
subject to
-1
J % do <L
-2
which yields £(6) = 3 ¢ and a(8) = - e/§7£

Under asymmetric information, the principal's problem writes as

-1 2
Maximize J ((a - 9) 21/2 - %T" (6 + 1)a) do

2

(1) One easily cheks that a sufficient condition for the proportionality coeffi-

. ]
cient w—£§~l to be a nonincreasing function of 6 is that function ¢ is
h(2")
quadratic.
(2) Observe that A« R™ gives a(e) - 6 > 0 for any positive effort function

so that the expected output (a(6) - @) h(2) is positive for all 2 .
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subject to
-1
[ % do s L
-2
and we obtain £ (8) = 35 (20 + 1)2 and a'(8) = -(206 + 1)/ 3 - (6 + 1)

‘In this simple case, the labour allocation of low cost firms is larger
under asymmetric information than under complete information and the reverse
is true for high cost firms. Moreover, under incomplete information, low cost
firms yield a higher level of effort than under full information while the

contrary holds for high cost firms.

FIGURE 5




- 33 -

VII. CONCLUSION.

The purpose of this paper has been to state propérties of a principal-
agent model combining moral hazard and adverse selection. The optimal design
of incentive schemes as well as a number of applications of the model have
been presented.

However, the framework in which these results are derived neglects
important issues which would require further research. In particular, it would
be important to relax the risk-neutrality assumption (for instance to study the
interaction between moral hazard and risk aversion in the design of insurance
contracts). Likewise, the separability assumption for the expected outcome

a - 6 makes the model tractable but is quite restrictive.
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APPENDIX : Proof of proposition 4.

Assume that {a(.),t(.)} is efficient and a(.) 1is continuous. From
proposition 3 we have a'(6) <1 for all 6 .Llet n>0 and

_ n e - 60 .
6) = a(e) - & -
3(0) = a(0) - } (g~ 1

n
2(8 —90)
der the following quadratic incentive scheme (where H doés not depend on 6) :

Condition (o) is satisfied and we have a'(e) - 1 <- for all 8. Consi- .

T(6,x) = % x2 4+ K(8) x + G(6)
we have
u,-c-(e,'é',a) = JQ t(%,a -0 +¢€)g(e) de - p(a) (A-1)
-8 (a- 0% + k()@ - 0) + G(E) - w(a) (A-2)

We will show that the coefficient H and functions K(®) and G(6) can be

chosen so as to satisfy conditions (i),(ii') and (iii), i.e.

(i) uf(e,e,i(e)) 2 uf(e,ﬁﬂi) for all 3 in R _,for all 6 and % in A
(11') uz(6;,0,:3(8;)) = 0

(iii) t(e,a(8)~@ +¢) # -~ forall ¢ in o, forall o in 4.

Let a(e,E) denote the optimal level of effort when the cost report in g and

the true cost parameter is 6 . Function o 1is defined by

a(8,8) € Arg Max {ut(6,§;5)) (A-3)
FeR’

For all 6 1in A assume

K(8) = v'(a(e)) - H(a(e) - o) ~ (A-4)

x
IA
o
—
T
(8]
~—
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(A-4) and (A-5) yield together a sufficient condition for
a{6,8) = a(e) for all 6 (A-6)

Uéing (A-4) and (A-5), condition (i) will be fulfilled if truthtelling is an
optimal strategy for the agent.
Let

Uz(8.8) = Max {ug(e.8,8) , Fe R'}

it

uz(6 ,0,0(0,08)

Uf(e;ﬁ) is the optimal expected utility of the agent when his cost parameter
ijs 6 and he reports B . We will derive sufficient conditions for truthtelling

to be an optimal agent's strategy, that is

6 € Arg Max UE(e;E) for all o | (A-7)
Ben
From (A-2) and the "enveloppe theorem", we have
Uz

—L (6,%) = K'(B) (a(6,8) - 0) + G'(3) (A-8)
96

Using (A-6) and (A-8), a first order condition for (A-7) writes as
K'(6) (a(e) - 8) + G'(8) =0 , (A-9)

or equivalently for a continuous function G(6) :
%)

6(6) = 6(8,) +J K'(s) (3(s) - s) ds (A-10)
0

From now we assume that H,K(®8) and G(8) satisfy (A-4), (A-5) and (A-10)
and we will derive a local second order condition for (A-7) .
At points of differentiability of function o we have
§_2_l£_ — w' (X 90 ~ 0y ~ W
(6,8) = K'(§) == (8,8) + K"(B) (a(0,8) - 8) + G"(B) (A-11)

