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ALLOCATION DES RISQUES AGREGES ET INDIVIDUELS
A TRAVERS LES MARCHES FINANCIERS

RESUME

Nous présentons un modéle canonique d'économie d'échange compor-
tant des risques agrégés et individuels. On montre que 1'économie a tou-
Jjours un équilibre de marchés contingents dans lequel les prix dépendent
seulement des risques agrégés (que nous appelons équilibre de base).

On introduit ensuite 1a notion de structure d'information & laquelle on
associe un nombre qui exprime la quantité maximum d'information révélée

a chaque période (nombre d'embranchements). Si ce nombre correspond a la
structure d'information associée aux risques agrégés est supérieur au
nombre de marchés a terme, alors il est génériquement possible d'obtenir
1'allocation de 1'équilibre de base par un systéme de marchés au comptant
et @ termes pour les biens et marchés d'assurance pour les risques indi-
viduels.

Mots_clefs : Risques, marchés financiers.

—

ALLOCATION OF AGGREGATE AND INDIVIDUAL RISKS
THROUGH FINANCIAL MARKETS

ABSTRACT

We present a canonical pure exchange model of an economy with
aggregate and individual risks. We show that the economy always has a basic- =
contingent commodity equilibrium in which prices depend only on aggregate risks.
We introduce an information structure and a number which expressed the maximum
rate at which information is revealed in any time period (the branching num-
ber). We show that if the information structure associated with the aggre-
gate risks is such that the branching number is not greater than the number
of trading opportunities in futures (the number of commodities) then generically
each basic contingent commodity equilibrium allocation can be achieved as an
equilibrium allocation on a system of spot and futures markets for the under-
lying commodities and insurance markets for the individual risks.

Journal of Economic Literature Classification Number : 020‘.m.



ALLOCATION OF AGGREGATE AND INDIVIDUAL RISKS

THROUGH FINANCIAL MARKETS

1. INTRODUCTION

This paper presents a canonical pure exchange model of an economy with
aggregate and individual risks. Aggregate risks have the property that they
directly affect the preferences and endowments of all agents simultaneously.
Individual risks have the property that they affect the preferences and endow-
ments of particular individual agents independently, and thus their effects
cancel out at the aggregate level due to the operations of the law of large
numﬂers.

We introduce two market structures. The first is the standard Arrow-

Debreu system of contingent commodity markets. The second is a system of

financial markets. The idea is the following: contingent commodity markets

have well-known welfare properties but are essentialiy oniy a theoretical and
not an actual observed type of market struéture. Can we introduce instead a
system of financial markets that represent an actual observed type of market
structure and show that tbe egpilibrium allocations obtainable through a
system Sf.cﬁntiﬁgent coﬁmodity markets can also be obtained as the equilibrium
allocations of the system of financial markets?

In section 3 we lay out the canonical model of a pure exchange economy
with aggregate and individual risks. When the first type of market structure
is used we show that the economy always has an important type of equilibrium

(which we call a basic equilibrium) in which the contingent commodity prices

are independent of individual risks and depend only on the aggregate risks

(theorem 4). We introduce a system of financial markets in which the financial

instruments consist of futures contracts on the underlying commodities and



insurance contracts on the individual risks. The insurance contract offered
to an individual agent depends only on his individual state and can not be
used to transfer income across aggregate states. The insurance contracts are
similar to those considered by Malinvaud [15] — however in our economy there
is aggregate as well as individual risk and we introduce an infinite number
of agents to permit an explicit application of the law of large numbers.

We want the trading on the futures markets to reflect the observed fact
that agents can trade (frequently) and process information before the actual
aggreéate state occurs. To this end we draw on the approach of Kreps [14],

recently extended by Duffie and Huang [8], which allows one to make this

idea precise. We introduce an information structure and a number which expresses
the maximum rate a£ which information is revealed in any time period (the branch-
ing number). We then show that if the information structure associated with
the aggregate risks is such that the branching number is not greater than the
number of trading opportunities in futures (the number of'commodiﬁies), then
generically each basic contingent market equilibrium allocation can be achieved
as an equilibrium allocation on a system of spot markets and futures markets
for the underlying commodities and insurance markets for the individual risks
‘(theotem 7).

The énalysis is céépleted in two steps. In the first step (section 2) we
consider an economy with only aggregate risk, in the second step (section 3)
we extend the analysis to an economy with individual as well as aggregate risks.
In section 2 we show that in an economy with only aggregate risks if the infor-
mation structure is such that the branching number never exceeds the number of
commodities available for futures trading, them for all initial endowment vec-
tors exgept those on a set of measure zero, each contingent commodity equilib-
rium allocation caﬁ be achieved as a futures market equilibrium allocation

(theorem 3). Thus futures markets are an appropriate vehicle for efficiently



allocating aggregate risks. The proof of this result (see section 4) is based

on the regular economy type arguments introduced by Debreu [3]. In Appendix A

we give an example of nonexistence of a futures market equilibrium which demon-

strates that theorem 3 is the best result that can be obtained. The example
is based on the idea in Hart's [11] famous example of nonexistence of a futures
market equilibrium: however our model differs from his in that payment for fu-
tures contracts is made at the time of delivery rather than at the time of pur-
chase and this necessitates a separate construction.

fo keep the analysis simple the model in section 2 retains the following
assumption: the terminal date is the only date at which futures contracts mature
and spot markets meet. Appendix B shows that the analysis can be extended to
the more general case where there are many dates at which futures contracts
mature and spot markets meet. To keep the technical demands on the reader to
a minimum we present the proofs of the theorems in sections 2 and 3 separately

in sections 4 and 5.



2. AGGREGATE RISKS

We begin the analysis by considering a pure exchange economy with ohly
aggregate risks. Section 3 extends the analysis to the case where there are
both aggregate and individual risks. In this section we also consider the
simple case where consumption takes place at a single date: appendix B extends
the analysis to the case where consumption takes place at many event-dates.

m agents have random initial endowments of n goods. Let A = {al,. . .,aM}

denote the set of aggregate states of nature and let wi = (wi(a»aEA denote the

.th i
i agent's endowment vector, where w™ (a) denotes his endowment if state a occurs.

The ith agent has a preference ordering >~ defined for consumption vectors x =
i
Mn

(xl(a))aEA contained in his consumption set X:L = R+ . Since we assume each agent's

preference ordering > is complete, transitive and continuous it can be represented

i
by a utility function ui : an — R. In addition we assume > is strictly monotone
. i
and has convex preferred sets. Let & = {f s R]_:d_n, w1,~ i=1,..., m} denote the

i
resulting pure exchange economy.

2.1 Contingent Commodity Equilibrium

The contingent commodity market model for & [6, ch. 7] introduces a market

'for each good in each state of nature. ‘Let P(a) eR_I:_ denote the vector of prices

for .delivery if state a€A occurs and let P = (P(a»aGA' A contingent commodity

=1 = .
equilibrium is a pair (X ,...,im; P) consisting of a consumption bundle for each
agent and price system f’ER_T_M such that each agent chooses a most preferred- bun-

dle over his budget set

dE&h 2oty v <t e B @ = xer™ | Bx-wh) < 0)
1 1= (A1)
and X €B(P) i=1,...,n ‘
and each contingent market clears
v i i
J ((a)-w(a)) =0, a€A (A2)

i=1



. m
i
The set of feasible allocations is defined by {(xl,...,xm)GERsz| Z x~—wl.§0}.
i=1

. . =1 —m, . . . .
A feasible allocation (X ,...,%X ) is a Pareto optimum if there does not exist

a feasible allocation (yl,...,ym) such that ul(yl) ;ul(il), i=1,...,m, and

k, k k, -k

u (y)>u (x) for some k. The two fundamental welfare theorems {5, ch. 6]
assert that a contingent commodity equilibrium is a Pareto optimum and every
Pareto optimum can be achieved as a contingent commodity equilibrium with trans-
fer payments. Our object is to show that, generically for this economy with only
aggregate risks, every contingent commodity equilibrium allocation can be achieved
through a financial market equilibrium, where the financial instruments consist

of futures contracts on the underlying commodities.

