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RESTVUS ST MU LES 

GOURTEROUX C., MONFORT A., RENAULT E. 
TROGNON A. 

Van6 c.e,t aJL:Ude on c.on6.ld~e lu modUu dé.duli:li d'un modUe 

de ~é.g~Uh.lon .la.te.nt pait une appUc.a:tlon non-Uné.abte (pait exemple lu 

modèe.u pMbLt, ;tobLt, de dûé.qu)Llb~e ••• ) • On dé.o.lnLt, dan6 c.e C!Ontexte, 

du ~û~ h.lmulû qul jouent un ~ôle analoque à c.el.Lu du ~û.ldu..6 

ha.b.l:tu.eh da.n6 lu modUu de ~é.g~uh.lon. Cu ~û.ldu..6 h.lmulû pe!Lmeften:t 

en paJL:tlc.ul.leJL d'u:tlli.AeJL lu p~ogMmmu de ~é.g~Uh.lon hta.nd.aJr.d poWL 

eooectueJL du vW6.lc.ati.on6 pJt.a.ph.lquu ou du vélrUa.blu :tutii hta:tl1,.tlquu. 

STMULATEV RESTVUALS 

GOURTEROUX C., MONFORT A., RENAULT E, 
TROGNON A, 

Tn .tJû.6 aJL:tlde We. C!On6.lde!L modeh de.duc.ed n~om a. .la..ten:t ~e.p~Uh.lon 

mode.l by a. non-Unea!t ma.pplng (pMbLt, ;tobLt, d.lhequ)Llb~ modeh, •• ). Tn 

:th.lh c.on:tex:t we. de6.lne h.lmuhtted ~u.ldua.lh whohe. ~ole. .lh h,lrn,Ua/r. ;to :tha.:t 06 

Mua.l ~u.ldua.lh .ln :the ~eg~Uh.lon mode.l. Tn paJL:UC!ulM Lt .lh pohh.lble., 

wi..:th :thue new :tao.th, ;to Me. :the hta.nda.M ~e(.l~Uh.lon pa.c.ka.gu no~ d.la.gnoh:ti.C! 

c.he.c.k-6 o~ genulne hta.:ti.h:ti.c.a.l :tutii. 



1 • INTRODUCTION. 

The large use of linear or nonlinear regression models in econometrics 
has two main origins : first the simplicity of the least squares method and, 
secondly, the existence of packages giving a number of diagnostic tools, which 
can be easily interpreted in a descriptive or in a statistical way. Such tools 

2 
are, for instance, the residual plots, the sum of squares residuals, the R -
coefficient, the Student or Fisher type statistics •••• 

The main purpose of this paper is to explain how to use the standard 
regress~on packages for a large class of nonlinear models : models deduced from 
a latent regression model by a nonlinear mapping. This class contains as 
special cases the usual probit models, the simple or the generalised tobit 
models, the disequilibrium models •••• 

The central 1dea of the present paper consists in simulating the values 
of the unobservable endogenous variables and in mechanically implementing the 
regression package on the simulated series. 

probit 

where 

In order ta motivate this approach 

mode 1. The data generating process 

* 
Y. = 1 + X + u 

l i i 

the u 's are 1.1.N. CO, 1 > and the 

* 

1 

X = 4.899 
i 

-2 
10 i - 3.474 

let us briefly consider an artificial 
is: 

X 's are such that 
i 

The yi 's are generated for i = 1, ••• ,100 ; this impli~s that the empirical 
mean of the x 's is -1 , their empirical variance is 2 and the 

1 
2 

theoretical R 1s .667 
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The observable endogenous variables are defined by 

* Y. = if Y. ) 0 
1 1 

* Y. = 0 if Y, < 0 
1 1 

ln the probit model based on the linear regression 

* 
y : a + p X + U 

i 1 i 

the maximum likelihood estimators are: 

a = .872 

(.193) 

P = .891 

C • 149 > 

u =: NC0,1) 
i 

It 1s now possible to simulate values z for the latent endogenous variables 
i 
* 

from the conditioQal distributions of y given y , in which a and P 
i i 

are replaced by a and p ; this !s e!sily done by taking z as the first 
1 

= a+ px + u , where the u 
1 ij ij 

Cresp. equal to 0). 
positive (resp. negative) z 

IINCO, 1 > , if y is equal 
1
io 

i 

are 

Using a standard package for regressing the 

the following "second stage" results 

z 's on the x 's 
1 i 

, we obtain 

... ... 
a = .801 p = .861 

C. 119) (.068) 
2 

M.S.E. .937 R = .618 

The residual plots have the fo llowing form: 
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FIGURE 1. 

PLOT OF SIMULATED RESIDUALS 

FOR A WELL SPECIFIED PROBIT MODEL 
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It 1s clear that this regression has the advantage to provide automatically a 

large number of statistical tools ; however it is important to keep in mind 

that the usual interpretations of these tools may be misleading, since they are 
* 

based on simulated approximations of the y 's • For instance, we see, from 
.... <IG, 1 A A 

the previous example, that a and p are not too far from a and p the 
2 

R and the M.S.E. are close to their theoretical values .667 and 

The residual plots look similar to those obtained in the ~sual linear models. 

