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RESTDUS SIMULES

GOURTEROUX C., MONFORT A,, RENAULT E,
TROGNON A,

Dans cet article on considére Les modeles déduits d'un modele
de négression Latent parn une application non-LinZaire (par exemple Les
modles probit, tobit, de déséquilibre...). On définit, dans ce contexte,
des nésidus simulis qui jouent un n6le analoque & celul des nésidus
habituels dans Les modeles de négression, Ces n8sidus simulis permettent
en particulien d'utilisen Les programmes de régression standand pour
effectuen des vénifications araphiques ou des vénitables tests statistiques,

SIMULATED RESTIDUALS

GOURTEROUX C., MONFORT A., RENAULT E,
TRAGNON A,

In this article we consider models deduced 4rom a Latent rearnession
model by a non-Linear mapping (probit, tobit, disequilibrium models...). In
this context we define simuldted nesiduals whose nole L8 similarn to that o4
usual nesdiduals in the negression model. In particular it is possible,
with these new tools, to use the standard negression packaqu fon diaanostic
checks on genuine statistical tests,



1. INTRODUCTION.

The large use of linear or nonlinear regression models in econometrics
has two main origins : first the simplicity of the least squares method and,
secondly, the existence of packages giving a number of diagnostic tools, which
can be easily interpreted in a descriptive or in a statistical way. Such tools
are, for instance, the residual plots, the sum of squares residuals, the R -

coefficient, the Student or Fisher type statistics....

The main purpose of this paper js to explain how to use the standard
regression packages for a large class of nonlinear models : models deduced from
a latent regression model by a nonlinear mapping. This class contains as
special cases the usual probit models, the simple or the generalised tobit
models, the disequilibrium models....

The central idea of the present paper consists in simulating the values
of the unobservable endogenous variables and in mechanically implementing the

regression package on the simulated series.

In order to motivate this approach let us briefly consider an artificial

probit model. The data generating process is :

where the ui’s are I.I.N. (0,1) and the xi’s are such that :

xi = 4.899 10 i- 3.474

*
The ,y_i ‘s are generated for i =1,...,100 ; this implies that the empirical

mean of the xi’s is -1 , their empirical variance is 2 and the

2
theoretical R is .667 .



The observable endogenous variables are defined by :

y, = 1 if y » 0

y =0 if y < 0
i i

In the probit model based on the linear regression :
Yy = o + BX + U u = N(0,1) ,
i i i i

the maximum likelihood estimators are :

»~ -~

a = .872 , g = .891 .
(.193) (.149)

It is now possible to simulate values z_ for the latent endogenous variables
i

from the conditional distributions of yf given y_ , in which a and B
are replaced by a and B ; this is e§;11y done b; taking zi as the first
positive (resp. negative) Zi = o+ 8 xi + U ; , where the u1j are
T1INCO,1) , if y1 is equal to 1 (resp. equal to 0).

Using a standard package for regressing the zi's on the xi's , we obtain
the following "second stage” results :

a = .801 , 8 = .86
(.119) , (068
M.S.E. : .937 R® = .618

The residual plots have the following form :
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FIGURE 1.
PLOT OF SIMULATED RESIDUALS
FOR A WELL SPECIFIED PROBIT MODEL
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It is clear that this regression has the advantage to provide automatically a
large number of statistical tools ; however it is important to keep in mind
that the usual interpretations of these tools may be misleading, since they are
based on simulated approximations of the y*'s . For instance, we see, from
the previous example, that ; and E are not too far from o and B , the

R™ and the M.S.E. are close to their theoretical values .667 and 1

The residual plots look similar to those obtained in the usual Tinear models.
However the standard deviation of a and E are obviously underestimated,
since the computed values .119 and .068 are significantly smaller than the
standard error of the asymptotically efficient estimators o« , B . This
underestimation also shows that the tests based on the t or on the F

statistics are not directly applicable.

In summary the previous approach is appealing from a descriptive point of view
but, on the other hand, it requires a careful investigation of the statistical

properties of the various regression outputs.

These properties will be derived in a general framework in which the latent

model is not necessarily a regression model.

The paper is organized as follows. In the second section we discuss the
properties of simulated series and, in particular, we establish a generalised
central limit theorem and a law of large numbers for functions of simulations
and observed variables. The estimation problems are considered in section 3 ;
in particular the asymptotic properties of the second stage estimators are
given and compared with that of the maximum lielihood estimators. In section 4
we introduce the notion of simulated residuals and we explain how the residual
plots can be used for detecting specifications errors such as : omitted
variables, outliers, heteroscedasticity ; we also compare the practical
usefulness of these simulated residuals and that of the generalised residuals
introduced by CHESHER-IRISH (1984) and GOURIEROUX-MONFORT -RENAULT-TROGNON
(1984-a) . '

Section 5 is devoted to various test procedures ; in particular it is shown how
it is possible to correctly use the score test principle in the second stage.

Various technical proofs are gathered in appendices.



2. LATENT MODEL AND SIMULATIONS.

2.a - The model.

Three kinds of variables appear in the model : the exogenous variables, the

unobservable (or latent) endogenous variables and the observable endogenous

variables. xi , i=1,...,n denote the d -dimensional vectors of exogenous
0
X
variables, vy , i=1,...,n , denote the d -dimensional vectors of latent
endogenous variables and y , i =1,...,n are the d2—dimensiona1 vectors

i
of observable endogenous variables.

% x
It is assumed that the vectors (y ’,x ) are independently and identically

i i
distributed ; no assumption is made on the true marginal distribution of x_  ,
x i
but the conditional distribution of y given x s gssumed to belong to a

* % j i
family whose p.d.f. are 1 (y /x;8) , 8 € 8 c R

The endogenous variables are defined by :

’ _ *
(2.1) yi = g(yi)
The previous assumptions imply that the (y’,x’) , i=1,...,n are
independently and identically distributed ;1the conditional distribution of
yi given xi belongs to a family whose p.d.f. are denoted by 1(y/x;8) . It
is also assumed that 8 1is identifiable from this conditional distribution.
Finally, it is assumed that there exists a consistent, asymptotically normal
estimator of 8 , denoted by 8 , which is obtained by maximising a
differentiable objective functiog of the following type : '

n
(2.2) k(y ,x ,8)
‘ yi i

i=1

More precisely, it is assumed that 8 is a solution of :
n
n

ok

—(y,x ,80 = 0 ,
i i

a8

izt



and that :
n
" -1 1 ok
vnie -g) = J — — (y ,x ,8) + o (1)
n 0 o8 i i p
vn
i=1
azk
where J = E - : (y,x,8) and 8 is the true value of 8
0 08 98° 0 o }

(o]

An important class of models satisfying the previous assumptions is that in
which the latent model is an univariate or multivariate gaussian linear model ;

with such a latent model and with a suitable g function it is possible to
reach many usual models such as : univariate or multivariate probit models,
simple or generalised tobit models, one-market or multi-market disequilibrium

models....

2.b - A generalised central limit theorem.

The statistica] procedures proposed in the following sections are based on
simulated variables =z in 1*= I,...in independently drawn from the
conditional distributions 1(yi/y X ;en) , 1.e. from the conditional
distributions of the latent endogenous variables, in which the parameter is
replaced by the value of the estimator En introduced in the previous section.
The asymptotic properties of these statistical procedures rest upon the
asymptotic behaviour of random variables of the form :

n
1
(2.3) - Z hz Ly ,x)
n in 1 i

i=1
where h 1is a H-dimensional function.



If the 2z , i=1,...,n , were drawn from the true conditional
N X
distribution 1(y_/yi,x1,8 } , the usual central 1imit theorem would apply ;
i 0

but, since the estimator 8 used in the simulations of the z ’'s is a
in

n
random variable, depending on (y_,xi) , i=1,...,n , the zi ‘s are
i n

correlated and it is necessary to establish a generalisation of the classical

central limit theorem.

THEOREM 2.4 (generalised central limit theorem)

Let & be the random vector defined by :
n

n
1 x
£E = — :%: th(z ,y ,x) - E hiy ,y,x)1
n n in 1 i 8
o

i=1
where E is the expectation operator with respect to the true

[o] b 4
distribution of (y ,x)
Under regularity assumptions given in appendix 1, & converges in
n
distribution, as n + « , to the zero-mean normal distribution, whose

covariance matrix is :

V. h - V E (h/y,x)
8 8 8

0 o O

0 -1 ok
+ vV {f (h/y,x) + E —E (h/y,x)|d — (y,x,8 )}
8 \8 8 98’ 8 08 o}

o o 0 0

Proof : See appendix 1

It is straightforward to verify that this theorem contains, as a special case,

the usual central 1imit theorem if 68 = 8 ; 1indeed, in this case, we can
n 0]
ok
choose, for instance k = - |} 8 - 08 || which implies 5; (y,x,8 ) = 0 and,
o
therefore, the covariance matrix of E becomes : °
n

V h - V E (hy,x) + V E (hy,x) = V h
8 6 8 6 8 8

o] c 0 0o O 0



Corollary 2.5 :

Under regularity assumptions given in appendix 1, the asymptotic

covariance matrix of § can be written :
n

V h - V E (hy,x)
8 8 8

0o o O

%
9 Log Wy /y,x,8 )]
0 -
J

i ok
— (y,x,0 )
08’ 08 o

+ V {E (h/y,x) + % [h.
o 0 o

Proof :See appendix 1.

Corollary 2.6 (weak law of large numbers)

Under the same assumptions as in theorem 2.4 ,
1 d x
- h(z ,y ,x ) converges in probability to E h(y ,y,x) as n + =
n in i i 8
0
izt
| 1
b 4
Proof : —Z [h(z. ,y .x) - E hiy ,y,x)] = — & and the result
n in 1 i ] n
0 vn
i=1 0
follows from theorem 2.4

Note that under a modified set of assumptions it is also possible to establish
a strong law of large numbers(see Appendix 2).



3. ESTIMATION.

3.a - Theoretical results.

As mentioned in the previous section, 8 can be estimated by 8 anda
) n "
priori, there is no reason to consider another estimator, specially if #® is
n
asymptotically efficient. However, if we want to use mechanically the test

procedures available for the latent model when yf is replaced by =z , we
are implicitly led to consider estimators of 8 gased on the zin‘s 1?
i=1,...,n . For instance, if the latent model is a linear model

y* = x, b + u_ , we shall have to consider the least squares estimators of
b obtain;d from a1regression of the vector z , i=1,...,n , on the

in
exogenous variables. More generally, it is necessary to study the properties of
the estimator 8 obtained by maximising the likelihood function of the

n *
latent model in which the y , i =1,...,n have been replaced by the z1 ,
i n
i=t,...,n
In fhe sequel we assume that the =z , i=1,...,n have been independently
in
X - . . )
drawn from the distributions 1(y /7y ,x ,8 ) , where 8 is the maximum
i n n :
likelihood estimator of 8 , in the observable model. In other words, we
assume that :
(3.1) k(y,x,8) = Log 1{y/x;e)
2
0 Log 1
It follows that J = % - —5;—537— is the Fisher information matrix in the

0

observable model. The estimator E that we are going to study is obtained by
n
maximizing :

n
X
(3.2) Z Log 1 (z /x ;8)
in i

i=1
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THEOREM 3.3 :

~

Under regularity assumptions given in appendix 2, 8 is a strongly
n

consistent estimator of 8
0

Proof : See appendix 2.