2.2 Futures Market Equilibrium

To allow trading in the financial assets to achieve additional spanning
opportunities for transferring income across the states of nature, we assume
that information about each state of nature a€A is revealed gradually over a
sequence of time periods t=0,1,...,T as follows. For each t, Ft is a parti-

is a refinement of F_ and F0=={A}, FT=={{a1},...,{aM}}.
T

tion of A such that Ft+1

Let Ot denote a generic element of Ft and let F = (Ft)t=0' Define
K(F) =  max s co lo  eF _} (1)
t+1 t t+l t+1
g €F
t t
t=0,..,T-1

k(F) is the maximum number of events that can occur subsequent to any given
event-date in the event tree; it is thus a measure of the maximum rate at which
information is revealed by the filtration F at any event-date o, and is called

the branching number of the filtratiom F.

In this section we consider a single class of futures contracts, those
with maturity date at time T. Inappendix B we extend the analysis to the

case where there are futures contracts which have delivery dates at any of



the times t=1,2,...,T. Consider therefore the futures contracts with maturity
date at time T. At date t one of the events otEFt is revealed. A futures con-
tract for good j at event-date O, calls for the unconditional delivery of one unit

of good j at time T. Let z;t(ot) denote the number of contracts of the jth good

purchased by the ith agent given the information o, and let Z:.(Ot) = (ztt(ot),

...,zit(ot)). Let qjt(ct) denote the futures price for the jth good at event-
date o with qt(ct) = (qlt(ot),. . ,qnt(ot)). If p= (p(a))aeA denotes the vector
of spot prices at date T, then by arbitrage qT(a) =p(a), a€A. We assume with-
out loss of generality that in period t+l each agent closes out his futures
position taken at time t. For each a€A let ot(a) denote the unique otEFt for
which aeot. The earnings obtained at date T from the trading strategy

zi=(z:(ot), otEFt, t=0,...,T) is given by
i TSl 4
R(z",a) = tEozt(ct(a)) [th (ot+1(a)) - qt(ot(a))] , Aa€A (2)

Equation 2 leads naturally to a matrix whose properties are central to an under-
standing of the behaviour of futures markets. Define row a and column (j,ot)

of a matrix Q for a€A, j=1,...,n and OteFt’ t=0,...,T-1 by

0o : if ago,
Qj(a,c ) =

qjt+1(ot+1 (@) - qjt(ot(a)) if ae O,

and let Q (Ot) = (Qj (al,ot),...,Qj (aM,Gt))ERM be a column vector. Qj (Ot) defines

h|

the vector of earnings across the states of nature obtained at date T from the
.t

purchase of one futures contract of the j h good at event-date O+ The earnings

matrix Q is then defined as the collection of all such earnings vectors obtained

from a unit trade in each of the n goods at each of the event-dates Ot

Q = (Qj(ot)’ j=1,...,n, o _€F, t=0,...,T-1) (6)



Let R(zi)= (R(zl,a))aeA, then R(zi)==Qz1. Thus the budget set made possible

by the futures trade 2" defined by

B (00 = [xer] | b (x(@) - (@), ¢, £02] 5)

leads to the ith agent's budget set with a system of spot and futures markets

:Bi(p.q) = U (p,q) i=1,...,m (6)
2T z1

) 1 1 M _Mm - -
A futures market equilibrium is a pair [(E ,Z ),...,(¥ ,Z ); (p,3)] such that

each agent chooses a most preferred consumption bundle over his budget set
deh > udad) v et 5,3 and e 1=1,...,m- (FD)

=1 =i
and hence selects a futures trading strategy 7" such that X Efai_i(P,Q),
z

i=1,...,m. In addition spot and futures markets clear

I S |
I G -w)=0 (F2), t=0,...,T-1 (F3)
i=1 -

2.3 Equivalence of Equilibrium Allocations

When can a futures market equilibrium allocation be.achieved as a contin-

gent commodity equilibrium allocation?

1 1.
THEOREM 1. Let [(X ,Z ),...,(im,im); ($,3)] be a futures market equilibrium for

the economy &. 1If rank (Q)=M-1, then the allocation (21,...,§m) can be

1 -
achieved through a contingent commodity equilibrium (X ,...,im;P).

In section 4 we show that the absence of arbitrage opportunities in a fu-
tures market equilibrium implies the existence of a vector BEERE+ such that a

candidate contingent commodity price vector must satisfy



P(a) = B_B(a) acA n

We show in addition that if rank (Q) =M-1, then Bi(§)= SBi(ﬁ,ﬁ), i=1,...,m,

so that the price system P defined by (7) leads to a contingent commodity equi-

libriug . The rank condition implies that B is unique up to multiplication by a

scalar and represents the common social marginal utility of income for all agents.
Suppose we start with a contingent commodity equilibrium. If we choose

any BEERM s z Ba.=]' and let (7) define the spot prices, then an arbitrage argu-

ment again :ﬁﬁﬁs that to obtain a futures market equilibrium the futures prices

must satisfy the condition

BQ=0 <= ) 8 (§

(a) -3 (a)) =0 for o €F_ t=0,...,T-1 (8)
ant a t+l t ’

t t

where eacb &t(-) satisfies the measurability condition that it depends only on.
information available at time t. (8) is a system of first order difference
equations which allows futures prices at time t to be determined recursively
from those at time t+l. The whole system of futures prices can thus be deter-
mined from the spot prices defined by (7). Thus starting with the contingent
commodity price system P we have been led to a well-defined system of spot and

futures prices and hence to a well-defined matrix Q.
Note that if we view Ba as probabilities, then (8) is equivalent to

c';t(a)=E(a Iot(a)), a€A, t=0,...,T-1 9

t+1

. _ T .
which asserts that the futures price process {qt}c_o is a martingale. Since

ﬁ.r(a) =p(a), a€A, (9) implies

'dt(a) = E(p l ct(a)), a€A

so that relative to B, at is an unbiased predictor of the future spot price.
When can a contingent commodity equilibrium allocation be achieved as a

futures market equilibrium allocation?
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THEOREM 2. Let (x ,...,:’cm; P) be a contingent commodity equilibrium for the

1
economy & . If rank (Q) =M-1, then the allocation (X ,...,im) can be achieved

1

1 _m - - -
through a futures market equilibrium [(X ,Z ),..., (xm, zm); (p,q)].

The intuition behind the rank condition in these two theorems is roughly
as foliows. With spot markets only, the dimension of an agent's budget set is
nM- M because of the M constraints imposed by his income in each state. With
contingent commodity markets there is just one budget constraint and the dimen-
sion of each agent's budget set is nM- 1. When futures markets are added to
the system of spot markets, if ramk (Q) =M-1, then the income transfer made

possible by futures trading raiseé the dimension of each agent's budget set into

equality with that in the case of contingent markets (aM-M) + (M- 1) =aM~- 1.
Thus when the rank condition is satisfied each agent has the same opportunity
set on a system of contingent markets as on a system of (spot and) futures mar-
kets — hence the ability of these two market systems.to achieve the same allo-

cations.

2.4 Generic Result

How likely is it for the economy & that the rank condition will be satis-
fied? To answer this question we néed to place some further restrictions on’
preferences and endowments. Let .?Cl denote the set of preference orderings

representable by continuous utility functions u: RI:M—>R with the following

M

+ ¥R, RI:T defined by £(p,I) =arg max u(x),

aM XEB(P,I)
B(p,I) = {XER+ | px < I} is a ¢! function which satisfies the boundary condition

property. The function f : RI:

lim _ I £(p,I)Il == whenever p#0 lies in the boundary of Rr:id and I>0.
(p, D~(p,1)
Conditions on preference orderings which generate such demand functions have
been given by Debreu [4,5].
Let w= (wl,... ,wm) denote the m agents' initial endowment vectors. We let

the economy & be parameterised by wGRt:m. We can now show that the rank con-

dition is generically satisfied (lemmas 3, 4, 5 in section 4). For a subset
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BC:RS let BS denote the complement of B. Recalling that a subset HCR® 1is said
to be null if it has s-dimensional Lebesgue measure zero, we are led to the
following result. Note that in view of the nonexistence example given in appen-

dix A this is the best result one can expect.