However the standard deviation of a and p are obviously underestimated, 

since the computed values .119 and .068 are significantJy sma]ler than the 

standard error of the asymptotically efficient estimators a P • This 

underestimation also shows that the tests based on the t or on the F 

statistics are not directly applicable. 

In summary the previous approach is appealing from a descriptive point of view 

but, on the other hand, it requires a careful investigation of the statistical 

properties of the various regression outputs. 

These properties will be derived in a general framework in which the latent 

model ts not necessartly a regression model. 

The paper is organized as follows. In the second section· we discuss the 

properties of simulated series and, in particular, we establish a generalised 

central limit theorem and a law of large numbers for functions of simulations 

and observed variables. The estimation problems are considered in section 3 

in particular the asymptotic properties of the second stage estimators are 

given and compared with that of the maximum lielihood estimators. In section 4 

we introduce the notion of simulated residuals and we explain how the residual 

plots can be used for detecting specifications errors such as : omitted 

variables, outliers, heteroscedasticity; we also compare the practical 

usefulness of these simulated residuals and that of the generalised residuals 

introduced by CHESHER-IRISH (1984) and GOURIEROUX-MONFORT-RENAULT-TROGNON 

< 1984-a). 

Section 5 is devoted to various test procedures; in particular it is shown how 

it is possible to correctly use the score test principle in the second stage. 

Various technical proofs are gathered in appendices. 
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2. LATENT MODEL AND SIMULATIONS. 

2.a - The model. 

Three kinds of variables appear in the model : the exogenous variables, the 

unobservable (or latent) endogenous variables and the observable endogenous 

variables. x 
i 

i = 1, ••. ,n denote the d -dimensional vectors of exogenous 
0 

* variables , y i i = 1 , ••• , n 

endogenous variables and y 
i 

, denote the d -dimensional vectors of latent 
1 

i = 1, ••• ,n are the d -dimensional vectors 
2 

of observable endogenous variables. 

* * It is assumed that the vectors 

distributed; no assumption is 

(y' ,x ') are independently and identically 
i i 

made on the 

but the conditional distribution of 
* * family whose p.d.f. are l (y /x;B) 

true marginal distribution of x 
i 

is assumed ta belong to a 
K 

* 
Y

1
, given x 

i 
8 € 8 C R 

The endogenous variables are defined by 

C 2. 1 > 
* = g{y) 
1 

The previous assumptions imply that the (y' ,x') i = 1, ••• ,n are 
i i 

independently and identically distributed; the conditional distribution of 

y given x belongs ta a family whose p.d.f. are denoted by l(y/x;8) • It 
i 1 

is also assumed that 8 is identifiable from this conditional distribution. 

Finally, it is assumed that there exists a consistent, asymptotically normal 

estimator of 8 , denoted by 8 which is obtained by maximising a 
n 

differentiable objective function of the following type 

n 

(2.2) 

i=I 

k{y ,X ,8) 
i 1 

More precisely, it is assumed that e is a solution of 
n 

n 

I 
1=1 

3k 

ae 
(y ,X ,8) : 0 

i i 
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and that 

n 
-1 

I 
3k 

vn<e - e > = J (y ,X ,8) + 0 ( 1) 
n 0 ae i i p 

vn 
1=1 

2 a k 
of where J = E - -- (y,x,8 ) and e is the true value 8 

8 a0 a0' 0 0 
0 

An important class of models satisfying the previous assumptions is that in 

which the latent model is an univariate or multivariate gaussian linear model 

with such a latent model and with a suitable g funct1on it is possible to 

reach many usual models such as : univariate or mult1variate probit models, 

simple or generalised tobit models, one-market or multi-market disequilibrium 

models •••• 

2.b - A generalised central limit theorem. 

The statistical procedures proposed in the following sections are based on 

simulated variables z , 1 = 1, ••• ,n independently drawn from the 
in * • 

conditional distributions l(y /y ,x ;8 ) , i.e. from the conditional 
i 1 i n 

distributions of the latent endogenous variables, in which the parameter is . 
replaced by the value of the estimator 8 introduced in the previous section. 

n 

The asymptotic properties of these statistical procedures rest upon the 

asymptotic behaviour of random variables of the form: 

n 

(2.3) ~ ~ h(z ,Y ,X ) 
n L in i ; 

1=1 

where h 1s a H-dimensional function. 
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i = 1, ••• ,n , were drawn from the true conditional 
* in 

distribution l(y /y ,x ,8 ) , the usual central limit theorem would apply 
i 1 i o .. 

but, since the estimator 8 
n 

random variable, depending on 
used 1n the simulations of the z s is a 

in 
( y , x ) 1 = 1 , ••• , n , the z 's are 

i 1 in 
correlated and it 1s necessary 

central limit theorem. 

to establish a generalisation of the classical 

THEOREM 2.4 (generalised central limit theorem) 