Once the consistency is established the asymptotic normality is a consequence

of the generalised central limit theorem 2.4.

THEOREM 3.4 :

Under regularity conditions given in appendices 1 and 2, n (5 -98)
n o
is asymptotically normally distributed ; the 1imit normal distribution

is zero mean, its covariance matrix is

4 -1 - -1
'Z:I ST 01+

where 1 1is the Fisher information matrix in the latent model and J
is the Fisher information matrix in the observable model : both these

matrices are evaluated at 8
0

Proof :

~

is solution of

*
0 Log 1 (z /x ;0)
n 1

n
n
i
) -
a8

i=1

From an expansion around 8 we obtain :
0
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x
n dlogl(z /x ;8) n o Llog
! in i o 1 .
— z +—Z——-——\/ﬁ(a-a)=ou)
n n o P
vn 29 08 98’
i=1 i=1
or
x
n dLlogl(z /x ;8)
1 in 1 o ~
— z -1 VAR -8) = o(1)
n o P
\/ﬁ.i 08
n Log 1 (z /Xi;e )
-~ O
\/ﬁ(a—a)z— Z + 0 (1)
n o p

i=t

The asymptotic normality is a consequence of theorem 2.4 ; the asymptotic mean
is zero and the asymptotic covariance matrix is obtained from the general
b 4 X
o0 Log 1 (y /x;8 )
o]

formula of corollary 2.6, by replacing h by 1

1]
First we have to compute

x %
1 9 Log 1 (y /x;8 )////
- )
E (h/y,x) = I E , X
8 y 9 08 Y

0 (1]

9 Log 1(y/x;8 )
o}

o8

(See e.g. MONFORT (1982) p. 73).

Thus, the asymptotic covariance of /n (8 - 8 ) s :
n o

, 0 Log 1(y/x;8 )
Z:vr\-v E (hvy,0 + V[ +A ) °] ,
8 8 8 8 o8
0 0 O 0




*x
9 Log My Zy,x;8 )
[o]

Ta—

where A = E [h .
9
o

Therefore, we get
-1 -1 -1 -1 - -
Z = 1 - 1 J1  + (1 +AJ DI +J A

Let us now compute A .

x X *
1 0 Log 1 (y /x;8 ) 9 Log 1(y /y,x;8 )
- o o
A = I E .
) o8 08°
o
% * *x X
o Log 1 (y /x;8 ) 9 Log 1 (y /x;8 )
-1 o 0
= 1 E .
] 0o 08~
o]
x x
1 o Log 1 (y /x;8 ) 9 Log 1 (y/x;9 )
- o )
- 1 E .
] 08 e’
o

The first expectation is equal to 1. Taking the conditional expectation given
y and x, it is easily seen that the second expectation is equal to J
Therefore :

and
-1 - -
Al = 1 (1 -NJ
: -1 ) 1-1 , 0
As expected, 8 is asymptotically less efficient than 8 , since the
n n
R _ -1 _ e
asymptotic covariance matrix of 8 is J and L - J = I (1-NI1 is

n -~
positive. Moreover it is clear that 8 is asymptotically efficient if, and
n
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only if, I = J , that is if and only if, g 1is a sufficient statistic for
8 Esee e.g MONFORT (1982), p. 741.

“~

In order to have a more precise insight of the efficiency loss when using an
instead of @ , let us consider the one dimension case. If 8 is a scalar

n
parameter the formula giving [ can be written :

3.5) V. 8 =V 8§ - —mm—— 4+ V 8
as n as n as n

where & is the maximum likelihood estimator of 8 in the latent model
X

n
(which is not computable since the y1 s are unobserved) and where V
as

means asymptotic variance.

Let us denote by r the ratio

Vo8
as n
(3.6) r = —v0o 0 0 < r < 1
Vo8
as n
r 1is the asymptotic relative efficiency of 5 with respect to 9 , the

efficiency loss being a consequence of the unobservabi]ity of yi
Let us define ¢ by :

(3.7)g=——-——-—‘ 0 < ¢ ¢ 1

?

¢ is the asymptotic relative efficiency of 8 with respect to 8 , i.e.
n
to the best computable estimator. :

From (3.5) we obtain :

(3.8) o =
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In other words the asymptotic relative efficiency ¢ of 9 , due to the
n
simulation procedure, is a function of the asymptotic relative efficiency r ,

due to the unobservability of the latent model.
Moreover function (3.8) is readily seen to be symmetric with respect to
r=.5 ; it isequal to 1 for r=0 and r =1 and its minimum, reached

for r = .5 , is equal to .8 .

FIGURE 2.

ASYMPTOTIC RELATIVE EFFICIENCY
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The maximal efficiency loss is equal to 20%, in terms of variance, i.e. about 10%
in terms of standard deviation which does not seem unreasonable. The loss is small
if r is near 1 , i.e. if the observable model nearly catches the whole information

or, on the contrary, if r is near 0 , i.e. if the observable model nearly looses
the whole information.
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This is intuitively &lear since, if the whole information is catched, y = g(y*) is
a sufficient statistic and, therefore, the conditional distribution of y g1ven
Y4 is known ; on the other hand is the whole information is lost, y = g(y ) is
and there is no point, anyway, in basing inference ony .

3.b - An illustration.

The artificial probit model presented in section 1 is used in this subsection

as an empirical illustration of the previous theoretical results.
Except for their signs, the simulated latent variables 2z are not very close
to the latent variables y_i as it is shown in the fo]low1ng figure :

FIGURE 3

COMPARISON OF LATENT AND SIMULATED LATENT VARIABLES
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Nevertheless the maximum 1ikelihood estimator 8' = (a,8) does not differ
much from 9’ = (&,E) . We have seen in the introduction that, on the

contrary, the computed variance-covariance matrix of 5 given by the least
squares package is far from the estimated asymptotic covariance matrix of @

For the present simulation, we have obtained :

0134 .0045 )
Vi = 1 =
.0045 .0045
o . 0373 L0163 )
v = 9 =
0163 0223

According to theorem 3.4 and to corollary 2.6 a consistent estimate of the

~

asymptotic covariance matrix of 8 is :

.0458 .0194
X n w1 e DR | -

vV (8)

n
—

'
<~
—
+
<
1"

.0194 .0258

Thus the computed standard errors of a and E deduced from V(8) are respec-
tively (.119) and (.068) whereas from V*(g) they are (.215) and (.161). The
t-ratio for the hypothesis HO = (B : 1) computed from V is -2.044 while
the asymptotic t-ratio deduced from V is in fact - .863 . If the test of
size .05 is based on the critical value of the standard normal distribution
(- 1.96) the wrong regression results reject HO whereas the correct
asymptotic test does not. This empirical result shows that one should be
cautious about the standard use of the tests that are produced by the computer
in the second step of the simulation procedure.

The previous data allow to compute an evaluation of the asymptotic relative

~

efficiency of 8 with respect to 8 . For a and B we obtain

respectively :
e = .0373/.0458 = 81 %
Q
e = .0223/.0258 = 86 %



17

4 - SIMULATED RESIDUAL PLOTS.

In this section we restrict the analysis to the case where the latent process

is a linear regression model :

Conditionally upon x  the disturbance u1 is assumed to be normally
distributed with zero mean.

In the more specific case where the transformation g(.) is the identity
mapping all the latent variables aEe observable. If, furthermore, the
conditional variance of u, is o , constant over the sample, the ML
estimator of b is the 0L§ estimator. The residual u

x - i
= y - x_b is defined as the deviation of y  (or y ) from the ML

y -x b

estimationlof the conditional expectation of ,y.1 given ; . Since b 1is a
consistent estimator of b , x b s close t; x b 1in large samples.

G. mimics the disturbance u_ and it is natural to judge the correctness of
a;sumptions on u_ by grapgical methods based on residuals. It is a common
practice to use sgme residual plots for the detection of, say, outliers,
heteroscedasticity, omitted variables, etc....

In the general model where g{.)} is not a one to one mapping it is also
important to examine the correctness of assumptions about the u ‘s . But the
x i
difficulty comes from the fact that y_  is not always available and the
j

previous residuals cannot be computed.

Nevertheless, following the procedure adopted in the previous section, some
simulated latent variables =z can be drawn from the conditional distribution
of the latent endogenous variagles given the exogenous and observable
endogenous variables in which the parameter is replaced by the value of the ML

estimator 8 = (b ,8 }) of 8 = (b,o) . For the present model

~ n n n

(bhan) is then obtained by regressing z_ on xi i=z1,...,n . Let us
in

define the simulated residuals as :
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u =z - x_b i=1,...,n
in in i n

-~

X
Since z has the same asymptotic distribution as y and b is consistent,
. n i n
u has the same distribution as ui in large sample. It is then possible to
n
use the simulated residuals as we use the classical ones to detect some

underlying features of the residuais.

To show that this can actually be done in practice, we use some very simple
examples of Probit and Tobit models with outliers, heteroscedasticity and

omitted variables misspecifications.

4.3 - Detecting outliers by simulated residual plots.

To begin with, consider the case where the latent data generating process (DGP)

is affected by outliers. The latent variables are generated as described in

sect1on 1 . The 33th and 66th observations of this DGP have been rep]aced by
= + 10 and = - 10 instead of = -1.24 and = 1.65.

Yy ys y33 yes

For the Probit model :

y =1 if y 3 0 ,
i i

y =0 otherwise

and for the Tobit model :

Yy, =Y if y, » 0
i ] i

y =90 otherwise

The modification of the DGP moves vy 3 from 0 to ! and ¥y from 1 to 0 in
Probit model and moves y from 0 to + 10 and y from 1.65 to 0 in
Tobit model. Around 1 = 33 the yf are almost all negative and around

= 66 the sign of y* is not so &e]] defined. Thus it seems a priori that it
will be more difficult to detect an outlier at the 66th observation than at the
33th one. This presumption is confirmed by figures 4 and 5 which display the
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simulated residuals plots function of the exogenous variable for Probit and
Tobit models.

FIGURE 4

3 PROBIT MODEL WITH OUTLIERS
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FIGURE 5

TOBIT MODEL WITH OQUTLIERS
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The dashed horizontal lines delimit a region of width 3.92 ; , centered at
zero, which visualizes the classical confidence region. Out of this region the
residuals are presumed to come from an outlier. The 33th observation appears to
be out of the model much more clearly in the case of the tobit model than in
the case of the probit model even if the estimated standard error of the
regression is 1.8 for the former, a value far from the true value equal to 1

This large value of 5 is due to the outlier.

4.b - Detecting heteroscedasticity by simulated residual plots.

The latent DGP has a conditional variance depending on an exogenous variable :
Yy = 1 + x + x u u1 = I INCO,1

The ML estimator a and B of the intercept o and of the slope parameter
B , the simulated latent variables =z and (E,; ) are computed as if the

in
model were homoscedastic.

The b]ots of the simulated residuals against the exogenous variable are
displayed in figures 6 and 7 for Probit and Tobit models. The dashed lines
delimit an horizontal cone which is the confidence (asymptotic) region of level
95 % to which the residuals should belong if the disturbances were
heteroscedastic proportional to xi
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FIGURE 6

PROBIT tiODEL WITH HETEROSCEDASTICITY
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TOBIT MODEL

FIGURE 7

WITH HETEROSCEDASTICITY
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Again, the plots for the tobit model are more conclusive than the ones for the
probit model. Nevertheless, even this last one shows some visual clues for
possible heteroscedasticity in the latent model. The classical funnel shape

appears by careful inspection of those two figures.