THEOREM 3. Consider economies & for which agents' preferences belong to & .
c

If the number of commodities is at least as great as the branching number of the

information structure (ni;k(F», then there is an open subset of initial endow-

ments Q(:Rifm, with Q° null, such that for each economy & with w€{l, every con~

tingent commodity equilibrium allocation is a futures market equilibrium alloca-

tion requiring nontrivial futures trading in at most k(F) commodities.

Thus if the information structure F is such that the rate at which infor-
mation unfolds at any event-date is never greater than the number of trading
opportunities available at each date (n), then in an economy & with aggregate
risk only, for almost all initial endowment vectors, an allocation achieved
through a system of contingent commodity markets can also be achieved through
a system of spot and futures markets, and the number of futures contracts needed

is at most the branching number of the information structure.

3. AGGREGATE AND INDIVIDUAL RISKS

3.1 Introducing Individual Risks

We want to enrich the structure of the economy & by including individual
risks. Roughly speaking these are risks which while faced by individual agents,
cancel out at the aggregate level. One model in which such risks are studied,
and which is frequently cited, is that of Malinvaud ({15]. 1In the simples;
form of his model risks are eliminated at the aggregate level by assuming that

the aggregate endowment Z wi(a) is constant across the states of nature a€A.
i=1
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In terms of the results of the previous section, such an assumption immediately
forces the set of initial endowment vectors w to lie in a set of measure zero
so.that theorem 3 does not apply.

More importantly, in terms of the applicability of futures markets, if
we consider the case where information is revealed in one period (T=1), then
under Malinvaud's assumption on preferences, the system of contingent commodity
prices (Pa)aEEA has rank 1 so that the induced matfix Q has at most rank 1.
Thus Fhe absence of risk leads to an absence of fluctuation in the contingent
commodity prices and this in turn leads to an earnings matrix Q with low rank:
there is thus no way for futures trading to achieve the required transfer of
income across the states of nature.

It is clear therefore that while contingent commodity markets can deal
adequately with both aggregate and individual risks, a system of futures mar-

kets needs to be supplemented by another market structure to deal with the

individual risks. This structure is a system of insurance markets. Our object

is to eitend the main reéult of the previous section by showing that, in an
economy with both aggregate and individual risks, there is a precise sense in
which for '"most" economies, certain basic contingent commodity equilibrium
allocations can be achieved through a financial market equilibrium, where the
financial instruments now consist of futures contracts on the underlying com-
modities and insurance contracts on the individual risks.
To establish this result we need to extend the model of the previous

section., In particular to express the idea of individual risk we will need
an economy with infinitely many agents. Let A= {al,...,aM} denote the set of

aggregate states with the same property stipulated in the previous section,

namely that each aggregate state can affect each agent's preferences and ini-

tial endowment. Let S= {sl,...,sN} denote a set of individual states of nature.

For simplicity we assume that each agent i in the economy has the same underlying
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set of individual states Si==S. The state AiEESi in which the ith agent finds
himself has the property that it affects only his preferences and his initial
endowment and not the preferences or endowments of other agents. We assume in

addition that the individual state 4, is observable by outsiders (the insurance

i
company) so that the set Si does not include personal states such as the mood or
energy of the agent. To express the idea that individual risks cancel out at
the aggregate level we want to apply the law of large numbers: this requires
that the economy have infinitely many agents. Thus let I={1,2,...} denote the
set of agents, then the set of states of nature for the economy is given by
Z=Ax T S; where S =S for all i€I
1E€1 *

We can think of A as representing whether these are good times or bad times
economy-wide, the nature of the weather, earthquakes, floods and so on — in
short any state that can affect the preferences and endowments of a whole col-
lection of agents, but not in such a way that the effect cancels out at the
aggregate level. We can think of the sat Si as reoresenting whether agent i suffers
some form of personal injury (an accident, ill health, etc.) and whether his
- property is exposed to fire, theft, deterioration, etc.

Let (a,3) =(a,Al,42,...) denote a typical element of.E. Let & denote
the measurable subsets of I and let T denote a probability measure on &. The

property of independence of the individual states is expressed as follows:

for each aggregate state a€A the conditional probability measure on TT.Si
iel
is a product probability measure. This enables us to use the law of large

numbers. We also need to distinguish some subo-fields of & defined by aggre-

gate and individual specific states of nature. Let

Ha={a}XTrsi, Hi={a}><S x...xS,  x{s}xs,  x..., i€l
1€1

and let X = U(Ha, ac€ja), XN o(H;S, a€A, s€89), iel
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denote the induced subo-fields of #.

The commodity space is taken to be the space of R"-valued essentially

bounded measurable functions defined on the probability space (I, &#,m), denoted
by Lm(Z,Tr; Rn). The endowment vector w- and consumption vector )(l of each agent

. . . o
i€l is an element of the non-negative orthant L:(Z,‘ﬂ; R).

3.2 Restrictions on Endowments and Preferences

We need to make some restrictions on agents' endowments and preferences —

in particular those that formalise the concepts of aggregate and individual
risks. We assume that agent i's endowment vector mi is J?’i—-measurable. wi
thus depends only on the aggregate state ac€ A and agent i's individual state
AiESi. ’ With this assumption mi can be represented by a finite-dimensional

i i nMN i i i 1
= e t = € . Agent i's
vector w (was)aEA, ses R, where v Tuw (a,4), Y (a,8) Has 8

preference ordering - is defined on L:(Z,n; Rn). We express the idea that =

~

i i
depends only on the aggregate state a€A and his individual state AiESi by

assuming that

B [oeh) 7 x, Vxert,m Y,  x#EGx|oeh),  ter (10)

'The preference ordering x on L:(Z,H;Rn) induces a preference ordering [: | on
oMN o i 1 y

R+ through the vectors x = (xas)aEA,s es which represent S -measurable consump-
. + '

tion vectors xeLw(E,n;Rn). Let P denote the space of continuous preferences on

RnMN with the topology of closed convergence and let 3’8 C P denote the subspace of

+

i i
trictl . =
strictly convex preferences. The vector of probabilities w ("(Has))aeA, ses

must be compatible with the vector of probabilities of the aggregate events

TIA= (r(1)) in the sense that
a“a€A

i NM .
u EAA where 8, = {pER+ ) oas=l, ) oas=ﬂ(Ha), aca}, i€l
acA SES

sE€S

i 1
The triple (l z |, w , ) now defines the ith agent's characteristics. We make
i
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the following boundedness assumption on the characteristics of agents. There

exists a compact subset KC S?s _X_.B:lim x AA such that (i; |, wi, wi) €k, Viel.
i
One more step is required to complete our description of the economy.
Consider the S-averaged economy in which agents' endowments and consumption
bundles are J¥-measurable and each preference ordering is restricted to such

MN_ onM e -1
bundles. More precisely consider the map Ei : Rr: —> R, and its inverse Ei

defined by
i - nMN
Ei(x) = ( Z TasXaslacA = ¥ XER,
s€EeS
e lqe) = {xERnMN | E. (x) = &} £ e g™
i + i ’ +

) : - -1
Define the function a, R?M—> RI:MN by ai(£)|§ |z, VzeEil(E) and Cti(i)EEi (&)
i

and the preference ordering (x ) over S-averaged bundles by
i

X(z)¥ 4if and only if ai(i)‘tiai(?), iel

1 1

Let ‘?cl denote the space of preference orderings on R[:M leading to ¢! demand
functions (as defined in section 2). Endow 3’C1 with the topology of closed
convergence as a subset of & (on REM). We now make the assumption that

‘the S-—averaged characteristics of agents have the following property: there
exists a compact subset L'C~ 5’;1 ﬂiM&-}—éA such that ((i;), 61, Tl'i)e L, V i€1.