Let ~ be the random vector defined by: 
n 

~ = 
n 

n 

\ ChCz. ,Y.,x.> vn L m , , 

i=1 

* E h(y ,y,x)1 
8 

0 

where E is the expectation operator with respect to the true 
8 

0 * 
distribution of (y ,x) 
Under regularity assumptions given in appendix 1, ~ converges in 

n 
distribution, as n ~ •, to the zero-mean normal distribution, whose 

covariance matrix is 

V h - V E Ch/y,x) 
8 8 8 

0 0 0 

+ V {E (h/y,x) + E [ _a_ E Ch/y,x>]J-
1 

ak Cy,x,e
0

>} 
e e e ae' e ae 

0 0 0 0 

Proof See appendix 1 0 

It is straightforward to verify that this theorem contains, as a special case, .. 
the usual central limit theorem if e = 8 indeed, in this case, we can 

n o 
a.k 

choose, for instance k = - Il 8 -

therefore, the covariance matrix of 

2 
e 11 which implies - (y,x,8 ) 

ae o 

V h - V E (h/y,x) 
8 8 8 

0 O 0 

0 
~ 
n 

becomes: 

+ V E Ch/y,x) 
8 8 

0 0 

= V h 
8 

0 

= 0 and, 
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Corollary 2.5 : 

Under regularity assumptions given in appendix 1, the asymptotic 

covariance matrix of ~ can be written : 

V h 
8 

0 

n 

- V E Ch/y,x) 
8 8 

+ 

0 0 

V {E 
8 8 

0 0 

Ch/y,x) + f:. 
8 

0 

* 

[ 

a Log lCy /y,x,8 )] 
0 -1 

h.-------- J ae' 
ak } Cy,x,8

0
) 

ae 

Proof :See appendix 1. 

Corollary 2.6 Cweak law of large numbers) 

Under the same assumpt1ons as in theorem 2.4, 

n 
* 

- ~ h(z ,Y ,X ) 
n L in i 1 

converges in probability to E hCy ,y,x) as n .. • 

1=1 

Proof 

n 

1=1 

[
h(z. ,Y.,X.) 

1n 1 1 

follows from theorem 2.4 

8 
0 

1 
= - ~ and the result 

n vn 
D 

Note that under a mod1f1ed set of assumptions it is also possible to establish 

a strong law of large numbers·Csee Appendix 2). 
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3. ESTIMATION. 

3.a - Theoretical results. 

. 
As mentioned in the previous section, 8 can be estimated by 8 and a 

. n . 
priori, there 1s no reason to consider another estimator, specially if 8 

n 
asymptotically efficient. However, if we want to use mechanically the test 

* 

is 

procedures available for the latent model when y is replaced by z , we 
i in 

are implicitly led to consider estimators of 8 based on the z 's 

i = 1, ••• ,n 
* 

• For instance, if the latent model is 
in 

a linear model 
y = x b + u , we shall have 

1 i i 
to consider the least squares estimators of 

b obtained from a regression of the vector z i = 1, ••• ,n , on the 
in 

exogenous variables. More generally, it is necessary to study the properties of ... 
the estimator 8 obtained by maximising the likelihood function of the 

n * 
latent model in which the Y. 

1 
i = 1, ••• ,n 

i = 1, ••• ,n have been replaced by the z 
in 

In the sequel we assume that the z 
in 

i = 1, ••• ,n have been independently 

drawn from the distributions 

likelihood estimator of 8 

assume that : 

* • 
l(y /y ,x ,8 ) , where ê is the maximum 

i i i n n 
, in the observable model. In other words, we 

(3.1) k(y,x,8) = Log l(y/x;8) 

It follows that J = E 
8 

0 

2 a Log 1 

88 a9' 

... 

is the Fisher information matrix in the 

observable model. The estimator 8 that we are going to study is obtained by 
n 

maximizing 

n 

(3.2) I * Log l (z /x ;8) 
in i 

1=1 
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THEOREM 3.3: 

Under regularity assumptions given in appendix 2, 

consistent est1mator of 8 
0 

~ 

8 is a strongly 
n 

Proof See appendix 2. 

Once the consistency is established the asymptotic normality 1s a consequence 

of the generalised central limit theorem 2.4. 

THEOREM 3.4: 

Proof 

~ 

8 is 
n 

... 
Under regularity conditions given in appendices 1 and 2, vn Ce - 8 ) 

n o 
is asymptotically normally distributed; the limit normal distribution 

is zero mean, its covariance matrix is 

-1 -1 -1 
I - I J I 

-1 
+ J 

where I is the Fisher information matrix in the latent model and J 

is the Fisher information matrix in the observable model ; both these 

matrices are evaluated at 8 
0 

solution of 

* n a Log l Cz lx . 8) 
i' 

L 
in 

= 0 

ae 
1=1 

From an expansion around 8 we obtain 
0 



or 

vn cë 

* 2 * 
n ô Log 1 Cz lx ;8 > 

in i o 
n ô Log 1 

I --------+ -
1=1 

n 

I 
i=1 

n 

ae 

* a Log 1 Cz /x ;8 > 

8 ) 
0 

= 

ae 

in i o 

-1 
I 

n 

i=1 

n 

i=1 

I vn cë 

* 

ae ae· 

n 
8 ) 

0 

a Log 1 Cz lx ;8 > 
in 1 o 

ae 

-vn ce 
n 

= 0 (1) 
p 

+ o (1) 
p 

8 ) 
0 

= 0 (1) 
p 

The asymptotic normality is a consequence of theorem 2.4; the asymptotic mean 

is zero and the asymptotic covariance matrix is obtained from the general 
* * 

-1 
formula of corollary 2.6, by replacing h by I 

a Log 1 Cy /x;e > 

E Ch/y,x) 
8 

0 

-1 
= I 

ô Log 1Cy/x;8 ) 
0 

ae 

CSee e.g. MONFORT C 1982) p. 73 >. 