4.c - Detecting omitted variables by simulated residual plots.

In this subsection, the latent data generating process has the following form :

*
y = 1 +x +w +u , u = 11INC0,1)
i i i i i
with wi = cos({i) ; case(a)
or wi = cos(xi) ; case(b)

In case(a) , w_ is almost uncorrelated with x_ (correlation coefficient
i
= .0t ) ; in case(b), these two exogenous variables are highly correlated

(correlation = .85 ).

The maximum l1ikelihood estimation of the probit and tobit models, the simulated
endogenous variables and the simulated residuals are performed as if the

variable w1 were not present in the model.

Even when the model is a classical linear model a residual plot is not very
informative to detect an omitted variable highly correlated with the exogenous
variables kept in the estimated model ; thus case(a) should be more
interpretable than case(b). The following figures confirm this is also true for
the simulated residual plots. Figures 8 and 9 show a visible positive
correlation between the simulated residuals and the omitted variable in case
(a). But no real relationship can be detected by figures 10 and 11 in case(b).
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FIGURE 8
PLOT OF SIMULATED RESIDUALS FOR A PROBIT MODEL WITH OMITTED VARIABLES ALMOST
o UNCORRELATED WITH THE MAINTAINED EXOGENOUS VARIABLE
u
2 r__ . ’
.r T T e L e T TR PP R S CR
]
. .
L [ ] » [ ]
L ) * [ ]
. . (] . L]
L) [ ] ]
L] * [ ]
. . [ o ¢
[ ] ¢ 0 ¢ [ [ ]
[ * * [ ]
0 . e D o . v wl=cos(r) 7
(14 1} [ K] ]
[
: . L} ] F 3 .
. ] \J
L] 1 4 [ ]
4 [
'] . [
14 * L4 ] L}
[
':’q——-———--—.--——‘_:__._.._..-__ -~ ¢
FIGURE 9
- '1\ PLOT GF SIMULATED RESIDUALS
u FCR A TOBIT MODEL  WITH OMITTED VARIABLES ALMOST UNCORRELATED
wlfH THE MAINTAINED EXOGENOUS VARTABLE
2 e e e e e e e e e e e — =
e
® *
l L . '®
®
[
L} LN J [ ] [ [ 4
[] . . [}
. L} * *
* [ [ [ ]
0 oo : ° N
oo . . W =costi) 7
[ ) * @ [ L] [ [ ]
e [ ] »
L] 3 .. . o [ ]
. * 0 [ L]
N ¢ [4 L4
L4 L]
[ [ 4
[ 4
[ 4 L J [ ]
_2 T e e e e e e O P e e e e e e e e e e e e tms e e A e e ae am —— o—e
b )
L}




e

26

FIGURE 10
PLOT OF SIMULATED RESIDUALS FOR A PROBIT MODEL WITH OMITTED VARIABLES HIGHLY
CORRELATED WITH THE MAINTAINED EXOGENOUS VARIABLE
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4.d - Comparison with the generalised residuals.

Recently along the lines initiated by COX-SNELL [19681, CHESHER and IRISH
(19841 proposed another procedure which has to be compared with the simulated
residuals. They suggested to base empirical diagnostic upon the generalised
residuals which are equal to the conditional expectations of the latent
disturbances given the observed exogenous and endogenous variables

(x ,y ) evaluated at the ML estimator 8 = (b,o )
i

x
u = B~ (u/y_,x))
] i1

j i

For the probit and tobit models the generalised residuals have the following

forms :

e(x b)
1 -
u = ly - ¢ (x b)l
1 1

#(x B) 1 - ¢(x bN
1 1

[

1!
<

-

|

x
=

'

where ¢ and ¢ are respectively the density function and cumulative function

of the standard normal.

This last expression shows that for the tobit model and for indexes i such
b 4

that y > 0 , the generalised residual u, = y - x, b and the
i ~ ~ i jn i
simulated residuals u =z -x b = y - x b are almost equal, since

- i in i i i
b is close to b . On the other hand they differ markedly for the probit or

%
the tobit model when y_  is unobservable.
i

Except in the special case where the latent variable is observed, it has been
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pointed out that the generalised residuals are difficult to interpret. In order
to propose a correct interpretation, the practitioner has to be quite
familiarized with the typical patterns of the generalised residual plots.

In the case of Probit model with outliers the corresponding plots do not carry
more visual information than the plots of the y against x_ . When the
disturbances are heteroscedastic, the pattern of the genera]i;ed residuals does
not change much ; no visual interpretation can be easily obtained. When some
variables are omitted CHESHER and IRISH have shown that the generalised
residuals have little use if the omitted variables are correlated with the

included variables, as it is the case in one of our simulations.

The following figures confirm empirically this fact.



29 FIGURE 12.
GENERALISED RESIDUAL PLOTS FOR A _WELL SPECIFIED PROBIT MODEL
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FIGURE 13
GENERALISED RESIDUAL PLOTS FOR A WELL SPECIFIED TOBIT MODEL
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FIGURE 14
A GENERALISED RESIDUAL PLOTS FOR A PROBIT MOPEL WITH QUTLIERS
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A GENERALISED RESIDUAL PLOTS FOR A TOBIT MODEL WITH OUTLIERS
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FIGIRF 16 -
® + GENERALISED RESIDUAL PLOTS FOR A PROBIT MODEL WITH HETEROSCEDASTICITY
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GENERALISED RESIDUAL PLOTS FQR A TOBIT MODEL WITH HETEROSCEDASTICITY
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N FIGURE 18
GENERALISED RESIDUAL PLOTS FOR A PROBITMODEL WITH VARIABLES ALMOST UNCUKKELATED
3 WITH THE MAINTAINED EXOGENOUS VARIABLE
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FIGURE 20
GENERALISED RESIDUAL PLOTS FOR A PROBIT MODEL WITH OMITTED VARIABLES HIGHLY CORRELATED
WITH THE MAINTAINED EXOGENOUS VARIABLE

A
¢ o
[
- P )
o0
'
P
....
.o
™
(2]
TYYy
. "“‘COS(XI)
R ) ev e e 20000 <
o  § R | r—4
””nooo! 0 -1
e o
oo e
ese o
o0
o e
.
. .
.
.
.
.o
.
FIGURE 21
GENERALISED RESIDUAL PLOTS FOR A TOBIT MODEL WITH OMITTED VARIABLES HIGHLY
A CORRELATED WITH THE MAINTAINED EXOGENOUS VARIABLE
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5 - TESTING PROCEDURES.

5.a - The case of a latent linear model.

Let us consider a linear model :

(5.1) y* = x b + u i=1,...,n

i i i

2 X

where the errors are i.i.d, normally distributed N(o,0 ) . If y , x_ were
observable, b would be estimated by OLS and some diagnostic te;ts wou%d be
performed. For instance, it would be possible to test for the significativity
of some components of b or symmetrically to examine the relevance of some
additional explanatory variables w_ . In the first case, the initial model
(5.1) 1is the general hypothesis ; }n the second case, model (5.1) is the null
hypothesis and the general hypothesis has the form :

b 4
(6.2) y = x b + w c + u
i i i i

In this classical context the test procedures are based on Fisher statistics or

equivalently on score statistics.

When the latent endogenous variable y* is unobservable, the score statistics
may be used after replacement of the unknown values y* by the simulated ones
z1n . The statistics thus obtained are called generalised score statistics.
Depending on the hypothesis to be tested, the simulations are obtained under
the null (case of omitted variables) or the general hypothesis (case of

superf luous variables). The usual properties of the score statistics are no
longer valid because of the replacement of y* by z, . In the following
subsections, we are first interested in the determinag?on of the right
asymptotic covariance matrix of the generalised score statistic ; then by
comparing this right asymptotic covariance matrix to the usual covariance
matrix of the score statistic, we shall discuss the correct 1nterpretation'of
the misspecified score test statistic, i.e the statistic in which the effect of
the simulations has not been taken into account. In the case of a latent linear
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model, this misspecified statistic test simply corresponds to a F-test, applied

to the regression of the z_ on the x,
in i

5.b - Properties of the score statistic based on simulations under the

null hypothesis.

The latent model is parameterisedkby a parameteE 8 , which can be partitioned

in: 8 = * , where o € R ! , B € R 2 . We are interested in
testing the nﬁ]]ity of the subparameter a ; the null hypothesis is given by :
HO : (a=0) . .

If the latent endogenous variable y were observable, the score statistic for

testing Ho would be :

X x 2
9Log 1l (y /x ;0,8 )
i i 0

n
! n

(5.3) § = — Z

n

vn da
i=1

where @ denotes the constrained maximum likelihood estimator of g . If

on '
the true value of the parameter belongs to the null and is : 8 = (: ) ,

' 0

o
£ is asymptotically normal with zero mean and with a covariance matrix given
n

by :

" -1
(5.4) }v & =1 -1 1 I
as n o af BB Bua
where [ , 1 6’ IBﬂ are the blocks of the information matrix I of the
o
latent mgde1 eSa1uated at @

0

When the latent endogenous variable is unobservable,

i) the parameter 8 can be estimated by the constrained maximum 1ikelihood
method applied to the observable model ;
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~

ii) the estimator @ thus obtained can be used as a basis for simulating

* on
the yi . These simulations are denoted by z. :
in

iii) the simulated series is then used to compute a constrained maximum

-~

1ikelihood estimator E of B . B is a solution of
on on

n
:E: Log 1 (z /x ;0,B) ;
i=

iv) the generalised score is obtained by replacing in the expression of E

-

x ~
y by z and 8 by 8
i in on on

The statistic is given by :

b4 ~
d Log 1 (z_/x ;0,8 )

n
1 in i on
(5.5) [ = — Z
n
: vn ou

v) A mjssp?cified test is based on the misspecified statistic

E'(V t) E , whose asymptotic properties have to be studied.
n as n n

The asymptotic properties of & under the null are summarized in the
n

following theorem.

THEOREM 5.6 :

Under a set of regularity conditions described in appendices 1, 2, 3,
E is asymptotically normally distributed under the null, with zero
n

mean and with an asymptotic covariance matrix given by :
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-1
\ E = 1 -1 I 1
as n aa af BB Ba

-1 -1 -1 -1
(I I -J J )J (I 1 -J J )
af BB af BB BB BB Ba B8 Ba

where I and J denote the latent and observable information matrices
[e] .
evaluated at 8 =
o B8

o

Proof : See appendix 3 . O

The correct asymptotic covariance matrix of the generalised statistic & has
n
to be compared with the usual form of the covariance matrix :

- -1
(5.4) V E = 1 -1 I I
as n o af BB Ba

It is directly deduced from the expression of Vas En that Vas En is
greater than V & for the usual order on symmetric matrices :
' as n
V & >» V &
as n as n

This implies the following inequality between the right and misspecified

"chi-square” statistics.

Corollary 5.7 :

. : .
e (V E)E > B (V E) E
n as n n n as n n

where V E and V E are consistent estimators of V & and
Vot as n as n

as n

If the asymptotic size is equal to 5 % , the correct asymptotic test consists :

" -1 2
{ in rejecting the null if & (V ¢ ) E

n as
in accepting the null, otherwise.