Let .#(L) denote the set of prébability measures on L. For any measurable sub-

set DCL, let um(D) denote the proportion of the first m agents in the economy

with S-averaged characteristics in D

#{

1 14 o
um(D) = = il((i;),w , 7 )ED, 1—1,...,m}

We require that there exist p€.#(L) such that um—g,—i’ ¥ as m—> = in the sense

of weak convergence of measures. We let &" denote an economy with the proper-

ties outlined in sections 3.1 and 3.2.
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3.3 Example of Economy &e*

The following example will serve to illustrate an economy é"* with the

. ‘o . i
above properties. Suppose = is represented by a utility function W of the

i
following form
i i
W(x) = Z f uas(x)dw
a€A H__
sES

i n . . . :
where each Uog : R -—> R is continuous, strictly concave and increasing. Clearly

MN
> satisfies (10). The induced preference ordering [i\ on R: is represented
i i
by the continuous, strictly concave and increasing utility function

i i i
U (x) = z u (x )
acA 28 as’ as
s €S

. nM |
and thus belongs to .?S.- The induced preference ordering () on R~ is repre-
i

sented by the utility function

ﬁi(;{) = max Ui(x) subject to Z T x =%, a€A
as as a
X sES

i
‘With appropriate smoothness and boundary assumptions on the u__, (=) will belong
i

c
, i
The ith agent's characteristics are thus defined by the triple ((uas)a s?
wl,ﬂl). Suppose the economy consists of two 'types' of agents: let agent i have

the characteristics ((u;s)a S,w',n') if 1 is odd and the characteristics
b

((ugs)a S,w",n") if 1 1s even and let |='|, (=" and |z, (&) denote the
]

induced preferences. Then

{(li'| ! :"'): (! =" :W":"”)}

K

{((z=n,a,m"), (=, ,7")}

[
[}
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so that both are compact. Moreover W, on L is given by

¢

—]2; if m even
b ((Cz0,u0,1) =

;’;1 if m odd

%— if m even
um(((t'),ir",n")) = 4

%nl if m odd

Clearly M converges to the u which assigns probability -]2; to each point of L.
Thus the compactness assumptions and the assumption that {um} is weakly conver-
gent are simply generalisations of a ''replica' economy with a finite number of

types.

3.4 Contingent Commodity Equilibrium for &%*

A contingent commodity price system for an economy &* consists of an n-
vector of measures P = (Pl" ..,Pn) defined on &, where PJ, (_B) denotes the price of
one unit of good j with delivery if and only if event BE & occurs. We will con-
" sider only price systems which are absolutely continuous with respect to w so
" that P(B) = fpdn for S(;;ne )‘O-G'L{(E‘,T\';Rn) , the noh-négat:i\)e.ort‘h.ant of the space
of -Rn—valuecBl integrable functions defined on (Z,7). The cost of a consumption
vector xeL: is thus fpxdﬂ. We are interested in particular in price systems

T

p which are J¥-measurable, namely those that vary only with the aggregate state

a€A. Such a price system can be represented by a finite-dimensional vector

p = (p(Ha))aeA'

. -1, . ~
A contingent commodity equilibrium for an economy &* is a pair [(x )iEI; pl

where ;(ieL:(Z,n;Rn), ierl, pELT(Z,n;Rn) such that



17

~i i i i - + ~ - -
X Z X Vx €cC (P)={X€Lm|fp(x_wi)dw < 0} and xieci(p), iel (A1) *
i £

i
and lim & ) (;(i—wi) =0 a.s. (a2)*
m
m>e i=1 ~

If in addition each ii is }Vi -measurable i€I and fa is J¢-measurable, the pair

[(f(i) ;p] will be called a basic contingent commodity equilibrium for &,

iel

THEOREM 4. Every economy &*has a basic contingent commodity equilibrium.

Remark. Note that this result does not follow directly from any of the known
existence results for an economy with an infinite-dimensional commodity space

since there are countably many agents.

3.5 Futures-Insurance Market Equilibrium for &*

Futures trading takes place as in section 2. Thus we assume that infor-
mation about the aggregate state a€A is revealed gradually over a sequence of

T
time periods t=0,...,T, through an information partition F= (Ft)t=o where

F is a refinement of Ft:’ F = {A} and FT= {{al},...,{aM}}. Each agent 1€1

t+l 0

chooses a futures trading strategy zi= (zt(ot) » O eFt, t=0,... ,T—l) fa;ed
with the system of futures prices q = (qt(ot) » O GFt, t=0,...,T-1).

" A spot price systemp : L —> R: for J*assigns a nonnegative vector of

prices p(a,4) to each state (a,4) € L. We consider only spot price systems
pGLT(E,TT;R:). In particular we are interested in spot prices p which are
J-measurable, so that they vary only with the aggregate state of nature. Such
a price system can be represented by a finite-dimensional vector p= (p(Ha))aGA'
With such a spot price system, the induced system of futures prices would be:

such that a typicai agent could achieve no transfer of income between two dif-

ferent individual states associated with the same aggregate state a€A. To

enable such an income transfer to take place we introduce the following insur-
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ance contracts. An insurance contract for the ith agent is a function viéLm(Z,n;R)

i . . .
where v (a,4) denotes the income received at date T if state (a,4) €L occurs. We
consider only insurance contracts with the following three properties.

. i, i \ . .
(i) v° is ¥ -measurable. Thus in particular the income transfer received
P

by agent i does not depend on the individual state Aj of any other agent

j#i.
(ii) E(\)1 | Ha) =0, a€A. Thus v ois actuarily fair on each aggregate event Ha.
17 i
(iii) lim 4 J v =0 a.s. Thus an insurance company faces no risk.
mrx i=

Consider the following budget sets that are the analogues of those defined
in (5) and (6) of section 2. For the ith agent the trade-insurance pair

i i
(z ,v’ ) generates the budget set

€y 1 @am) = (XeLl P, (@0 -u'@s) svi (a0 +RGEL) A

.th . e .
so that the i = agent's budget set with a system of spot, futures and insurance

markets becomes

1 i i i for all (zi,vl), v’ is H#'-measurable

€ @,qm)=1%¢, ;@97 i
zl,v E(v Iaa)=o, ac€A

A futures-insurance ‘market equilibrium for an economy &* is a pair

i

~ o~ ~ - o~ ~1- + -~ -
[(x;zi,vi)iel;(l?,q)] where xieLw(Z,n;Rn), .7 — Rr", V€L, (Z,m;R),

ﬁELT(Z,ﬂ;Rn), q: F— R: such that

ded vide€ele,anh, ier (FL)*
i

(Zi,Si) is chosen so that iiE %’i .(~,6,1ri) and spot, futures and insurance
I R £ p
v
b}

N

markets clear in the mean

(ii—wi) =0 a.s. (F2)*

1

lim %
o i

i o~8
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1 T .1
lim = } 2 =0 (F3*
mre T g=1

1 T .
lim= J 3 =0  a.s (Fa)*
mre T i=1

If in . addition each ii is X -measurable i€ and p is H-measurable, then the

-1 ~1

pair [(S'(i,z ) ;(p,q)] will be called a basic futures-insurance market

i€l
equilibrium for &*.

3.6 ' Equivalence of Equilibrium Allocations for &*

Given a vector of futures prices q the earnings matrix Q can be defined

as in section 2. We are then led to the following analogue of theorem 1 for &*.

i ~1i . -
,V LLGI; (p,q)] be a basic futures-insurance market

equilibrium for the economy &%. If rank (Q)=M-1, then the allocation

THEOREM 5. Let [(X},Z

(212161 can be achieved through a basic contingent commodity equilibrium
~1i - : .
_[_Q(_)i GI’E‘]"

For the economy &*the relation between basic contingent commodity prices
and basic spot prices in futures-insurance equilibrium is similar to that defined

by equation (7) for the economy &
p(Ha) = Bap(a), ac€A (12)

M
If we start with a basic contingent commodity equilibrium, choose any BER_H_
with z Ba= 1 and let (12) define basic spot prices, then an arbitrage argu-
a€A
ment again shows that futures prices must satisfy 8Q=0. This leads by the same

argument as in section 2 to a well-defined vector of futures prices q and hence

to the matrix Q. The following result is the analogue of theorem 2 for &*.