Thus, the asymptotic covariance of vn Ce e > is 
n o 

ae 

ô Log lCy/x; 8 ) 

V h - V E Ch/y,x) 
8 8 8 ae 

0 ] 

0 0 0 

0 
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* a Log l(y /y,x;e > 

where A = i [h . 0 ] 

ae 
0 

Therefore, we get 

-1 -1 -1 -1 -1 -1 -1 
I I JI + CI +AJ )J(I +J A') 

Let us now compute A . 
* * * 

[ 
a Log 1 (y /x;e ) a Log l(y /y,x;8 

-1 0 
A = I E 

e ae ae' 
0 

0 

[a Log 
* * . . ] l <y /x;e ) ô Log l (y /x; e 

O 
> 

-1 0 

= I E 
e ae ôe' 

0 

-1 
I 

* * l (y /x; e ) 
0 

) 

l 

The first expectation 1s equal to I. Taking the cond1t1onal expectation given 

y and x, 1t 1s eas1ly seen that the second expectation 1s equal to J 

Therefore 
-1 

A = I (1 - J) 

and 

-1 -1 -1 
A J = I CI - J) J 

-1 -1 D = J I 

... 
As expected, e is asymptotically less efficient than e 

n 

asymptotic covariance matrix of e 
-1 

is J and 

n 
-1 

r - J 
n ... 

, since the 

-1 -1 
= I < 1-J)I 

positive. Moreover it is clear that e 
n 

is asymptot1cally efficient if, and 

is 
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only if, I = J , that is if and only if, g is a sufficient statistic for 

e c see e. g MONFORT C 1982 > , p. 7 4 1 • 

... 
In order to Qave a more precise insight of the efficiency loss when using e 

n 
1nstead of 9 let us consider the one dimension case. If e 1s a scalar 

n 
parameter the formula g1v1ng r can be written: 

(3.5) V 

. .. 

... 
8 

as 

.. .. 
= V 8 

n as 

.. 2 

(V as 
9 
n) .. 

+ V 8 
n as 

V 8 
as n 

n 

where 9 1s the maximum likelihood estimator of 8 in the latent model 
n * 

Cwhich 1s not computable since the y s are unobserved) and where V 
1 as 

means asymptotic variance. 

Let us denote by r the ratio 

.. .. 
V 8 
as n 

(3.6) r = 0 , r , .. 
V e 
as n 

.. 
r 1s the asymptotic relative efficiency of e with respect 

n 
efficiency loss being a consequence of the unobservab111ty of 

Let us define Q by: 

(3.7) o = 

.. 
V e 
as n 

... 
V e 
as n 

0 ' Q ' 

Q is the asymptotic relative efficiency of 
to the best computable estimator. 

From (3.5) we obtain 

(3. 8) o = 
2 

1 + r - r 

... 
e with respect to 
n 

.. 
8 
n 

, the 

, i.e. 
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... 
In other words the asymptotic relative efficiency Q of e , due to the 

n 
sfmulation procedure, 1s a function of the asymptotic relative efficiency r 

due to the unobservabtltty of the latent model. 

Moreover function (3.8) ts readtly seen to be symmetrtc wtth respect to 

r = .5 ; it 1s equal ta for r = 0 and r = 1 and 1ts minimum, reached 

for r = .5 , is equal to .8. 

FIGURE 2. 

ASYMPTOTIC RELATIVE EFFICIENCY 
p 

.1 

• 8 
• • • • • • • • • • • • • • • 
1 • • • • • • • • • • • • • • • • • • • • • • • • • 

0 r 

The maximal efficiency loss is equal to 20%, in terms of variance, i.e. about 10% 
in terms of standard deviation which does not seem unreasonable. The loss is small 
if ris near 1 , i.e. if the observable model nearly catches the whole information 
or, on the contrary, if ris near O , i.e. if the observable model nearly looses 
the whole information. 
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This is intuitively èlear since, if the whole information is catched, y= g(y•) is 
a sufficient statistic and, therefore, the conditional distribution of Yt given 
y. is known ; on the other hand is the whole information is lest, y= g(y*) is , 
and there is no point, anyway, in basing inference on y. 

3.b - An illustration. 

The art1f1cial probit model presented in section 1 is used in this subsection 

as an empirical illustration of the previous theoretical results. 