> X (K )
n 95% i
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The misspecified test procedure consists :
G

" 2
in rejecting the null if &’ (V t) 3 > x (K
as n n 95% 1

n
in accepting the null otherwise.

From corollary 5.7, it is clear that whenever the null is rejected with the
misspecified procedure, it is also rejected with the correct one. The
misspecified procedure appears to favour the null, i.e the initial model. The
asymptotic size of the misspecified test is less than 5 % ; such a test is

sometimes called a conservative test.

In order to obtain an interpretation of the misspecified test, when it leads to
the acceptation of the null, it is necessary to bound from below the right

variance V E by a function of the erroneous one V E
as n as n

Property 5.8 :

We have :

as n A as n
-1/2 -1/2 -1
where A 1is the maximum eigenvalue of J I J s Or JBB IBB .
BB BB BB
Proof : See appendix 4 . O
1/2 -1/2 -1/2 1/2
Since I - J = J [J 1 J - Id] J is non negative,
BB BB BB BB BB BB BB
-1/2 -1/2
all the eigenvalues of JBB IBa JBB are greater than one and in particular

Al

If the value of the misspecified statistic leads to accept the null :

" -1 2
£ (V E) E < ¥ (K ) and if moreover this value is smaller than
n as n n 95% 1

t 2 _
; x95%(Kl) , then the right statistic would also lead to accept the null.
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In summary the misspecified test can be used as a test with three possible

answers :
F e £ E > ox (K ject
j ’ : rejection
n as n n x95% 1
f v e e V2w tati
i ’ - : acceptation
{ ! En as En n - x95‘/. 1
1 2 - 2 ' ,
if — x (K) < &8 (V E)E < ¥ (K ) : undetermination
; 95% 1 n as n n 95% 1
\

where A is a consistent estimator of A

Remark 5.9 : In the limit case J 6 = IBB , wWe also have
J = 1 using tﬂe nonnegativity of I - J ; we see that
ap af .
V & = V & and that the two test procedures are asympto-

as n as_ n
tically equivalent. This case appears when y is a sufficient

statistic with respect to 8

Remark 5.10: It is e?sily seen from the proof given in appendix 4, that the
bound - 1is the most accurate in particular when « is a uni-

A
dimensional parameter.

Remark 5.11 : If the misspecified statistic does not immediately conclude in favour
of the rejection, a good strategy would be to derive easily computable upper bound
of » (or x) such as the trace or the determinant of the matrix involved ;.if it is
not enough to get an answer one has to choose between the computation of x , with
the risk of remaining in the undetermination area, and the computation of the

correct statistic gﬁ(vas gn)'l Eq with the additional cost of computing terms
such as J_, which are not direct by-products of the maximisation of the
o

1ikelihood function under H0 .

5.¢ - Properties of the score statistic based on simulations under

the general hypothesis.

The determination of the score statistic is similar to that of the previous
subsection, except that at the first stage the parameter 8 is estimated by
the unconstrained maximum 1ikelihood method applied to the observable model.
This modification of the estimation procedure of 8 implies a modification of
the simulated values and of the constrained ML estimator of B . For sake of
simp]jcity, we keep the same notations as before, simply adding a "bar” on 2z
and 8
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The score statistic is given by :

x — ~
dlog 1 (z /x ;0,8 )
n i on

1 n i
(5.12)g = — Z
n
vn da

THEOREM 5.13 :

Under a set of regularity conditions described in the appendices, &
n
is asymptotically normally distributed under the null, with zero mean

and with an asymptotic covariance matrix given by :

- ax -1 oa aa -1 ax -1
vV & =V & + (I ) J (1 ) - (J )
as n as n
ac -1 -1
where (I ) = 1 - 1 (1 ) 1
aa af BB Ba
ac -1 -1
(J ) = J - (J ) J

aa af BB Ba

Proof : See appendix 5.

In order to compare the ?ight test statistic E’(V E )_ E with the misspe-

n as n n
cified one E‘(V E ) E , we have to compare the two asymptotic
n as n n

-~

covariance matrices V & and V E .
as n as n

Property 5.14 :

-

The asymptotic covariance matrix V & is greater that V &

as n as n
V E >» V &
as n as n

Proof : It is possible by using an orthogonalisation procedureA(see appendix 4,

i)) to only consider the case 1 6 = 0 . Under this condition, we have :
u .
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- " -1 ad -1 aa aa -1 aa -1
vV ¢ -V E = - J J + (1 )Y 3 (1) - J )
as n as n af BB Ba
aa
= 1 J 1 - J
oo [+ {0 § ao
-1 -1 ao -1
Since I > J , we have : J » 1 and in particular : J >» 1
. aa
- - oo
Then : V € - V & = 1 J 1 - J
as n as n aa aa ao
» 1 - J 5y
aa o

Therefore : E'(V E )- E £ E‘(V E )- ¢ and whenever the null is
n as n n n as n n
accepted with the misspecified procedure, it is also accepted with the right

one.

Property 5.15 :

We have the following inequality :

- - 1
VE <V _E [1+u-;]

172 -1 172 -1
where u 1is the maximum eigenvalue of 1 J 1 sor T 07,

Proof : Considering without loss of generality the case 1 " = 0 , we
[+ §
have :
- ° ao
vV & = V © + I J 1 - J
as n as n ao ao oo
" 1/72¢ +1/2 aa +1/2 -1/2 “1/24 /2
:VE+I[IJI-IJI]I
as n aa b aa oo oo oo oa oo
- 1/2 1 1/2

<« V. & + 1 (pIld--1d) I
as n oo u ao
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as n aa u
° 1
= V E 1+ g--)
as n y
O
-1 -1 172 -1 /2
Since J »» 1 , 1 J 1 >> 1ld , the maximum eigenvalue p
is greater than one and 1 + gy - — is also greater than 1 . As in the

previous subsection, the m1sspeci¥ied test may be considered as a test with
three possible answers, but in this case this is the misspecified rejection

region which is separate in a rejection and an undetermination region :

( - " R B -~ 2
if 8 (V E ) E > xX (K) : rejection

n as n n 95% |
if E’ (Q ; )_1 E’ £ 2 (K) acceptation
) En as n n x95'/. 1 )
if 2 (K) < E' (Q ; )-12 < i 2 (K ) determination
. : undete _
959 1 n as n n_ Yosi i
\
~ -~ 1 -~
where A = 1 +p -—and p 1is a consistent estimator of u .

u

5.d - Asymptotic behaviour of the generalised yald test and the
generalised Tikelihood ratio test '

Up to now we have on1g considered the generalised score test statistic,
because the statistics Eﬂ- or -2 appear as sample means and, therefore, their
asymptotic behaviour is /ﬁéasi1y/ﬁ tackled through the generalised central Timit
theorem 2,4, However it is natural to also consider the asymptotic behaviour of

the generalised Wald test and of the generalised likelihood ratio test.

We consider the same genral framework as in 5.b and 5.c. The Zy, are
obtained from simulations based either on the constrained maximum likelihood of o
or on the unconstrained maximum likelihood estimator of © . In the sequel we consider
the constrained case but the other case would provide exactly the same result.
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From the zin we can compute unconstrained and constrained second stage
estimators by maximising, respectively,

1zn Log 1* (z;,/%;» @, 8) and 121 Log 1* (23, s 0, B)
o 0
8n = m" Bon = will denote the unconstrained and the constrained
fn on
estimator.

Using Taylor expansions and the law of large numbers previously shown

we have, under Ho

3 Log 1*(2. /x; s 0, 82 3 Log 1*(zin/xi 3 0, eo)

§ in’ %4 : on) - _l
i=1 30 moid

)

1 9 6

(]

Substracting these expansions we get :

Enlha

- 1) /M8, -8, + 0p(1)

). I(o,) YA(8, -8 ;) + op(1)

0

N 00
/n a, = I (e,) £, + op(l)

It follows immediately that the generalised Wald test, based on &n .
is asymptotically equivalent, under Ho s to the generalised score test, As far
as the generalised 1ikelihood ratio test is concerned, it can easily be shown,
using the standard expansions that :

- [ 1e1¢)
1 =€, 17(e,) £, + 0(1)

n, n .
2[ Z Log ™ (z 3 0ps En) - izl Log 1 (zin/x1 ; 0, Eon

i=1
Since Iaa(eo) is not the inverse of the asymptotic covariance matrix of £, this
generalised Tikelihood ratio is not asymptotically distributed as a chi-square but as
a mixture of chi-squares [see Foutz-Srivastava (1977)]. In particular, this statis-
tic is not asymptotically equivalent to the generalised score and wald statistic ;
the situation is similar to the one found in the pseudo-likelihood theory (see
TROGNON (1983), G OURIEROUX-MONFORT-T ROGNON (1984b)),
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5.¢ - Asymptotic equivalence of the misspecified score, Wald and
Tikelihood ratio test statistics, in the case of a linear latent
model

In the previous subsections, we have discussed the correct asymptotic

properties of generalised statistics and the correct interpretation of the
misspecified score test statistics. In practice the usual estimation packages

also provide the values of some"misspecified" Wald type statistics (e.g. student

or Fisher statistics) and of the maximum of log-likelihood function. Considering the
case of a latent linear model, we are going to prove that these three kinds of misspe-
cified statistics are asymptotically equivalent under the null and in particular that

the level correction procedure described in 5.b, 5.c is valid for all these

tests procedures.

Let us consider the following latent linear model :

x 2
(5.16) y = x B + w a + u i=z14Y,...,n,u i.i.d, u = N(o,o)
i i o0 i o i i i o

and the null hypothesis given by :

o = {u=of

x x X
Since y is unobservable, the observations y of the latent endogenous
i
variable are replaced by the simulated values z_ = and the initial model
in
(5.15)by the misspecified one :

(5.17) z = X B + W a + u i=zt1,...,n,u i.i.d, u = N(o,o )

in i i i i i
The misspecified test statistics of the null hypothesis are given by the usual
formulae. Let us denote by M (resp M } the orthogonal projector on the
space orthogonal to that generated by the columns of X {(resp. of X , W )
and by « the unconstrained o.l.s. estimator of « based on the misspecified

model :
a~ -1
a = IWMW W M Z
X X
The misspecified test statistics are :
@ WMWa
. X

score test statistic: n —m™—
Z'MXZ
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a«’ WM M a
Wald statistic : n
Z’M 7
X, W
Z’MXZ
Likelihood ratio statistic : n Log ———
Z’M 7
X, W
@ WMWa
X
= nlog ]t + ———
Z’M Z
X, W

Then the asymptotic equivalence of these statistics under the null is simply a
consequence of the law of large numbers (2.6), which implies that, under the

null :
1 | IR 2 * 2
pilim-2"M Z = plim =Y M Y = o
n X n X o
1 f x’ * 2
plim-2"M Z= plim -Y M Y = o
n X, W n X, W 0

and'of the asymptotic properties of a

For instance, let us consider the probit model of section 1. From the values of
the information matrices I and J given in 3-b , we obtain an estimate
of uy equal to 5.34

If we want to test at level 5 % the null hypothesis Ho : (B =1) using the
misspecified student statistic, we have the following three answers Wald test :

If the t-statistic has a modulus smaller than 1.96, we accept the null
hypothesis.
If the t-statistic has a modulus greater than :

/ " 1
1.96 l'+py-—- = 4.8 , we reject the null hypothesis.