THEOREM 6, Let ](gi)iEI;ﬁ] be a basic contingent commodity equilibrium for the

economy &% If rank (Q) =M-1, then the allocation (ii)iEI can be achieved

through a basic futures-insurance market equilibrium [(ii,ii,ﬁi)iel; ©®,3)1]-




20

3.7 Main Result

We would like to show that for an economy &* with both aggregate and indi-
vidual risk, "typically" each basic contingent commodity equilibrium allocation
can be achieved as an equilibrium allocation on a combined system of futures

and insurance markets.

THEOREM 7. Consider economies &* in which the number of commodities is at

least as great as the branching number of the information structure (n;k(F)).

There is an open dense set I C.#ML) such that for each economy &* with a limit-

ing distribution pE€Tr, every basic contingent commodity equilibrium allocation

can be achieved as a basic futures-insurance market equilibrium allocation,

requiring non-trivial futures trading in at most k(F) commodities.

4. PROOFS FOR SECTION 2

Proof of Theorem 1. The futures market equilibrium satisfies F1-F3. It suffices

to show that there exists BER:{_*_ such that if we define a contingent commodity
price vector by (7), then the budget sets defined by (Al) and (6) coincide,
: Bl(ﬁ) = .%i(ﬁ,ti) , i=1,...,m, since then Al, A2 are satisfied.

Let x € & (§,3), then there exists 2% such that
- i i i
(B(a) (x (a) ~w (a))], o 5Q2 13)

1f Qzl;O, Qzl#O were possible then Qyzl_z_o for vy >0 and income in some states
could be increased arbitrarily with no sacrifice in income from other states.

s th
Since ul(-) is strictly monotone, there could be no solution to the i~ agent's

preference maximising problem (Fl). Recall the following result.

LEMMA 1. Let Q be an r Xn matrix. Only one of the following alternatives

holds: (i) there exists z€R" such that Qz 20, Qz#0, (ii) there exists BGRL_

such that 8Q=0.
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Proof. (Gale {9, Cor. 2, p. 49]).

By lemma 1 there exists .’3€ER§_1+ such that BQ=0. Let P(a) = Baﬁ(a), a€A., Multi-
. - i i i - i i
plying (13) by B gives 8(p(a)(x (a) -w (a))]aeAg 8Qz =0 <= ¥ P(a)x (a) - v’ (a))
. . acA

<0 so that x e€B (P).

) i i,= — i i i

Suppose x € B (P), let [p(a)(x (a) -w (a))]aeA=y . We need to show that
there exists z' such that Qzl=yl. Let H8= {yEERl:’4 | By =0}. The condition 8Q=0
implies Qj (Ot) EHB, j=1,...,n, OteFt, t=0,...,T-1. Since dim (HB) =M~-1 and

since rank (Q) =M- 1, the columns of Q span HB. Since yIEHB there exists z

. . i P A
such that Qzl=yl. Thus x € Qli(p,q) and hence xie(@l(ﬁ,ﬁ).
z

Proof of Theorem 2. The contingent commodity equilibrium satisfies Al, A2. It

suffices to find spot and futures prices (P,§) such that (i) .%1(13,6) = Bl(ﬁ),

m .
i=1,...,m, and (ii) if )_ci EBi(f’) , i=1,...,m, satisfy z (& - wi) =0 then the zZ=
. i=1 m
which are shown to solve QEi = {p(a) (il(a) - wi(a))]aEA, i=1,...,m, satisfy Z Zi =0,

i=1
since then [('}EI,EI) seses (im,Em); (P,q)] satisfies F1-F3.

Let the spot prices be defined by P(a) =Ba§(a), acA for any BERT+ with

Z Ba=1. The following lemma leads to the choice of futures prices.
a€A

LEMMA 2. B (5,9 SBY(F) if and only if 8Q=0.

Proof. (=) Suppose there exists z such that BQz" #0 say BQz' <0, then

i . P -
BQ(~z") >0 and there exists xie RB _,(p,q) such that xiéBl(P). Thus we must

i
-z
i i i i .
have RQz" =0 for all z~. Set zj(ot) =1, zk(cT) =0 for k#j, orfct, then
BQj (ct) =0. Repeating this for j=1,...,n, o €F, t=0,...,T-1, implies BQ=0.

(+=) Immediate. "

As explained in section 2, BQ=0 is equivalent to the first order system
of difference equations (8) which in conjunction with the endpoint condition
C—IT(a) =Pp(a) determines the system of futures prices, say J. We need to show
-‘Bi(ﬁ,ﬁ) Q,Bi(l—’). This follows by the same argument as in the proof of Theorem 1

from the rank condition on Q.
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It remains to show that futures markets clear. The contingent commodity

m . .
allocation (321, e ,im) satisfies Z (il— Gl) =0. Thus Tzi which solve

. i=1 m
Q2i= [ﬁ(a)(:‘(i(a) -wl(a))]aeA satisfy Q( | El) =0. Since the same M- 1 linearly
i=1 , .
independent columns of Q can be used to define each 21, Q( 2 'z'l) =0 is a linear
i=1 m
combination of linearly independent vectors equal to zero. Thus Z it=0. =
' i=1

Proof of Theorem 3. The proof will be broken down into a sequence of lemmas.

The first step is a straightforward technical point: we want to show that we

only need futures trading in the subset of the first k(F) of the n commodities.

To this end, let P be a contingent commodity price vector with P = (P (a))aEA’ P(a) =
(P1 a),... P (a)). Define the truncation pX = (Pk(a))aeA where Pk(a) = (P1 (a),
,Pk(a)) for k <n. For any subset cEA define P(0) = |} P(a). Consider the

a€g
the following rank condition on contingent commodity price systems.

RANK CONDITION Qk. Let k<min(n,M). A contingent commodity price system P satis-

fies the rank condition ak if for every collection of k disjoint non-empty

k
subsets (01,...,0 ) of A, the vectors (Pk(ol),. .. ,Pk(ck)) form a linearly inde-

pendent set.

"Remark. For each k sn this condition is weaker than the requirement that

(P(al),...,P(am)) have rank n and stronger than the réquiremen't that this set

have rank k.

On the futures market side consider the following reduced earnings matrix

Qk) = (Qj(ot), j=1,...,k, o €F, t=0,...,T-1)

which gives the earnings vectors from unit trades in only the first k of the n
commodities. In view of the following lemma the Z= obtained in the proof of .
theorem 2 can be chosen so that only the first k coordinates of each Et(ot) are

nonzero.

LEMMA 3. Let k=k(F). If P gatisfies Qk, then rank (Q(k)) =M-1.
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Proof. Let HQ(k) = {BE RM | 8Q(k) = O}. Since row rank (Q(k)) =M- dim HQ(k) we

need to show dimH =1 which is equivalent to showing that if 8Q(k) =0, then

Q(k)

=aB for some a€R. 6((k) =0 is equivalent to

1 e

[ﬁk(ot+1(a» §k(ot)
aEGt

- =09 Vg e€r, t=0,...,T-1
B(op4, () 8(o,) ) t t

which is equivalent. to

=k =k
P (ot ) P (ot)

‘ 1
) ¥ e@% - =0 Vo €F, t=0,...,T-1
B(o_ . ) B(c,) t t
ot+1Cot ant+l t+1 t
or
o) B
5 ZCO e(otﬂ)[ Bla,,) - B(OC)} =0 Vo eF, t=0,...,T-1
t+l t
. sk =k . E
Using P (ot) = z P (ot+1) and e(ot) = z 6(°t+1)’ this can be rear
Tes1 <% Tee1C%
ranged to
8 (o ) 6(o )y_
t+1 t’ |5k y =0

z - P (o

[8(0 ) B8(g)) t+1

Oeyy €O t+1 t ,

By the rank condition &, the set of vectors (f"k(c ) o "is linearly
k t+l ot+1C0t

independent so we must have

8 (o ) 8(0.)
t+1 t
= Vo , Vo Cao
B(Otﬂ) B(ot) t t+1 t

Choose a€A and (o );1:‘__ such that a€o_ for all t, where o_=A and o_= {a}.

t 0 t 0 T
For this choice of Ops t=0,...,T, solving the above difference equation yields
T-1
’ J__-_EB(Ot+1)
8(o,) = S7 8(o,)

TTB(ot)

t=0
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which 1s equivalent to 6(a) =8(a)6(A). This holds for every a€A, so the lemma

is proved. .