~2 ~J
N a0
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From the maximum theorem, if functions K(8) and G(6) are continuous,
function a(6,6) is also continuous. As a(p) is positive, a(6) 1is strictly
positive and (A-6) implies tnat a(6,8) is strictly positive if ® dis not too

different from 6 . From (A-2) and (A-3) we have then
H(a(6,8) - 8) + K(B) - v'(a(8,8)) =0 v (A-12)
and from (A-6) we have

(6,8) = Ewigié%ngT if T=0 (A-13)

Furthermore, differentiating (A-9) gives

3
d

&8

K"(8) (a(e) - 8) + G"(8) = -K'(6) (a'(e) - 1) (A-14)

and (A-6),(A-11),(A-13) and (A-14) simultaneously give

2
] Uf

—= (8,8) = K'(8) [ﬂpqg%é§§frﬁ ~a'(0) + 1] if T=o6 (A-15)
3%

Differentiating (A-4) we have
K'(8) = y"(3(8)) a'(6) - H(a'(8) - 1) (A-16)

(A-15) and (A-16) give

TVE o) - VUEE)N((2(0)) A (0) “HEO) =1 45 F .
v"(3(8)) - H

and the local second order condition

2
) Ut

332

<0 if § =086

(6,0)

is satisfied if

o0
IA
]

v"(3(e)) 3'(8) (A-17)
1-3'(8)

Since a'(®0)

IA

-1 : . e .
1 ?TET:§67 for all 6 , (A-17) will be satisfied if
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(2(61'60)’n)p
Ho<- — (A-18)

with p = Max {9"(3(6)), 6 € A} .

We will show now that (A-18) is sufficient for (A-7) to be satisfied. Since

UE(G,ﬁ) is continuous, if (A-7) were not satisfied there would exist 8 such
' Uz Uz
that either § > 6 and -;?-(9,3) >0 or <6 and ﬁ;i-(e,ﬁ) <0 . In the
29 a6

first case, we would have > 6 and
oy At Wz
1t (6,3) < —L (8,8) = —= (8.8) = 0 (A-19)
296 °L:) 58

But (A-8) and (A-9) imply

aU—
— L 6,8 = K'(B) (a(6,8) -0 +% -3D))
20
BUE
which implies that —= (6, ®) s a continuous function of 6 with

2 30

) U— Yo
——= = K(8) (55,8 - 1) (A-20)
3626 ' )

If o(6,8) is locally strictly positive, we have from (A-12)

2 (0,8) = H (A-21)
26 H=-¢"(a(6,6))
which gives using (A-17), (A-20) and (A-21) (1)
03 =k (F) O
3890 H-y"(a(8,8))
If o(0,8) is locally equal to zero, we have
32U'
TE 8,8) = - K'(8) >0
2606
BUE ~ .
Hence, — (6,8) 1is an increasing function of 6 which contradicts (A-19)
30
and 9> 0.

The proof is symmetrical when ¥ <o .

(1) observe that (A-16) and (%-17) imply together K'(6) <0 for all 6 .
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So, we have proved that (A-4),(A-5),(A-10) and (A-18) yield together a

sufficient condition for condition (i) to be fulfilled.

(ii) will be satisfied if

B (o2 + (3(0y) - 0)%) + K(8 ) (E(8;) - 0p) + G(8;) = vl(a(®y)) (A-22)

which gives G(el) . Lastly, condition (iii) is obviously satisfied.

To sum up, sufficient conditions for the mecanism {a(.),t(.)} to be

efficient are

(2(61760)-n)}

H £ Min {0, - - o

K(8) = v'(3(0)) - H(a(e) - o)
%

G(8) = G(el) + I K'(s) (als) - s) ds
)

H,2 /= 2 = -
6(8y) = - 5 (07 + (A(87) - 87)%) - K(81)(3(61) - 07) +¥(3(6y))
Straighforward computations show that t can be rewrittén as

To.x) = 3 ((x - 32007 - o) + ¥ (3(0)) (x - x¥(0))
%
v [ D) & @)
e

with X°(8) = a(e) - 6.

(A-5),(A-18)

(A-4)

(A-10)

(A-22)
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