1]
Otherwise the test is inconclusive.

The observed values of the t-statistic is - 2.044 and the last answer is the
right one.
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CONCLUDING REMARKS

The results proved in this paper, though they are not
trivial from a technical point of view, are very easy to use in practice,
In particular, if the latent model is 1inear, the basic tools are simply the
usual residuals provided by standard regression packages. This implies that
variows graphical checks or genuine statistical tests can easily be implemented
for various models such as probit, Tobit, disequilibrium models... These new
possibilities seem to be important since, in these kinds of models, it is well-
known that specifications errors may have much more serious consequences
than in the usual linear model.
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APPENDIX 1

PROOF OF THE GENERALISED CENTRAL LIMIT THEOREM.

i) The theorem

Let (X_,Yf) , i € Nbe i.i.d random variables whose values are in
d +d v
R o1 . The common distribution of these pairs belongs to a parametrised
family : (Pa , 8 €0 cR)and is associated with the value aoof the parameter.
d d
For a given function g from R into R , we define the transformed variables:
Y = g(YT) , 1 € N . If the observed variables are (X1 , Y)i=1t...n, an

i ia i
estimator 8 of 8 is a measurable function of (Xi , Yi) i=1t1...n, with
n

K
values in R . From this estimator, it is possible to generate approximations
x
of the latent variables Y by drawing independently from the conditional
j

~

x
distribution of Y given Y and X , associated with the value 8 of the

i i i n
parameter ; these simulated series are denoted by Z, , i = f...n , n €N ..
in

We are now interested in the asymptotic properties of an empirical mean :

n
1

- jg: h(Z ,Y ,X) , where h is a H-dimensional function.
n in 1 i

i=1

Theorem 2.4 : Let us assume that :
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with a function a satisfying :

2
% [1a(Y,X)|| < o0 , E a(y,X) = 0

o (o]
and a random term e‘ tending in probability to zero :
n
P
8
o
€ > 0.
in
Moo

Then, under the regularity conditions given below, the random variable :

i x
£ = — Z[ hZ, LY LX) -k ROy ,Y,X)}
n n 1 1
v n 0

i=1
tends in distribution to a normal distribution with zero mean and a

covariance matrix given by :

as 8

* X
VE=Y Ch(Y )00 -V [% (h(Y ,Y,X)/Y,X)]
0 0

0

al
0 O o] (o]

-

Y {% [hev™ v 00v,x] + € {[53-— E[“(Y*'Y'XW'X]G-B a (Y,%]

ii) Regularity conditions

Hl : 8 belongs to the interior of 6 .
o

H2 : The marginal distribution of X 1is independent from 8 , 8 € o .
i

x

Y /
H3 : The conditional distribution P0 has a density with respect to

4
Y/X=x
P
]

for any x and this density function is strictly positive. It is
X
denoted by 1(y /x;8) .

H4 : This density function is continuous at §
o

* 4 H
HS % |t h(Y YL X <+ o0 VteR
o
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Ho : Vt,Vk,3n (k) : Vnin (k) Va=1,23,4
0 ]

* b ¢ o X
It’[h(Y X0 - E Y ,Y,X)]l sup LI /Y,X;e)—il)

8
o o g:1]6-8 )|<—
)
vn
*
x Y /Y, X
where 1(y /y,x;8) denotes the density function of Pa with respect to
*
Y /Y, X
P .
8
0

H7 E [t h(Y LY, X)/Y, X1 is differentiable with reSﬁect to 8 and the first

derivative is continuous at 8 , for any t € R
0

0 *
H8 : E ||—E [t'h(Y ,Y,X)/Y,X]H <+o00,VteR
8 08 8

0 0

H3 : For any t , there exists ¢ > 0 such that :
0

9 * ) %
| |— E[t'h(Y YN X- —E [t'h(Y ,Y,X)/Y,X]H <+ oo
d0 @ o8 8 .

E sup
] e:110-8 ||<c
o o o o

jii) A lemma.

In the proof of the theorem we use several times the following lemma :

Lemma : Let (ui,Vi,V:) i = 1...n be random variables such that :

(i) ui (resp ?1, V:) takes its values in R+ (resp in C) ;
(ii1) the random variables ui are independent and integrable ;
(iii) IViI <1 and IVi - ?: | < a Vis= 1.7.n ;  then

JE( H ? ) - E( H 4 )l < exp( Ea) -1
i=1 i i=1 i

i=1
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Proof of the lemma : Let us first remark that, since IYil < 1, the product

n %
1H1?1 is integrable. Denoting B = ?1 - Yi , we have :
= 1
n

n % n n n
T Y -T ¥ zu(y +g)-n ¥ = (HB](H ‘i’)
izt izt § 0 di=t i i =t i ieA i) Ligh i

p=1 AeQ.

p

where Cl is the family of the subsets of (1...n)> with p elements
p

Taking the absolute values of each member of the equation, we obtain the
following inequality

< ZE: :E: m |8 | (from (iii))
ieA i .

n
< z Z T « (from (iii))
i€A i

Since the random variables a« are independent, we have :
i

n
n % n
EIHV-"VI(ZZHE&
i=t i di=1 i ieA i

p=1 AGCZ,
n
Therefore : E| H V | € E| H V o+ jg: jg: Eu < o0
i=l =1 i A
1 AL
p

which means that H1 V is integrable and we have :
i=

n x n n % n
IET ¥ -EW Y} <E|l T ¥ -1 v |
i=t i i=t i i=t i 1=t



51

~
=
>
m
]
wad
~—

p=1 A€(L
P

n
(1 + Ea) -1
izl i

< exp Eai -1

Q.E.D.

iv) Proof of the theorem :

The asymptotic distribution of & is deduces from a study of its
n
characteristic function.

a) Expression of the characteristic function.

n
-tl %
E exp(jt’'e ) = E {exp EA :E: th(Z ,Y ,X) - E.h{Y ,Y,X)]}
6 n e in 1 1 0
o 0 vn

o
i=1

,

n Jt , *
- EE [n exp — [h(Z ,Y ,X) - E h(Y ,Y,X1/4X ,Y V... (X ,Y )]
8 i=1 in i1 i ) 1 1 n n

0o .0 vn )
Since the simulated observations are drawn independently from the conditional
x
distribution of Yi given Yi,X_ associated with the value 8 of the
i

n
parameter, we deduce :

n
E Lexp jt" E) = E [T ¢ 1
e n 8 =

] 0
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Jjt’ x *
with ¢ = E [exp — [h(Y ,Y ,X) - E h(Y ,Y,X)]) ',Y_]
in i i i 8 i i
9 Vvn 0
n
We are now going to asymptotically expand the expression of ¢ . For this

in
purpose, we define for each pair of integers (n,k), the subset

] o [Ilemll < %]

-~

e = [1e - el <
n,k n o

L
VA

b) Expansion of wi on Q
n

n,k

b.i) If x 1is a real number, we have :

2 3 4
| ; | . X | ) 1] X
ex X - - X + - + —
P J 2 3! 41
*
Therefore, denoting h1 = h(Y.,Yi,X1) , we get :
i
’ j 1
exp j— (h -E h) =1 +——¢t'(h -E h)-—[t'(h—E h)]
0 i 8 2n i 8
v ) vh 0 0
+ o (i)
in
t'th - E h) 4 t’th -E h) |3
i 8 i ]
. 1 o 1 o
with Jo (i)] ¢ — + —
In ! 3!

b.ii) From assumptions H5 and H6, we deduce that 8E It'(h(Y*;Y,X) —BE h)|u< o
)
for a =1,2,3,4 and for 8 satisfying : ||8 - 8 || < —E— .
° A
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Therefore the conditional expectations

x o
E jt'(h(Y ,Y ,X ) - E h)| Y X
8 i i 8 i i

0
exist under the same conditiogs. This implies that on the subset Qn ,
a ’
the expectations E [ £ (h(Y Y X ) - E W /Y.,X. ]
id
8 0
n

have a sense.

Then it is possible to express the general term o as :

in
E J t (h E h) ///+ X
= ex —_— - ,
win ° [ P ] ] i i ]
9 vn o
n .
3t
=1+ —F [t’(h - E h)| Y,X]
1 8 i i
vh 8 0
n
2
- — E t'th - Eh) ///Y X + E o (1)
2n i 9 i i in
0
n n
Jt’
=1+ —E [t'(h - E | Y,X]
- i ] i i
vh 8 0
n
1 ' 2
-— E t'th - Eh) Y ,X + o (i)
2n i ] i i 2n
] 0
n
The residual term o_ (i) depends on all values X ,...,X ,Y ,...,Y through
. 2n 1 n 1 n
the estimator @ of @ . However, it is smaller on @ than a random
n 0 n,
variable depending only on Xi,Y . More precisely, if we denote by
*
n (Y ,Y X)) = n (i) the quantity sup {1CY 7Y X ;0)-1]
k,n i i . k,n k i i
0:118-08 |j<—
0

vn
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we obtain on the subset @ K
n,

Y ,X)
i i

| o ()] € o
2n 2n

with : o (Y ,X)
2n i i

1 2
— Lt t’th -Eh)] n (i)Y X)
2n @ i 6 k,n id

0 0

1 4
+ — F [[t'(h-Eh)] /Y,X]
2 @ i g iy
41n o 0

1 3
+ E t'th -EN| /7Y X
3/2 8 i 8 i i
0 )

b.iji) Since 8 tends to 9 , it is natural to expand the second term of
n )
the expression of ¢

in
E t'th -ER| /Y X = E t'th ~ER| /Y X
- i 8 i 8 i 8 i
(o]
n
a -~
+[—a——E(t'h/Y,X)] 8 -8) + o (i)
8’ 8 i 1 i n 0 3n
0
The residual term o (i) is on @ smaller than :
3n n,k
- 0 I
lo (i) < |18 -8 || sup Jl— E(t°h /Y , X ) - — E (t'h 7Y X )}
3n n 0 - 20 8 iod 30 0 i i
6€LY ,0 ) 0
o n
k 0 0
§ —— sup [l— E(t’h 7Y , X )} = — E (t’h 7Y , X)) }|I
k 30 9 i i 30 8 i i
vh 8:]]8-8 ||— o
o .
vn

= o (Y ,X) (say)
3n L |
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1
b.iv) Using the asymptotic expansion of 8 and the fact that Ile1 11 < ;
n n

on Q , we next obtain :
n,k

E (t'(h - E h/Y X ) = E (t'(h - E hi/Y X )
- i 8 i i 8 i 8 i i
)

8 0 (4}

) 1
+ — E (t' h /Y X ) . - aty X)) + o (i) + o (i)
98’ @ i i i n i i 3n 4n
i=1
0 in
with Io4 ()| = I 5;7 % (t' h_/Yix1 ) —_—
n i
0 vn
a -
' vy % (t' hi/Yi,Xi )II = o4 (Y.,Xi)
n i
k vn o

1

b.v) Replacing in the expression of ¢1 , we get :
n

*
0 = + o (i) +
in q’1n 2n

J

—2— o3 (i) + — 04 (i)
n n
vn vn

1]
—

where : ¢ +

E (t'(h -Eh/Y X )
in 8 i 8 ii

3
: i
vn 0 o

n
i 9 , 1
+ - — E t'h /7Y X | — a(ly , X))
n 086 0 t S i q
o vn -

1=

-1 {[t'(h € h)] 2y ,x}
2n 8 i 8 i i
[+] o

Therefore, for n sufficiently large:

| 4 4 * o (Y ,X) o (Y ,X) o (Y ,X)
- < 0 ’ = 0 ' - — B
Q q)in Q tpin nk 1 i i i * 03n i i
n,k n,k vn
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n
¢) Comparison of <ﬂ L) and 4