Except for their signs, the simulated latent variables z are not very close 
* in 

to the latent variables y
1 

as it 1s shown in the following figure: 

FIGURE 3 

COMPARISON OF LATENT AND SIMULATED LATENT VARIABLES 

z 

• 3 • 
• 

• • 
2 • • • • •• • • • • • 
1 • • • • • •• • • . .. ' 

-2,5 -1 
•• 
• • • • • • • • • 

• • • • • .. • • • •• • • • • • 
1 2.5 

• • •• • • • • -1 
• • • • • 

• • • • • • • 
• • • • • • -2 

• • • 
• 

• -3 
• 

Y" 
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Nevertheless the maximum likelihood estimator ê• = C~,p) does not d1ffer 
-mùch from 8' = Ca,P) • We have seen in the introduction that, on the -contrary, the computed variance-covariance matrix of 8 given by the leastA 

squares package is far from the estimated asymptotic covariance matrix of 8 

For the present simulation, we have obtained 

(.0134 .0045 l ...... ... -1 
VC 8 > = I = 

.0045 .0045 

(. 0373 .0163 l A-1 
VC 8 > = J = 

.0163 .0223 

According ta theorem 3.4 and to corollary 2.6 a consistent estimate of the 
-asymptotic covariance matrix of 8 is: 

* '\, ... -1 --1 A ~-1 -1 
V (8) = I I J I + J = 

... 

[

.0458 

.0194 

• 0194 l 
.0258 

Thus the computed standard errors of a and p deduced from VC8) are respec-
* '\, 

tively (.119) and (.068) whereas from V (e) they are (.215) and (.161). The 
. 1\, 

t-ratio for the hypothesis H
0 

= Cp ~ 1) computed from V is -2.044 while 

the asymptotic t-ratio deduced from V is in fact - .863 • If the test of 

size .05 is based on the critical value of the standard normal distribution 

(- 1.96) the wrong regression results reject H
0 

whereas the correct 

asymptotic test does not. This empirical result shows that one should be 

cautious about the standard use of the tests that are produced by the computer 

in the second step of the simulation procedure. 

The previous data allow to compute a~ evaluation of the asymptotic relative 
-efficiency of 8 with respect to 8 • For a and p we obtain 

respectively 

Q 
a 

= 

= 

.0373/.0458 = 

.0223/.0258 = 

81 i 

86 i 
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4 - SIMULATED RESIDUAL PLOTS. 

ln this section we restr1ct the analysis to the case where the latent process 

is a linear regression model : 

te 
y = X b + U 

i i i 

Condit1onally upon x the disturbance u is assumed to be normally 
1 i 

distributed with zero mean. 

ln the more specific case where the transformation g(.) is the identity 

mapping all the latent variables are observable. If, furthermore, the 
2 

conditional variance of u is o , constant over the sample, the ML 
1 

estimator of 
* A 

b is the OLS estimator. The residual u = y - x 6 
1 te i i 

= Y - X b 
1 i 

is defined as the deviation of y Cor y. ) from the)1 .. 
i l 

the condit1onal expectation of y given x • Since b is a 
A i i 

estimation of 
consistent estimator of b x b 1s close to x b in large samples. 

Û mimicsthe disturbance u and it is natural to judge the correctness of 
i i 

assumptions on u by graphical methods based on residuals. It is a common 
1 

practice to use some residual plots for the detection of, say, outl1ers, 

heteroscedasticity, omitted variables, etc •••• 

In the general model where g(.) is nota one to one mapping 1t 1s also 

important to examine the correctness of assumpt1ons about the u 's • But the 
* 1 

diff1culty cames from the fact that y 1s not always available and the 
i 

previous res1duals cannot be computed. 

Nevertheless, following the procedure adopted in the previous section, some 

simulated latent variables z can be drawn from the conditional distribution 
in 

of the latent endogenous variables given the exogenous and observable 
endogenous variablP.s in which the parameter is replaced by the value of the ML 

A A A2 2 
estimator 
...... 2 

e = (b ,o) of e = Cb,o) • For the present model 
n n n 

(br1on) 1s then obtained by regressing z 

define the simulated residuals as : 
in 

on x 
i 

i = 1, ••• ,n • Let us 
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~ 

u = z 
1n in 

X b 
i n 

i = 1, ••• ,n 

* -Since z has the same asymptotic distribution as 
in 

y and b is consistent, 
i n 

u has the same distribution as u 
in i 

in large sample. It is then possible to 

use the simulated residuals as we use the classical ones to detect some 

underlying features of the residuals. 

To show that this can actually be done in practice, we use some very simple 

examples of Probit and Tobit models with outliers, heteroscedasticity and 

omitted variables misspecifications. 

4.a - Detecting outliers by simulated residual plots. 

To beg1n with, consider the case where the latent data generating process CDGP) 

is affected by outliers. The latent variables are generated as described in 
section 1 • The 33th and 66th observations of this DGP have been replaced by 
* * * * y
33 

= + 10 and y
66 

= - 10 instead of y
33 

= - 1.24 and y
66 

= 1.65. 
For the Probit model : 

* 
Yi = if Y. ) 0 

1 

Yi = 0 otherwise 

and for the Tobit model 

* * Y. = Yi if Y. ) 0 
1 1 

Y. = 0 otherwise 
1 

The modification of the DGP moves y from O to 1 and y from to O in 
33 66 

Probit model and moves y from O to + 10 and y from 1.65 to O in 
33 * 66 

Tobit model. Around 1 = 33 the y are almost all negative and around 
* i 

i = 66 the sign of y is not so well defined. Thus it seems a priori that it 

will be more difficult to detect an outlier at the 66th observation than at the 
33th one. This presumption is confirmed by figures 4 and 5 which display the 
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simulated residuals plots function of the exogenous variable for Probit and 

Tobit models. 