LEMMA 4. Let ./((k denote the set of all contingent commodity price systems satis-

fying Qk for k <min(n,M), thenul(k is an open subset of Rn::_ and./lli is null.

Proof. By induction on k. Let k=1, then 9?1 is equivalent to Pl(o) #0 for
all 0 CA which holds for all PER‘:E;I . Suppose the lemma is true for k-1.
Consider the set I, = {(01,...,ok) |cxlﬁc7J = @, oi, ol cA, cj#eﬁ}. For each

BE Zk define the map ¢B :./I(k_l—% R by

85 (B) = det (Y, ...,B5E)

then ¢B is a smooth map from the nM-dimensional manifold ./(k_l into R and 0 is
a regular. value of ¢‘B, since (Pk(ol),...,Pk(ok)) has rank at least k-1 for

PE A e By (10, p. 21] ¢I;1(0) is an nM- l1-dimensional closed submanifold of

k
-1
M iti = \ v . a
-1 By definition ./l(k '/“k-l g %5 0) _ .

k

: 1 m T4
For w= (W ,...,w ) define w= z w . We consider normalisations of contin-

i=1

gent commodity price vectors such that Pw=1.

LEMMA 5. Consider economies & for which agents' preferences belong to & ;.
: = — e

nMm

Let@/’CRg be open with 9%° null. There is an open set QCR_H_ with @ null,

such that for each economy & with wEQ every contingent commodity equilibrium

price system for w with Piw=1 satisfies PEN.

Proof. This is basically a regular economy argument and except for the choice

of normalisation of prices follows Dierker [ 7, pp. 94-95] closely. Hence we

M __nMm

R

can be brief. Let f:L denote the demand function of agent i. Define Z: RL_X -+

N RnM by

oo 10 o~ e
Z(P,w) = } £ (P,Pw ) -w(PW)
i=1

then the following properties hold.
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m :
(i) z2(P,w) =0 is equivalent to Z fi(P,Pwl) =w and Pu=1. Define the equi-
i=1

librium price set M(w) = {PERI:T | Z(P,w) =0, Pu= l} then M(w) # 0 since’
the preferences lie in .?cl.

(ii) Taking the derivative of Z with respect to the initial endowment of
‘agent 1, lez(P,w) has rank nM if Pell(w) so that Z is transversal to
{0}. By the Transversality Theorem [13, p. 79, Thm. 2.7} 0 is a regular
value of Zw for almost every w, where ZW(P) =Z(P,w).

(iii) By (ii) and the boundary condition satisfied by the fi, there exists a

nNm nM

family of open sets Q/acRH_ , a€I and c! maps: ‘ll Q/ — R

e 151,

+.++,r such that'r <= and
o a
Ty
(a) T(w) ={v w),. N W)} Vwe# , o€l

1
a
(b) ] is null

[aeI a

(c) wi is a submersion, i=l,...,ra, aclI.
Only (c) needs comment, since it is usually not pointed out in regular
economy type arguments. By the implicit function theorem

1 -1 !
D ¥y = [D,2E0 17D 2R, B = ¥, ()

" has rank nM since D IZ(P,w) has rank nM. Note also that I can be assumed count-
w

able without loss of generality.

Ta

(1v) Let F=RI"\9 . For each a€1l define &' =% \ VU w L(F). Since F is
i=1
closed in R:_Ii{, tl)a (F) is closed in Qla and thus QIO'L is open. By lemma 6
below, each lbi-l(F) is null in Qla. Take I to be countable and define

= Ua'. "
a1l

The proof of theorem 3 follows from lemmas 3-5 by lettingv)f=ul(k. It remains
only to establish the following result; since it does not appear in standard

tests we sketch the proof.
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r
LEMMA 6. Let r>s, % CR an open set and ®: % —>R° a submersion. If FCR®

. -1 .

is null, then & (F) is null in R

Proof. Define the canonical submersion A : R - r° by A(xl,...,xr) =
(xl,...,xs). Pick x€4/. By the representation theorem for submersions

[10, p. 20] there is an open set %', x€® ' C % and a diffeomorphism Y of %'

into RY such that P(x)=ro¥(x) V x€4'. Thus

S

0! Q/'(F) v IOTNE) = v EXRTS)

FxR ° is null in R" since F is null in R® and since W_l is smooth, ‘i’—l pre-

-1
serves measure 0. Applying the Lindelsf principle, we get ¢ (F) is null. -

5. PROOFS FOR SECTION 3

Proof of Theorem 4. We want to show that a contingent commodity equilibrium

i i
exists in which p is #¥-measurable and each )(1 is ¢ -measurable. In this case
i i1
the finite~dimensional vectors p= (p(ua))aEA’ X = (E(x l Has))aeA, ses serve
to define p and xi respectively. When p is J¢-measurable the budget constraint

in (Al)* reduces to

i i
aék sé sp(a)"as(xas " Vas?

A

0, i€1

where nis= ‘YT(H:S). Thus if x if affordable to agent i so is E(x ]Xi). In

view of (10) a J{’i-measurable y will always be chosen by each agent. We now

proceed through a series of steps to calculate mean demand for an economy &.
(i) Let ©' denote a typical elemént of 4, defined in 3.2. For each

(li l,w,w')EK let f(lt |,w,1r';p)= (fa (|,>; |,w,1r';p))a€A’ s€s be the itl max-

S

imal element of the budget set

nMN '
B(p) = {xER+ ‘aéA sésp(a)was(xas-was) s 0}
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This defines f as a continuous map f : Kx Riuf—> R, the proof of continuity

being a variation of the argument given by Hildenbrand [12].

(ii) For each ((z),ﬁ,n') € L and peR:I_M let f((t),ﬁ,ﬂ';p) =

(T:'a((ij),ﬁ,n'; p))aEA be the () maximal element in the budget set

B(p) = {ieRnM| ) pa) (X -%) < 0}
a€A

~ = = M = _ ool
This defines f as a continuous map f : L X R?f—> R, . Since (z)e .?cl , fe €
in p and satisfies the boundary condition stated in section 2.

(iii) Consider (|= |,w,7') EK and the corresponding S-average character-

istic ((=),%,m')EL. Then

£.((x),a,m%p) = ] m o Uz lwr'se)
sE€S

(This is just Hick's composite good theorem.)

(iv) Consider agent i's demand in state (a,4) and with price system p

i _ i i
bp(8) = faéi(lgl,w T P)

Since the marginal probability on ﬂ_ Si is a product measure, the family of

iel
random variables {¢i } is independent on || S,. This family is also uni-
_ ap'iel : i€s i
formly bounded by (i)
lol (o)l It (= np)ll < o
sup ¢ap(4) < sup max fas(|~ |, w,n'; @)

(|z|,w,m")EK seS

Thus Kolmogorov's law of large numbers applies [2],

17 .1 i
= - = - A
1im mizl[d&ap(é) E (¢ap)] 0 a.s a€
i i i .
= f
Define wa(A) Vo4 Then {wa}iEI is an independent uniformly bounded family

i
of random variables. Thus



28

1 i 1
lim = § {w.(8) -~ E@)] =0 a.s. a€cA
me T yop 2 8

i

aafas (T [ Lt =

. (v) Recall that nA=n(Ha), a€A. Since E(¢i )=-17\- Z
a ap "a s€S

1 - -i i i 1 i 1 1 -i i -i i
Y fa((_g:-),w ,T ;p) and E(wa) ==X Z naswa=—z W if we let g = ((E;),w ,T ), then
L 1 L s €S L i

m .
) =£_l_ z £ (g';p) = —1-1{ fa(g;P)um(dg)