Q izt in — @
n,k n,k

c.i) Noting that o (Y ,X ) is integrable, a direct application of the

n,k i i x *
lemma given at the beginning, with ¥ = 4 ) , Y = 4 ® |,
in Q in in Q in
- n,k n,k
a = 0 (y ,X) gives :
i n,k i i
n
n n % -
E |4 T o -4 T o < exp E o (Y ,X)| - 1
8 Q i=1 in Q i=1 in n, i i
0 n,k n,k o
i=1
= exp [ nkE ; (Y.,X.)] - 1
n, i
0
c.i1) If we examine the decomposition of n ;2 (Y ,X)) , it is easily seen
n i i
that 1im n ; (Y , X) = 0 , since limn (i) = 0 from H4 . Using
Noo 2n i i n+e  k,n

the dominated convergence theorem, we deduce that :

im E o (Y ,X) = 0
Nee @ 2n 1 i

c.iti) Similarly, we have :

o (Y ,X)
3n i i

eom
3
]

9
k % sup i Ilg; E (t‘hi/Yi,X_)
i
o vn o 6:{8-8 ||<—
o
vn

) :
-—E [t'h /Y X )'l
a8 8 i1

0
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Using H7 and H9 , we deduce from the dominated convergence theorem that :

o (Y ,X)
3n i i
1im E n ———m——0 = 0
Ndoe
0 vn

c.iv) Finally :

4n 1 0
E n ————— | = - E —E |t'h /Y X
] , k 8 00 6 i i i
) vn 0 0
c.v) Therefore :
n n %
1im su E i —4 n
n- “p 9 l’ﬂQ i=1 q)1‘n Q i=t win
0 n,k n,k
1 9
< exp]— E — E (t'h /7Y X)) - 1
k 8 00 @ i i i
0 o
Finally, using H8 , we get :
n n x
1im su T1im sup E 14 L -'ﬂ ) = 0
k » up n- “p ) ! Q i=t tpin Q i=1 win
(o] n,k n!k
n x n X%
d) Comparison of *ﬂ m e and fﬁ T e
Q i= n — Q i=1 in
n,k n'k

d.i) Let us define the random variable

b ¢4
P = exp (J A + B )
in in in
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1
where : A = — E (t’(h - Eh/Yy X ]
in 8 i 8 i i
vn o 0
n
t 9 1
+ - 5;7 % (t’hi/Yi'xi —_— a(Yi,Xi)
n
) vn
i=1
2
B = - — E {(t'(h - E h)] /Y X }
in 2n 8 i 8 i i
o 0
1 2
+ — (E [t'(h - E h)iZy X )}
2n \8 i ] i
o o
1
- — Vv (t'(h - E hi/Y X )
2n 8 i (] i
0 0

: X
It is natural to consider the variable ¢

expansion. Since B

in

X
since it has o
*x in

n
is non positive, we have |(pi I <€ 1t .
n

as second order

of the proof, it is

d.i1) Following the same lines as in parts b) and c)
easily verified that :
n * n X %
1im sup 1im sup E 4 m e —4 m o =
+ n-+e« @ Q i=t in Q i=t in
0 n,k n,

e) Asymptotic distribution of E
n

i) We have :

* %

LH]

=2

ex
; p J
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n n
1 1 3
= — E (t'(h - E hIY ,x) # =\ — E (t°h /Y X))
8 T T n ) 28’ 8 R
vn 0 0 ‘ )
i=1 i=1
1 n n - .
— aty X))+ 3 V(' th - E WA X))
2n 8 i i
n 0
i=1 i=
n
1 3
= — E {t'th -EmY X| +E[—E th v x)]
8 i 9 i i 8 ~008° @ ioi i
vn () ) ) 0

—te
It
—

a(Y X ) o+ 2 E V'Cth -E h)/Y ,X) + o (1)
2 6 8 i f i i p
0o o o

vn

—l
r\,/]s

where o (1) is a negligible term in probability. Since the first three terms
converge in distr1bution we deduce that the same is true for

n
b ¢4
Z A - Z and that the 1imit of E o, coincides with
n
0

s
n=a .

=1
the asymptotic character1stic function associated with these terms :

t' 1t
2

Tim E
N-boe 0 i

exp [j t'm-

=2
S
n

with : m = E E [th -E /Y X)
i 8 I
o O [¢]
3
s =€ (o xH]E aly x) = 0
g | 08’ @ i i i 8 i i
o 0 0

and I = E V [(h—E h)/Y,X)]
R i i

(o] 0 o
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0
+ V E thsy X)+E | —E (h/Y X)| alyY X))
) 8 i i i 8 | d8" 8 i i i i i
0 0 o 0

=V h -V E (/Y X)
8 e 8 i i i
] 0o o

+

9
vV E th/v X)Y+E ] —E (h/Y X)) alyY X)
8 ] ioi i 8 | o8° @ i i i R
0 o o

(8]

i1) The end'of the proof is obtained by noting that :

. n b .4
|E exp(jt's ) - E T o )}
0 n izl in
0 0
CIE (T o) - E (4 T e )
(] i=1 win ] “9 i=1 win
(o] o n,k
n n %
+ |E ( ] ) - £ (4 T )
l ‘49 i=1 q’in i=1 win '
o n,k o n,k
n % n o xx
+ |E (4 T o ) - E (A Y
Q i=1 in 8 Q i=1 in
0 n,k o n,k
£ (4 T o) - E (T o5
+ W - W
Q i=1 q’1n 6 i=1 q)1'n
o n,k 0
n n x
< 2P e 1+t |4 ] - ]
g n,k (] ' Q i=1 min ‘ﬁQ i=t win'
(o] 0 n,k n,k
n * n *x X
+E 14 T e -4 T o |
i=t in Q i=1 in
o] n,k n,k

and, since the right hand side member tends to zero when n and k tend to
infinity, we get :



n
Tim E exp(gte ) = lim E T e, = exp -
Ndoe 8 n E-boo =

o )

Q.E.D.

A MODIFIED VERSION OF THE GENERALISED CENTRAL LIMIT THEOREM.

i) Another set of regularity conditions.

The initial set of regularity conditions H! to H9 may be replaced by H! ,
H2, H3, H5, H6 and

H4’ There exists a neighbourhood V of 8 in which the likelihood
o
function has a derivative with respect to 8 and this derivative is

continuous at @ .
o

d0+d1+d2
H10 There exists a measurable positive function M from R into
R such that :

b 4 *
a) the product |JIh(Y Y, X)|| M(Y ,Y,X) is PB integrable,
o
0 x %
b) | 5;— WY /7Y, %;8)] € MY Y, X) Pa a.s. for any j and for

any js € V 0

In effect condition H4° , HI0 imply H7, H8, H9

H4° , H10 imply H7

We have :

X
x x x Y /Y, X %
E [t h(y ,Y,X0/7Y,Xx3 = t’ f h(y ,Y,X) Wy /Y,X;8) dPe (y )

0

A direct application of the dominated convergence theorem allows to show that
*
the function 8 = % [t'hey ,Y,X)/Y,X1 is derivable on V and that the

derivative is given by :

x
0 x X 0 * Y /Y, X x
5; E [t’h(y Y, X)/Y,X)1 = t’ I hiy ,Y,X) 5; Wy /Y,X;0) dP8 (y )

o
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In particular the value of this derivative at @8 is
0

Log 1

9 x % F:) X
(—— E tt’'h(y ,Y,X)/Y,X)]) = t'E [h(Y Y, XY ——— LY /Y, X;8 ]/Y,XJ
00 8 ] 00 0

0=0 0

0
Moreover another application of the dominated convergence theorem and the use

*x )
of the continuity of 5; 1Y /Y,X;8) at @8 gives the continuity at 8 of

0 0
) * )

the derivative 5; E Lt h(y ,Y,X)/Y, X1

H4° , H10 imply H8 :

- - - - o - -

This is a direct consequence of the inequality :
0 * x
'EE- 1Y 7Y,X;8)1 € MY Y., X) ,

x X
of the integrability of [|h(Y ,Y,X)|| M(Y ,Y,X)

and of the expression of the derivative :
*
1LY ,Y,X;8 )
0

'} x x
E (—— E Lt h(y ,Y,X)/Y,X]) = t'E (h(Y ,Y,X)
8 06 @ ]

CL
) ] ] .

H4° , H10 imply H9 :

- A e - = —

On the neighbourhood V of @ , we have :
0

) x 9 X
|' — E [t'h(Yy ,Y,X)/Y, X3 - — E Et’h(Y ,Y,X)/Y,X]ll
08 8 08 ®
0

< E [Ilt'h(Y* Y,X) [a 1(Y*/Y X;8) 5 1(Y*/Y X;8 )3 | 1I/Y Xq
80 r ? aa ? L aa ’ H o l l ’

x *
< K jitll % CHTRCEY LY, 00 FTIMEY LY, X0 /7 Y,
]
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where K 1is a finite number.

Therefore, from HI0 a),

0 8€ 08 8 o8 8
0

d * _ ) x
E [ su l' — E tt'h(Y Y, XY, X3 - — E [t'h(Y ,Y,X)/Y,X]‘l}
0
x X
< K |t % LIheY LY, 00 HIMEY Y, X001 €+ e

0

i1) Second form of the asymptotic covariance matrix.

Under the set of conditions Hi, H2, H3, H4’, H5, H6, H10, it is possible to

give another expression of the asymptotic covariance matrix of & . This is
n

a consequence of the equality :

) * * 3 *
E (— ECh(Y ,Y,X)/Y,X)) - [h(Y Y, X) — Log 1(Y ,Y,X;8 )]
8 08’ 8 6=8 8 00’ 0
o 0 2]
we have :

V £ =V h-V E (h/Y,X) +V (E (h7Y,X)
as 8 8 9 8 10
o] 0 O o o

0 *
+ E (h — Log 1(Y /Y,X;8 )) a(Y,X))
0 98’ o

0

E V (Y, X) +V (E (h/7Y,X)
8 0 8 \0

0o o o O

0 %
+ E (h — Log 1Y /Y,X;8 )) a(Y,X))
0 08’ o

0
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where ‘K is a finite number.

Therefore, from H10 a),

9 * .} *
E su lI — E Lt’hey Y, X)/Y, X1 - — L t’hly ,Y,X)/Y,X]Il
0 g€ 086 o 08 @

o

0

* *
< K |Itll] % CHAGY LY X0 HIMEY YLK <+ e

o

ii) Second form of the asymptotic covariance matrix.