FIGURE 4 
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FIGURE 5 

TOBIT MODEL WITH OUTLIERS 
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... 
The dashed horizontal lines delimit a region of w1dth 3.92 o , centered at 

zero, wh1ch visualizes the classical confidence reg1on. Out of this region the 

residuals are presumed to come from an outl1er. The 33th observation appears to 

be out of the model much more clearly in the case of the tobit model than in 

the case of the probit model even if the estimated standard errer of the 

regression is 1.8 for the former, a value far from the true value equal to 1 
... 

This large value of o 1s due to the outlier. 

4.b - Detecting heteroscedasticity by simulated residual plots. 

The latent DGP has a conditional variance depending on an exogenous variable 

= + X 
i 

+ X U 
1 1 

u 
i 

The ML estimator a and p of the intercept 

, the simulated latent variables 

model were homoscedastic. 

z and 
in 

IINC0,1> 

o and 
...... 2 

(b,o) 
of the slope parameter 

are computed as if the 

The plots of the simulated residuals against the exogenous variable are 

displayed 1n figures 6 and 7 for Probit and Tobit models. The dashed lines 

delimit an horizontal cone which is the confidence <asymptotic) region of level 

95 i to which the residuals should belong if the disturbances were 

heteroscedastic proportional to x 
i 
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FIGURE 6 

PROB 1T f-'i0DEL l'JTH HETEROSCEDAST I CITY 
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FIGURE 7 

TOBIT MODEL WITH HETEROSCEDASTICITY 
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Again, the plots for the tobit model are more conclusive than the ones for the 

probit model. Nevertheless, even this last one shows some visual clues for 

possible heteroscedasticity in the latent model. The classical funnel shape 

appears by careful inspection of those two figures. 

4.c - Oetecting omitted variables by simulated residual plots. 

In this subsection, the latent data generating process has the following form 

* 
Yi = 1 + X + w + u u li: lINC0,1} 

1 i i i 

with w = cos< 1) case(a) 
i 

or w = cos(x} case(b) 
i i 

In case(a) w 
i 

is almost uncorrelated with x Ccorrelation coefficient 
1 

= .01 ) ; in case(b), these two exogenous variables are highly correlated 

Ccorrelation = .85 }. 

The maximum likelihood estimation of the probit and tobit models, the simulated 

endogenous variables and the simulated residuals are performed as if the 

variable w were not present in the model. 
i 

Even when the model is a classical linear modela residual plot is not very 

informative ta detect an omitted variable highly correlated with the exogenous 

variables kept in the estimated model ; thus case(a) should be more 

interpretable than case(b). The following figures confirm this is also true for 

the simulated residual plots. Figures 8 and 9 show a visible positive 

correlation between the simulated residuals and the omitted variable in case 
Ca). But no real relationship can be detected by figures 10 and 11 in case(b). 
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FIGURE 8 

PLOT OF SIMULATEO RESIDUALS FOR A PROBIT MODEL WITH OMITTED VARIABLES ALMOST 
UNCORRELATEO WITH THE MAINTAINEO EXOGENOUS VARIABLE 
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FIGURE 9 
PLOT OF SIMULATED RESIDUALS 
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FIGURE 10 
PLOT OF SIMULATED RESIDUALS FOR A PROBIT MODEL WITH OMITTED VARIABLES HIGHLY 

CORRELATED WITH THE MAINTAINED EXOGENOUS VARIABLE 
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FIGURE 11 
PLOT OF SIMULATED RESIDUALS FOR A TOBIT MODEL WITH OMITTED VARIAVLES HIGhLY 

CORRELATED WITH THE i•ii\lNTAINEû EXOGENOUS VARIABLE 
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4.d - Comparison with the generalised residuals. 

Recently along the lines initiated by COX-SNELL C1968J, CH~SHER and IRISH 

l1984J proposed another procedure which has ta be compared with the simulated 

residuals. They suggested ta base empirical diagnostic upon the generalised 

residuals which are equal ta the conditional expectations of the latent 

disturbances given the observed exogenou~ and endogenous variables 
- A A 2 

(x ,Y) evaluated at the ML estimator B = (b,o ) 
i i 

* 
u = E. Cu /y ,x > 

i B i i i 

For the probit and tobit models the generalised residuals have the following 

forms : 

* 
u = 

i 

* 
u = 

i 

q>(x b) 
i 

+(x b) Cl - +(x b)J 

(y. X b) 1 , i (y. >O) , 

Cy - + (x b)J 
i i 

. 

li> ("J 
0 ·'11 

·[] 
(y.=0) 

l 

1 -

where q> and + are respectively the density function and cumulative function 

of the standard normal. 