Since by assumption there exists yuE.#(L) such that o —w—> g as m —>« and since

fa is continuous and bounded on L

° 1
lim Y E( ap = —g I{ (g;p)u(dg)
a

gl

m° i=1

m
1 i, _ 1
lim = Z E(wa) & f
me i=1 L L2

‘Thus in view of (iv)

- l l .
lim — Z¢ 4) == [f (g;p)u(dg) a.s.
m—*“mllap ALa
a
m

1 i 1 (-
lim—~Zw(A)=—-—fwdu a.s
n1—><=°mi=la n‘:La

(vi) Let Za(p,u) = I{i:'a(g; p)u(dg) -I{Gadu, a€A, Z(p,un) = (Za(p,u))aEA and
consider the induced correspondence Il : #(L) — Riﬁf defined by

M) = {perly | 2, =0, [ p(a)fd du=1}
aE€A L

It follows from Hildenbrand [12] that MI(u)# @, Vue.4(L) and is upper hemi-
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continuous on . .#(L). Consider any p&N(u) and define )(i by xi(a,b) =

fab (lz I,Wl,ﬂl;p), (a,4) €L, then [(xi) ] is a basic contingent commod~

ie1p’P

ity equilibrium. "

Proof of Theorem 5. The futures-insurance market equilibrium satisfies (Fl)*—

(F&)*. Since the spot price p is J¥-measurable, the constraint

B(a,s)(X(a,8) - w (a,8) £ vi(a,8) +R(z1,a), (a,8) €1

in equation (11) reduces to the finite-dimensional condition

1

5(a) (?cas-wis) < Vas+R(zi,a), (a,s)EAxS (14)

Let R(zl) = (R(zi,a))aeA= Qzl, then- as in the proof of theorem 1 we cannot find

z* such that in-i- 0, in# 0 so there must exist B& Rb:+ such that BQ=0. Multi-

vo o= 0; then multiply by

ply (14) by ni , sum over s, use the fact that z e
as ses as as

Ba to get
Bp(a) § ni (R _-wi) s B m(H)R(zT,a), a€ A (15)
ap as  as as’ = Ta a T
sESsS
Define ﬂ(Ha)ﬁ(a) = Baﬁ(a), ac€A (16)

“then (15) reduces, by summing over a, to

S i . i
aéA Sésp(a)“as(xas-was) 2 0

i, . 1 i
so that % lies in the contingent commodity budget set. Thus¥® (p,q,7 ) SC (p)
when contingent commodity prices are defined by (16). To show the opposite

inclusion define

i - - 1 i-~1 i 1 i 1
v =p@IE _~—5 L7 Y- (w -= ] ow_w )]
as ; as nAses as as as T’A = as as
a a
1 - 1 i i % SN {
ya = p(a) A z Tras(xas_was)’ y (va)aEA
T4 SES
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L1 N5 N §
then z ni Gi =0 and by the rank condition there exist #' such that in==y
seg 28 as

and the proof is complete.

Proof of Theorem 6. Modify the proof of theorem 2 in the natural way.

Proof of Theorem 7. By theorem 6 given a basic contingent commodity equilibrium

~1 ~ . . . . == (A
[ (x )iEEI’ Pl 1if the induced finite-dimensional price system p-(p(Ha»aEEA
satisfies pE./((k, then the induced matrix Q has rank M- 1 and G(i)iGI is
achievable through a futures-insurance equilibrium. Thus to complete the proof

it suffices to show that the set
I = {nEM(L) lﬂ(u)C«/(k}

is an open dense set in .#(L). That T is open follows from the above mentioned
upper hemicontinuity of II. The density of T is a consequence of lemma 5 and
the fact that the p with finite support are dense in #(L). To establish the
density of T we must show that for each uE€.#(L) andAeach.neighborhood (u) of
p there exists p' such that u'EEFfWQV(u). To this end choose u'" with finite
support (gl,...,gl) such that "€ %(n) and u"({gi})=-%% where r, and m are
~integers. Then th¢ economy corresponding to u'" is equivalent to an economy &
with r, consumers with characteristics_gi, i=1,...,2, Let wéiRifm‘denote~the
initial endowment vector for this economy. By lemma 5 an arbitrarily small

perturbation of w will yield an economy with endowment vector w' with associated

distribution u' such that p'€TN (u). L]
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APPENDIX A

EXAMPLE OF NONEXISTENCE OF FUTURES MARKET EQUILIBRIUM

Oliver Hart [11] provided an example of the nonexistence of a futures mar-
ket equilibrium in a model with two commodities, two consumers and two states of
nature. His model differs from ours, however, in that he assumes that agents

pay for futures contracts at the time of purchase, rather than at the time of

. ' : . . . i L
delivery. Because of this, in his example the requirement gz~ =0 is imposed on
agents at time O (in our notation). With payment at time of delivery this con-

straint is not required, and without this constraint the Hart example has an

equilibrium{ in fact it is not difficult to show that with only two states of

nature in our model, a futures market equilibrium will always exist. As we show

below, however, equilibria may fail to exist as soon as there are three states
of nature.

The idea in Hart's example is as follows: agents have von Neumann-Morgenstern
preferences and the aggregate endowment is the same in each state. This ensures
that the prices in a contingent commodity equilibrium will be collinear across
‘states. Agents' utility functions and endowments differ enough however to ensure
m thé€ in é puré spot'markét-equilibfiﬁb without futures markets, the spot prices
are linearly independent. 1In a futures market equilibrium only two cases can

arise; either spot prices are linearly deﬁendent or they are linearly independent.

In the first case, since payment is made at date zero and since there are dnly
two states and two commodities, trading in futures achieves no additional span-
ning: the equilibrium must thus be a pure spot market equilibrium; but in this
case spot prices are linearly independent (a contradiction). If spot prices

are linearly independent then futures trading achieves complete spanning and the
equilibrium is equivalent to a contingent commodity equilibrium — but in such an

equilibrium prices are collinear (a contradiction).
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We construct an example with three agents, three commodities and three
states of nature with T=1 so that k(F) =3=n. We use the same idea as in
Hart's example: constant aggregate endowment (no aggregate risk), sufficiently
different individual preferences and endowments. However now three possible
cases can arise: a pure spot‘market equilibrium, an inefficient futures market
equilibrium and an equilibrium equivalent to a?éontingéﬂt market equilibrium.
The argd%e;twnqeds to show that none of these eases can arise.

Assume each agent i has a log-linear von Neumann~Morgenstern utility func-
tion |

. , 3 3
ul(xll",xi',xz) = z ajf 1In x%, z aj:' =1, ai>0

and define ai= (ai,ai,ai), for i=1,2,3. We will assume that {al,az,aa} is a
linearly independent set of vectors (preferences differ). Let A=={al,a2,a3}
be the set of states of nature, and suppose each ay has a probability of one-
third. wi(ak) denotes agent i's endowment vector in state k. Assume that

Z wi(ak)= (1,1,1) for each a, and that wi(ai)t» wi(ak) for k # 1, i=1,2,3
i=1 .
(endowments differ). For example, one could take wl(ai)==(1-2€, 1-2e, 1-2¢)
and wi(ak)= (e,e,c) for i#k. For shorthand denote agent i's income in state a,
" as Mi(ak;zi)==p(ak)wi(ak)+-zi(p(ak)-q). We cbhstruﬁt some équatiOns-that'mﬁst
be satisfied by equilibrium futures market prices (p(al),p(az),p(a3),Q) and
futures contracts (z1,2z2,z3), and then show they have no solution.