Under the set of conditions Hti, HZ2, H3, H4’, H5, H6, H10, it is possible to

give another expression of the asymptotic covariance matrix of E . This is

n
a consequence of the equality :
;) * X ) x
E (——— E(h(Y ,Y,X)/Y,X)) = E [h(Y LY, X) — Log 1(Y ,Y,X;8 )]
8 08’ @ 8= 8 08’ 0
o o o}
we have :

V E =V h-V E (h/Y,X) + V (E (h7Y,X)
as 8 8 0 6 \8
o o o 0o o

) X
+ E (h — Log 1(Y /Y,X;8 )) a(Y,X))
(] 00’ 0
o]

E V (h/Y,X) +V (E (h/Y,X)
6 8 6 \8

0o 0 0O o

0 x
+ E (h — Log (Y /Y, ,X;8 )}) a(Y,X))
| 08’ 0

0
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APPENDIX 2

Strong law of large numbers
and consistency of an

i) - Strong law of large numbers

- Theorem and regularity assumptions

The notations of appendix 1 and the assumptions H1, H2, H3
are maintained. h is a function, whose values are in &ga and we denote :

* *
h@O (Y;> Y5 X)) =h (Y, Yy, X)) - EGO h

Theorem :
1 D

Under assumptions Al and A2 given below, - £ h_ (Z._, Y., X.) converges
n._q 6 in’ i’ i

to O, Pe almost surely.
o)

. S -
Al : Since the Z, are drawn from % (y-lyi, X;, ©,) and not from

L (y?lyi, X; 5 eo) we have to make an assumption about the speed of conver-

gence of 6, to 6,. We do this through iterated logarithm conditions :

i}
Y

P [ 1im sup = ]
% vTogLogn &

vn (e}: - elg)
Pe [ 1im inf
¢ vLoglogn

L]
-

B 1

where eﬁ (resp eg) are the components of en_(resp eo) and.ak, By are
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real numbers.
A2 : Let M(y) be :

Mev) = o 2 2
(Y)-k.§1 Max[(ak"'Y) ) (Bk-Y)]

There exists y > O such that, ¥ ¢ > 0 :

s «é@o 7138 ho (s Y X [>ed ny () <H e
where :
= 2 *
", (v) = exp {n E; Sup |22 1Y, X, 0 - 11

(0]
o= )1 <Meyy Loghom

This condition describes the speed of convergence of

1 * .
5 1 heo (Yi, Yi’ Xi) to zero :

[ =]

i

this speed increases with an average difference between :

2 % - 2 % _
2 (YilYi, X5 0) and 2 (YiIYi’ X;, 9,) = 1.
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- Proof of the theorem

First step :

let us define :

/ﬁ(glé-elg) : '
AP=3Q { _<_u.k+y;k=1...K}
nzp vLogLogn

k _ 7k
/(e - )
P n2p /LogLogn

o
I
D

-

i A

-Bk+Y;.k=1"'K}

From assumption A1, we have :

limt P, (A) =1=1im? P_ (B)

If we consider :
- 2
nlle, - ol

C = n{ <M M}
M>p LogLogn

h A NB
we have Cp D b

and therefore :

limt P, (¢c) =1
p=e eo Cp
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Second step :

To prove the theorem, we shall show that :

¥e>0 P. [U {4

n
|§ (Z, Y., X.) I > e}] e 0
% ™Pp n i 1 heo in’ "1* 71 P=

From the first step, this will be shown if :

=

o
¥e20 By [GNY {;1-|i1heo (Zin> Yi> X3) | > Ml 55— O

[{{ne]

or if :

1 n
Nn{-
Ve>0 1 P [Cp {520y (%

Y., X.) | > e}l == O
o o in® "1’ 71 P=

or, since the Cn are increasing, if :

(o]

n

o]
¥e>0 n)i1 Pe0 [Cnn{ﬁli§1 heo (Zins Yi0 X5) | > e}l <+ o
Third step :
* Y -
UCn depends on X1, cee Xn’ Y1, . Yn through 6, Thus,

it only depends on X1, cee Xn,-Y1, . Yn and :

C 1| 5. h (2
Po TCNTT1 2By (Byps Y5 Xp) | > ed]

o o}

n
= E 1 P [ =] .z;,h, (Z.,Y.,X) |>¢e]| (Y:, X)q.:..1]
9, I: C, 6 n ' i¥1 7, *"in” "1 i _ i* M/ 1<ei<n
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o, Umlifi P Cins Yo X) 1> e [ 0V X g« = O Xdqc g <]

n x| (Y' Xi) = (yi’ Xi)
= 1 n ®
j;}lﬂh s ¥io x) | > € i=1 G(d}')

with :
* | (Y = (¥:, X;)
i’ i *
- * o YL (s X)) = (055 x3)
(d}') ' 2 (yi | Yi» %55 en) Peo(d}’:) i’
Thus
Ll g R [>e
P, [ =] .Z (z: , Y., X)) | >¢e | (Y, X.) (y x) 1
% n 1% o, Min® Ti* 7§ 1 11ii_in ? 1<1<n
=E, [1 ' Ioe (Y., X., 8 |(Yi’ i
% 1|.z h O, Y., X.) | > el O35 X5 0) -]
n ' i%1 0, ~i* it i =(yi, xi) .
_ 1<i<n
Therefore, by the Cauchy-Schwarz inequality :
1 n
o LG iy |8 heo (Zips Y35 X3) | > el
=E. [ Tn.. n I, 8 (Y.|Y:, X., )]
0 C * =1 s Ass
n I ig‘l h@ (Yi’ Yi’ Xi) | > € * Bt * o :

o
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-~

1, ¢ x n 2 *
= ‘/Peo o | iky By (s Y50 Xp) | > el /Eeo [y B 270515 X0 0p)]

Thus, in order to prove the theorem, it is sufficient to show that, ¥ ¢ > O

o 1.0 * 'n 7 % N
nE1 »/Peo [ 5 Ii§1 heo (Yi, Yi, Xi) | > el /Eeo[ig1 1 Cn 2 (YilYi’Xi’en)]G”
Fourth step :
By definition of Cn :
2 ok 2
| B¢ 2% (Y. | Y., X.,0) -1 |
Cn i! i* i tn Cn
2 %
< Sup | 2 (Yilyi,xi,e)-”:ain
llo -6 ||? < Mx)Loglogn
n

Since the random variables G i=1...n, are i.i.d., we have from the
lemma of appendix 1 :

EoLn, 0. & (Y., X, o)1
o lil1 g ilYir %50 9
o] n
n n
= By Ll Tl o Liky B ogpl =1
n
<expl z Ey o5l
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= 2. K
= exp [n E; Swp | | "G, X, @ -1 T=n (1)
|| o-o [|? < M(x) Loglogn
n

which achieves the proof with the assumption A2 and the third step.C
In the sequel it will be also useful to cénsider the uniform strong convergence
of functions such as :

n n, WY
By (Y3, Yi» X;30) = B (Y3, Yy, X;30) - By h

1

Corollagz

If A1 is satisfied and if A2 is replaced by a similar condition
Aé obtained from A2 by replacing

I? he (Y;, Yi;xi)l by
i=1 "o

n n
1 n,

sup (Y., Y., X.;0) , then — Z.., Y., X.)

eGGIiZﬂ%Bo 1’ 71 i ’ ni_Z__1he°1n 17 71

~converges P, almost surely to O , uniformly in 0 € ©
%

Proof: it is the same as the previous one. D

Typically n_ (y) will be equivalent to exp ay/n Log Log n
(a1 > 0); on the other hand, when '}‘i(Y’;, Yi’ xi;e) is a p.d.f. of Y: given Xi
which is gaussian or derived from a gaussian distribution the probability
appearing in A2 or Aé will be equivalent to

a, n 3 expl- a4n] [m2 >0, az 2:0, a, > o‘] ; in such cases

A2 , or Aé , 1s satisfied.
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ii) Consistency of @n

a) When the latent model is the linear model

)t_ b"’
Yi =X Uy

where u; 1is distributed, conditionally or X; , as N(O,cz) , the vector
Bt is (b!, Y5 where

1 ]
by (121 X3 X;) 121 X3 Zip

=

n - n
¥ =1 ) (zis.-x: b )2

n 121

In this case Bn can be explicitly expressed in terms 6f the Zin and Xy 5
therefore the weak consistency of an is a straightforward . consequence of

corollary 2.6. Note that this weak consistency is sufficient for the proof of
theorem 3.4.

b) If the latent model is the non linear regression model
g
y; = k(xi, b) + u;

where the u, are, conditionally on X5 » distributed as N(0,02) , the log-
likelihood function is

: n
L =-%3log2n -%Log o2-: ! Z[y’i'-k(xi,b)]2
262 i=1
n
= - %-Log 27 - %-Log 62m ] .Z [y? - k(x;, bo)]2
' 204 i=1
o 1T - kb b) - K(x:,b)]
;; 121 Yi (xi’ 0) _(xi’ 0) - (xi, )J
- LT kexgby) - Koo,
22 i=1 L © 1
L ,
Therefore : —%- converges P, a.s., and uniformly in e , [6' = (b',02)]

o
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1 1 2 1 ) 2 1 ) 2
to -5log2m-xLlogo — E%[Y’i* K(X;,b)] — Eeo[k(X,bo) k(X,b)]
2
1 1 % 1 2
= -=Log2m-xLlog o2 -—-—<E_ [k(X,b) - k(X,b)]
2 z 202 202 9% o

provided that

1 3 * o 2 ‘ )
I 121 [y;-k(x;,b,)1" converges Peo p.s. to  of

n
iZ1 [Y’;-k(xi,bo)][k(xi,bo)-k(xi,b)] converges Peo p.s. to O

Bl

uniformly in b -

n
:—1121 [k(xi,bo) - k(xi,b)]2 converges Peo p.s. to

E, [k(X,by)-k(X,b)]1* uniformly in b
(o}

In fact, using Cauchy-Schwarz inequality, it is readily seen that the second
condition is implied by the two other conditions. In particular we do not need
a uniform convergence in which the y’; are involved.

As a consequence, when considering the strong consistency of
'é'n , i.e. when the y’; are replaced by the z sp » We only need the version of
the previous theorem without uniformity in order to obtain the uniform strong
convergence of the objective function to

2

—%—Log 27 —-;-Log 02 _fﬁ_-_]__]ae [k(X,by) - k()(,b)]_2 .
262 202 o

Assuming the asymptotic identifiability of b from k(X,b) , this limit function
has a unique maximum in 6:[66 = (bo, cg)] , and the strong consistency of 811
is thained by standard arguments [see e.g. Jennrich, (1969)].

c) In the general case 'é'n is obtained by maximising

1T Log 4* (2 /x:30)
m b, OB R /X0
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Under the assumptions of the previous theorem for the uniform: strong convergence,

this objective function strongly converges uniformly in o , to

E, Log I"(Y'/X;0)
o
This 1imit objective function is the same as the limit objective function in
the latent model which will be typically assumed to have a unique maximum in
9, - The strong consistency of Bn follows.
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Appgndix 3

Asymptotic properties of the test statistic En

i) We assume that are satisfied the regularity conditions
allowing the application of the generalised central limit theorem and of tge
strong law of large numbers of appendices 1 and 2, for the true value eo=(so)
of the parameter. Under these conditions, we have :

2 * .0-
3% Log & (z;,/%;3038) )

Tag

1 n
plim o5&y
n-»>o 9B 3RB!

and the estimator Eon of g defined as the solution of the equations :

* oy
.g 3 Log ¢ (Zin/xi’O’BOn) -6
iz1 38
is such that :
n »*
AG -p) - A g 3 3 Log & (z4,/%;30:85)
on o /n B 1=1 58 + op(1)

ii) Let us now consider the asymptotic expansion of the statistic £, We get :

» n
. - 1 ? 3 Log & (zin/xi,O,BOIQ
noog %
3 Log &+ /X 30;
1 g g (Zj_n xi’ ’60)
= — 21 5
/n o
2 *
Log & (z. /x.;03B )
1 n 0 g in 1’7’0 v
+ = .z va (B - B.)
n i%1 30 3B" on 0
+ 0o (1
p( )
2 * .0-
n 3“ Log 2 (zin/xi,O,Bo)

Since the empirical m.ean-—-l T

n ji=t

30, OB
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converges to the block :

*
8% Log 2% ( v/ X 3058,)
I,= E [- ]
C] da 3B!