This last expression shows that for the tobit model and for indexes 
* 

that Y. > 0 , the generalised residual u = y x b and the 
l ~ ; i~ ; 

such 

simulated residuals u = z - x b = y x b are almost equal, since 
~ i in 1 i 1 
b is close ta b • On the other hand they differ markedly for the probit or 

* 
the tobit model when Y. is unobservable. 

l 

Except in the special case where the latent variable is observed, it has been 
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pointed out that the generalised residuals are difficult to interpret. In order 

to propose a correct 1nterpretat1on, the practitioner has to be quite 

familiarized with the typical patterns of the generalised residual plots. 

In the case of Probit mode1 with outliers the corresponding plots do not carry 

more visual information than the plots of the y against x . When the 
1 i 

disturbances are heteroscedastic, the pattern of the generalised residuals does 

not change much ; no visual interpretation can be easily obtained. When some 

variables are omitted CHESHER and IRISH have shown that the general1sed 

res1duals have 11ttle use if the omitted variables are correlated with the 

included variables, as it is the case in one of our simulations. 

The following figures confirm empirically this fact. 
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GENERALISED RESIDUAL PLOTS FOR A .. WELL SPECIF'IED PROBIT MODEL 
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FIGURE 14 

GENERALISED RESIDUAL PLOTS FOR A PR.OBIT Ml>EL WITH ClJTLIERS 
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• • GENERALISED RESIDUAL PLOTS FOR A PROBIT MODEL WITH IIETEROSCEDASTICITY 
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FIGURE 18 
GENERALISED RESIDUAL PLOTS FOR A ffiOBIT MODEL WITH VARIABLES ALMOST UNCùf<i<ELATED 

WITH THE MAINTAINED EXOGENOUS VARIABLE ' 
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FIGURE 19 

GENERALISED RESIDUAL PLOTS FOR A TOBIT MODEL WITH OMITTED VARIABLES 
ALMOST UNCORRELATED WITH MAINTAINED EXOGENOUS VARIABLE 
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FIGURE 20 
GENERALISED RESIDUAL PLOTS FOR A PROBIT MODEL WITH OMITTED VARIABLES HIGFLY CORRELATED 

WITH THE MAINTAINED EXOGENOUS VARIABLE 
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5 - TESTING PROCEDURES. 

5.a - The case of a latent linear model. 

Let us consider a linear model 

(5.1) = X b + U 
i i 

i = 1, ••• ,n 

2 * 
where the errors are i.i.d, normally distributed NCo,o} • If y

1
_ x were 

i 
observable, b would be estimated by OLS and some diagnostic tests would be 

performed. For instance, 1t would be possible ta test for the significativity 

of some components of b or symmetrically ta examine the relevance of some 

additional explanatory variables w . ln the first case, the initial model 
i 

(5.1) is the general hypothesis ; in the second case, model (5.1) is the null 

hypothesis and the general hypothesis has the form: 

* (5.2} y = X b + W C + U 
i i 1 1 

In this classical context the test procedures are based on Fisher statistics or 

equivalently on score statistics. 

* 
When the latent endogenous variable y is unobservable, the score statistics 

* 
may be used after replacement of the unknown values y by the simulated ones 

1 
z 

in 
• The statistics thus obtained are called generalised score statistics. 

Depending on the hypothesis to be tested, the simulations are obtained under 

the null (case of omitted variables} or the general hypothesis (case of 

superfluous variables}. The usual properties of the score statistics are no 
* longer valid because of the replacement of y by z • In the following 
1 in . 

subsections, we are first interested in the determination of the right 

asymptotic covariance matrix of the generalised score statistic ; then by 

comparing this right asymptotic covariance matrix ta the usual covariance 

matrix of the score statistic, we shall discuss the correct interpretation of 

the misspecified score test statistic, i.e the statistic in which the effect of 

the simulations has not been taken into account. In the case of a latent linear 
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model, this misspecified statistic test simply corresponds ta a F-test, applied 

ta the regress1on of the z on the x 
in i 

5.b - Properties of the score statistic based on simulations under the 

null hypothesis. 

The latent model is parameterised by a parameter 8 , which can be part1t1oned 

We are 1nterested in 1n: 8 = («) , where « € Rk
1 

, P € Rk
2 

testing the n~~lity of the subparameter a the null hypothesis is given by: 

H Ca= o) 
0 * 

If the latent endogenous variable y wera observable, the score statist1c for 

test1ng Ho would be : 

* * 
A 
A 

n a Log 1 {y /x ;o,p ) 

I 
1 i on 

(5.3) ~ = 
n vn aa 

i=t 

A 

where p denotes the constra1ned maximum likelihood estimator of f:! • If 
on . (o) the true value of the parameter belongs to the null and is: 8

0 
= p · , 

0 
~ is asymptotically normal w1th zero mean and with a covariance matrix g1ven 
n 

by 

-1 
I - I 1 I 
aa aP PP Pa 

where I , I , I are the blacks of the information matrix I of the 
aa aP Pf:! 