The demand functions for agent i can be obtained by first maximising ui

subject to p(ak)xi(ak)==Mi(ak,zi) with 2t arbitrary, which yields x;(ak)=
{ st (ak,zi)
h pj(ak) ’

and then inserting this solution into u- and maximising ELR. with

3 (p(a)-9) |
5 i =0. For supply to be equal to

k=1 M (ak,z ) ' ‘ {

3 { 3 i.M (ak,z )

) = Z w (ak) =1, or equivalently, E aj——————— =1

i=1 j i=1

a

respect- to zi, which requires

3

demand we need z xi(a
=13k
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Pj (ak) z ajM (ak z ) and p, (a.k) >0. Thus in order for (p(al), p(az), p(a3), Q)

to be equilibrium prices the p(ak) must be strictly positive and there must be

a choice of (zl,zz,za) such that

3 ., . .
p(a) = izl“lMl(ak’zl) V k (1)

(p(a )-q) .

k=1 ‘\1 (a yZ )

10
o

Vi (2)

Let (p,1l) denote the 4-vector obtained by appending 1 to the 3-vector p.
We will consider the set of vectors {(p(al),l), (p(az),l), (p(a3),l)}. It is
easy to check that either this set is linearly independent, or there is an index

k such that p(a.E) is a convex combination of the remaining p(ak).
3

o1 . . - i
Suppose (p(a.k), l)k=l,2,3 is linearly independent. Define Gi Z i i
k=1 M (a,,2")
3 p(a) 3 1
Then (2) is equivalent to q= z 31 i for all i. Since z - =1,
k=1 eiM (a.k,z ) k=1 6, M (ak,z )

we get

3 1 1
(q,1) - (q,1) = | [ 7 - J(p(ak) 1) =
k=1 elu (a.kz ) 9 M (ak,z )

for i=2,3. By linear 1ndependence we must have 8 Ml(ak,z )-6 M (a.k z ) Vi,
8 3
' 1
V k. Then by (1), p(ak) Z a —-—i—M (ak =61M (ak,z ).zla 'é: for all k, so
1=

that the p(ak) are collinear. This would imply, however, that (p(ak), l)k=l,2,3
has rank at most 2, a contradiction. (This is the part of the argument which

requires more that 2 states.)

Suppose p(a;) =8p(a,;) +(1-8)p(a,), 05B<l. By (2) one can find a T such
3 3 4, 4 i,
that q=<p(a,) + (1~ )p(a,). By (1) p(ay) = ) a M (ay,z)= L a (BM (a;,z)+
' 1=1 i=1

(1-8)M'(a,,z0).
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Since {ai} is linearly independent, we must have Ml(a3,zl)==BM1(al,zi)

i=1,2,3
+ (1- B)Mi(az,zi) for 1=1,2,3. Using the definition of Mi and substituting the
expressions for p(aa) and q in terms of p(al).and p(az) yields Bp(al)(wi(aa)-
wi(a]»‘+(1"8)p(az)(wi(aa)-wi(az» =0 V i. But for i=3 we have w3(a3)-w3(al) » 0
and w3(a3)-w3(a2) » 0, a contradiction. Note that by our choice of the wi(ak)

this argument would work regardless of which p(ak) is a convex combination of

the remaining spot price vectors.
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APPENDIX B

MULTIPERIOD SPOT MARKETS AND MATURITY DATES

In the previous sections we have assumed that spot markets meet only at
date T and that all futures contracts mature at date T. In this appendix we
indicate how the results of the paper can be extended to the case where there
are spot markets at a whole set of dates on the interval [0,T] and where fu-
tures contracts can mature at any one of these dates. For simplicity we deal
with the pure futures market case. Let A be the set of states of nature and
F= {Ft}z=0 a filtration, as before. Let UC{O,l,Z,...,T} be the set of dates
at which spot markets will be active. We require {O,T}CU, and define U0=U\ {0}
Let D= {(U,Gu) | ueU and o € Fu} be the set of date-event pairs at which spot
trades can take place. The consumption set for each agent is X= {x :D— Rf:}
Each agent is characterised by a preference ordering = on X and an endowment
vector w'EX. A contingent commodity equilibrium is a pair (2_:1,. C XT3 P)
consisting of a consumption bundle ii for each agent and a price system P€X

m m
such that Z :_cl(d) = Z wi(d) ¥ d€D, and such that )_ci is the z maximal ele-
i=1 i i

i=1
ment satisfying the budget equation } P_(d)(ii(d) -wi(d)) < 0.
- d €D

To describe futures markets, first define Du= {(t,ot) | t £u and otEFt},
‘ n + n
for u€eU. Define X, = {x: D, R } and X, = {x: D,— R+}. Then a futures market
system can be described by a system of spot prices p €X, systems quEX: of prices
for delivery at time u, and futures contracts zie xu for delivery at date u.
Let Ot(ou), for t 2u, denote the unique oteFt which contains oue Fu' As before

we assume each agent at time t +1 closes out his position taken at time t. Then

agent i's income from futures trading at date u€U, and event 0 € Fu is:

1 ucl
Ru(zu’ou) ) CZOZU(Gt(cu)) [qu(t+l’ ot-f-l(ou)) - qu(t' C,t:(ou))] (1)
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Since all payments are made at time of delivery, there 1s no way to alter
income across time periods unless an additional security is uséd which allows
such a transfer of income. To keep things simple assume agents can save and
borrow freely at a zero interest rate. Let Si denote agent i's savings in
period u. For u€ define u_lto be the spot market date immediately preceding
u. We will constrain agents to satisfy S;==O. Then agent i's system of budget

constraints is

: i i i
p(0,0,) (x7(0,0.) ~w (0,0)) +5; 5 0
i i i i i ‘
P(U,Uu) (X (uyou) -w (uycu))+su Y SU_I+RU(ZU’GU) v (u,ou)ED, u?#0 (2)
ST =0
A f t 272 : . . 1 1 1 e m m my .
utures market equilibrium is a pair [(x ’zu’su)uEIV , (x ,zu,S )uEIV
(p'qu)ueU ] such that a) all markets clear: ) % (d)= ) w (d) V d€D,
o 0 n i=1 i=1
i i . i -
Zz (d) =0 VdeDd VueUu,, ZSl=0Vu€U; and b) %" is the > maximal ele-
=1 Y u R i

ment for the budget system (2).

We sketch how the arguments in section 2 can be extended. Let (il,...,im;P)
be a contingent commodity equilibrium. ' The idea ‘is to use P to define spot . and
futgres prices, and to show that at these prices there is a futures market equi-
librium in which (il,...,im) is the commodity allocation. The crucial part of
the argument is to show that there exists (zi,Si) which makes §i affordable for
each agent, so we will concentrate on this argument. By the same type of gener-
icity argument as in the paper, we can assume P satisfies éPk for any k<n (with
D taking the place of A in the definition on page 22). If k(F) <n, then this

implies-that for each u€U,, (P(u,ou))due satisfies &, , k-k({Ft}t=0), with

F
u
Fu replacing A in the definition of Q?k. Now define p and q, by first picking

B(a) such that z B(a) =1 and B(a) >0, and then set
a €A
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1
p(u,ou) B B(cu) P(u,ou)

1
qu(t’ot) - B(a. ) ): P(u,ou)

o Co
t u t

Note that, for each u, this is exactly the same definition as in the body of the

. i
paper, if we replace A by Fu. As before we can write the vector (Ru(zu’cu))oueFu

~as a matrix vector product Quzu, and with the rank condition R, satisfied the

k
{##F
image of the linear transformation defined by Qu spans the space Hu= {yER u

Z Blo Jy #0}. We need now to show that there exists (zl,Sl) such that the
g GF u Ou u u

u_ u 1 i
contingent commodity X~ satisfies the budget system (2). First, define Su

recursively as follows:

i i i
So = _p(osco)(x (0,00) -w (0:00))
i 4 i i
st=s- + § B(s)p(u,0)(x (u,0)=-w (u,0)), u>0
u u 1 u u u u
- o €F : i
u u
o .
. i i i #Fu
It is easy to check that ST=0 and that Z Su=0, and that the vectors y €R ,
: . . i=1 ,
i i _.i _ . i
defined by ycu—p(u,cu)(x (u,0 ) -w (u,ou))+Su S“-1’ satisfy y €H . Thus the
. . m .
© 2quations Quzl'll=yl have solutions zi such that } z‘];=0, using the same argument
i=1

as on page 22.
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