(o)

of the latent infommation matrix (see Corollary 2.6), ﬁe also have :

n 3 Log g (zin/xi;o;so)
z
=-1

S |
T

30,

v
"L M Go, 8y + (D

Replacing in the expression of Ens /n (% on " Bo) by its asymptotic expansion,

we get :
*
e - 3 2leer (an/x30380)
n = i=1 5
3 Log 2% (z. /x.3;0:8 )
-1 1‘1 __1._ 21 g in Xi’ o +o_(1)
aB BB VN 38 P

Therefore, the asymptotic normality of 3 is directly obtained by applying
the generalised central 1limit theorem with :

-3 Log gt (zm/xi;O;Bo)

h(zin’yi’xi) = o
b
-1 9 log 2 (z;,/x,3038 )

“ Log Igg

o8

iii) £, 1s asymptotically zero mean, since :

E h(Y', Y, X)
(¢]
-3 Log Il (Yb/X;O,BO) 3 Log 9t (Y*/X;O;Bo)

-1
T-Ts Igg

E
OO da 9B
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is equal to zero as a combination of the expectation of the score vector.
iv) The asymptotic covariance matrix of € is :

Ve £,V h-V E (WYX
G)O OO (S]

o

+V {E (WY,X) +E [h—>— Loge (Y/Y,X;6 )1 a(Y,X)}
8, 94 0, 98" °

) 2 Log & (¥/X;0,8,)

with a(Y,X) = JBB '

B

since the estimator 6 omn used for the simulations is the constrained maximun
likelihood estimator of 0.

It is possible to express Vas En in terms of the latent and observable
informmation matrices I and J by using the following equalities :

M 3 log 2 (Y/X;0) . g [ 2 log v (Y/%50) /Y,X ]
30 ) 30

@ 2 Log #* (Y'/X;) _ 3 log® (Y/X;0) , 2 Logs (Y'/¥,X;0)
0 30 30

V) Expression of E [h -5%.-

Log 2 (Y'/Y,X0,)]
) .

We have :

h—=— Logt (Y/Y,X;0,)
ap!

3 Log £ (Y'/X;0,) 2 Log & (Y'/Y,X;0,)

3a B!
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3 Log 2~ (Y*/X;eo-)- > Log & (Y'/Y,X;0,)

Then, using (2), we get :

2 Log £ (Y'/X;0,) > Log & (Y'/Y,X;0,)

E [
1
9g da 3B
3 Log o (Y*/x;e_, ) 3 Log ¥ (Y‘/X;oo)
=E [ o ]
IS da B!
> Log £& (Y'/X;o) 2 Log & (Y/X30,) ]
-E [ i
P 3 aB'
= IOLB - JaB
| 2 Log £ (Y'/X;0,) > Log & (¥/X:0,)
since E [ ‘ 1
9o da B!
2 Log &% (Y'/X;0,) 2 Log & (Y/X;0,)
= E {EL : /Y,X1 }
85 9o da 3p"
d Log ¢ (Y/X;0.) 3 Log ¢ (Y/X;0.)
“E [ 0 v o ] from (1).
0o 30 B!

Therefore, we deduce :

E [h—=- Logt (Y'/¥,X0 ) ]

S ap'
0

=1, -3 -1_1

o8 " Jap " Lup Tgg [Tgp = Jpg!

BB B8

. -1
=~ Jas * Tag Tag Jag
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vi) Expressmn of : V {E (WY,X) +E [h—2Logt (Y'/Y,X;0 J1al,xn }
0n c—)o 0o 9B

From (1), the conditional expectation E (h/Y,X) is equal to :
(¢]
o}

3 Log & (Y/X;0,) 3 Log ¢ (Y/X50 )

0 da 3B

Then, we have to determine the covariance matrix of :

_1 o Log 2 (Y/X;Go)

af BB

2 Log & (Y/X;0_)
. — -1

0B

3a

-1 3 Log ¢ (Y/X;Go)

af BB SB) JBB

+(-J ., +1
af 98

3 Log & (Y/X;eo) v -1
- " Jag Jeg
oo o

3 Log ¢ (Y/X;0,)

9B

This covariance matrix is equal to :
Jg -3, 3 g
oo aB BB TBa

vii) Expression of ‘Vas gn

-1

Vas Ey = 2)/ h -gf g (h/Y,X) + Jaq = Jug Jag Jau
o (o] 0 '
3 Log 2 (Y'/X;0,) o 2 Log 27 (Y /Xs0,)
= 1 -1 I ]
o 30 aB BB a8
(o]
3 Log 2 (Y/X;eo) -1 3 Log & (Y/X;eo)
"V " Lag Tgg
0 3a @ 38
0
+ - -1 J
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-1 -1 -1
ae ~ Tag Tgg Jga T Jug Tag Taa * Tas as Jss g

-1 -1
aa o8 88 Tea ¥ Tog Tgg Jga t Jus Igs Lpa

) -1 -1 i -1
Tos Tag Jog Tag Toa = Jap Jp8 Jpa

This expression is equivalent to :

I

Ba

}

_ -1
Vas En = Iaa IaB IBB IBa

-1 -1 -1 -1
(Uag Tog ™ Jus Jp8) Jes (Lgp Tga™ Jpp Jga’




81

APBendix\ 4

Comparison of the asymptotic covariance matrices : V__ & and V

aAS N == as

~

&,

We first consider the case in which the matrix I,, - J,, is

BB
positive and we have to prove that :

_ - -1
Vas gn = £(1,0) = Iaa IaB IBB IBa

-1 T -1
(Tug Tag = Jap Jo8) T3eTpe Tga = Jpp Jpo)

is greater than :

a -1
vV I -I . I,.1 -
as)‘zn - oo aB)\ BB Ba _ £(1,9)

where XA 1is the greatest eigenvalue of J 88 8g Jpe

i)~ Orthogonalisatien

BB

We can first remark that it is possible to assume that Ia =0

B

In effect, if it is not the case, we can introduce the invertible matrix :

~
——h
Q
w
od
™

and it is easily seen that the condition :
£(1,9) »> £(1,9)
is equivalent to :

£¢,3 > #1,5

4"
with I =PIP' and J=pJp . The possibility of choosing I,

consequence of the form of 'f :

B

=0 1s a
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-1

1
" Iaa'IaB BB “Ba :

ii) Under the condition ImB = o0 , the inequality to be proved is :
I i T
o aB “BB " Ba D

-1/2 I J-1/2

where A 1is the maximum eigenvalue of JBB gg Jgg

This inequality is equivalent to :
<1
oo I+u

-1/2 /2 _
as  lgg Jpg IKZ .

-1 1y _
M JaB JBS JBa << Iaa(1 - Xa =1

where p is the inverse of the maximum eigenvalue of J

iii) To prove this inequality, we only know that the latent information matrix I
is greater than the observable one and that they are positive :

I>>J >>'O
Iaa-Jaa - JaB ' Jau JaB
« >»> 0 and >> 0
“Jba Tee™Jee Taq Tag
-1
JBB >> 0, Jaa - JaB JBB JBa >> 0

-1
IBB - JBB >> 0 , Iaa - Jaa - JGB(IBB-JBB) JBa >> 0

iv) Let us denote by K , the matrix J 72 ana by K

8 g B8 the transposed

Ba

matrix K&B . With these new notations, two known inequalities are :
Jaa - KﬁB KBa >> 0

L -1/2 /2 -
Lio ~Jaa ~ Xaellgg  Teg Jge = Tk,]  Foa 7 ©
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and the required inequality becomes :

1
(2) KaB KBa << Iaa oy

v) Let us now consider : a spectral decomposition of the matrix

-1/2 -1/2 _ -1 .
[JBB IBB JBB IKZ] ; we have :
V2 V2 g 171 . 0 A Q' where Q is an orthogonal matrix with

BB BB BB K2
size K, and A a diagonal matrix with elements 1y , k=1... Ky
If we denote by Hk , k = 1...K2 the K, colum vectors of KﬁB 0 , the known

inequalities become :

K
X Hk H]'< < Jaa

k=1
(3)
)
' -
kET Yk Hk Hk << Iaa Jaa

and the required inequality is :
)
1. e
S k£1 H By << Iaam Wlth H-Mllcn s 'S

vi) The proof is completed by noting that (3) implies :
W
' v
kZ1 1+ uk) Hk Hk < Iaa

and also :

%
(1+n) k£1 B B << I
o)
g k§1 Hk Hi << Iaa T;F
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vii) Finally, the result is easily extended to the case in which IBB -J ag is

only non negative. In such a case, we can introduce the matrix
J® = -1;-5 J , where € is a real positive number,
Since J is positive, J® is positive and the same is true for :

€

e _ _ €
T = Jge = Tgp = Jgp * 19 Jps > T Jgs

Then the previous result can be applied to the pair (I, J®) and leads to the
inequality

€ € <1
J (J) JB << (1';\'6) Iw

-1/2 -1/2

where A% , maximm eigenvalue of (J (J , is equal to :

BB) BB)

= (1+¢) A
In temms of J and 1 the inequality can be written :

-1 -1
Tz Jas T8 Jaa << (1 =y Lo

and we only have to let ¢ go to zero to obtain theArequired inequality :

J .31y

ag Jpg Jeg << (1 - P L
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Appendix 5

Asymptotic properties of the test statistic Eh

Let &n be the unconstrained second stage estimator of o , based

on the Zin obtained from the unconstrained M.L., estimator. From the result

of subsection 5.d, we know that Eh is asymptotically equivalent to

/n [I““(eo)]'lgn . Moreover the asymptotic distribution of /ﬁ'gn is obtained
from theorem 3.4 : it is the zero-mean normal distribution whose covariance
matrix is (dropping oo) :

1% . (Iaa : Iaﬁ) J(Iaa: IaB). + J%¢

Therefore Eh is asymptotically zero-mean normal and its asymptotic covariance
matrix is :

(Iaa)—l [1%% - (1% IaB) J(1%° IaB). + 3% (Iaa)-l

- (Iaq)-l + (Iaa)-l Jaa(Iaa)-l _ [IK . (Iaa)-IIaB] J[IK . (Iaa)-llaB]I
1° 1°

Using the equality (I““)'IIOIB =-1, I;é , we get :

_ rroay-1 aoy~1 qaa,gaay-1l _ -1 -1
= (I"7) © + (I77) = 97(177) Yoo * Tog Teg Yo * Yue Tog lga

1 -1
" Tup Tag ss gg Tga

and, from the expression of Vas &n given in appendix 3 ,

_ ¢roay-1 aay=1 oo a0y =1 -
= (I ) + (I ) J (I ) Jaa + vas En Iaa + IGB IBB Ba

-1
JaB JBB JBa

- - -1
Vas En + (Iaa) 1 Jaa(Iaa) 1 _ (Jaa)

+

]
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