latent model evaluate~ at 8 
0 

When the latent endogenous variable is unobservable, 

i) the parameter 8 can be est1mated by the constrained maximum likelihood 

method applied to the observable model ; 
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11) the est1mator 8 thus obtained can be used as a basis for simulating 
* on 

the y
1 

• These simulations are denoted by z 
in 

iii) the simulated series is then used to compute a constrained maximum 
~ ~ 

likelihood estimator 13 of 13 13 is a solution of 

Max 
13 

n 

on on 

* 1 C z /x ; o, 13 > 
in i 

iv) the generaliseg score is obtained by replacing in the expression of e 
n 

~ 

by z and 
in 

13 by 13 
on on 

The statistic 1s given by 

* ~ 

n a Log l Cz /x ; o, 13 ) 

I 
in i on 

(5.5) e = 
n vn aa 

i=t 

v) A misspecified test is based on the misspecified statistic 
.. .. -t 

e'CV e) e , whose asymptotic properties have to be studied. 
n as n n 

The asymptotic properties of e under the null are summarized in the 
n 

following theorem. 

THEOREM 5.6: 

Under a set of regularity conditions described in appendices 1, 2, 3, 

e is asymptotically normally distributed under the null, with zero 
n 

mean and with an asymptotic covariance matrix given by: 
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-1 
V ~ = I - I I I 
as n aa ap PP Pa 

-1 
CI I 

ap PP 
-1 

- J J ) J 
ap PP PP 

-1 
( I I 

PP Pa 
-1 

- J pp 
J ) 

Pa 

where I and J denote the latent and observable 1nformat1on matrices 

evaluated at 8
0 

= (:) 
0 

Proof See appendix 3 D 

The correct asymptotic covariance matrix of the generalised statistic t has 
n 

to be compared with the usual form of the covariance matrix 

-1 
(5.4) V ~ = I - I I I 

as n aa ap PP Pa 

It is directly deduced from the expression of V ~ that V 
greater 

V ~ 
as n 

as n as 
than V ~ for the usual order on symmetric matrices : 

as n 
» V ~ 

as n 

,. 
~ 
n 

This implies the following inequality between the right and misspecified 

"chi-square" statistics. 

Corollary 5.7 

-1 -1 
~ I (V ~ ) ~ > ~' CV ~ > ~ 
n as n n n as n n 

1s 

wher~ V ~ and V ~ are consistent estimators of V ~ and 
as n as n as n 

V ~ 
as n 

If the asymptotic size is equal to 5 i the correct asymptotic test consists 

{ 
in rejecting the null if ~, (V 

n as 
in accepting the null, otherwise. 

-1 
~ ) 
n 

~ 
n 

2 
> X (K ) 

9bi 
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The misspecified test procedure consists 

{ 
in rejecting the null if ~, CV 

n as 
in accepting the null otherwise. 

-1 
~ ) 
n 

~ 
n 

> 
2 

x CK) 
951. 1 

From corollary 5.7, it is clear that whenever the null is rejected with the 
misspecified procedure, it is also rejected with the correct one. The 
misspecified procedure appears to faveur the null, i.e the initial model. The 
asymptotic size of the misspecified test is less than 5 1.; such a test is 
sometimes called a conservative test. 

In order to obtain an interpretation of the misspecified test, when it leads to 
the acceptation of the null, it is necessary to bound fromAbelow the right 
variance V ~ by a function of the erroneous one V ~ 

as n as n 

Property 5.8 : 

We have 

V t »-V~ 
as n À as n 

where À 1s the maximum eigenvalue of 

Proof See appendix 4 D 

1/2 
Since I - J = J 

pp pp f3f3 
[J -1/2 1 J-1/2 - Id] J 1/2 1s non negative, 

pp pp f3f3 f3f3 

-1/2 
all the eigenvalues of J 

À ~ 1 
f3f3 

-1/2 
I J 

f3 f3 f3 f3 
are greater than one and in particular 

If the value of the misspecified statistic leads to accept the null : 
-1 

t' CV t ) t 
n as n n 

1 2 

2 
< X (K ) 

951. 1 
and if moreover this value is smaller than 

- x CK) , then the right statistic would also lead to accept the null. 
À 951. 1 
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In summary the misspecified test can be used as a test with three possible 
answers : 

-1 2 
if ~, CV ~ ) ~ ~ x95t 

CK) 
n as n n 1 

rejection 

-1 1 2 
if f;, CV ~ ) f; ' :- x95t CK) 

n as n n 1 
acceptation 

À 

2 -1 2 
if -

x95t 
<K) < ~, CV f; ) f; < x95t 

CK > 
1 n as n n 1 

undetermination 
À 

where À is a consistent estimator of À 

Remark 5.9 ln the limit case J = I , we also have 
J I · tss sst · ·t t· 1 J th t = us1ng he nonnega 1v1 y o - ; we see a aS aS 
V ~ = V ~ and that the two test procedures are asympto-as n as n tically equivalent. This case appears when y is a sufficient 
statistic with respect to S 

Remark 5.10: It is easily seen from the proof given in appendix 4, that the 1 
bound - is the most accurate in particular when a is a uni­

À 
dimensional parameter. 

Remark 5,11: If the misspecified statistic does not immediately conclude in favour 
of the rejection. a good strategy would be to derive easily computable upper bound 
of x (or x) such as the trace or the detenninant of the matrix involved; if it is 
not enough to get an answer one has to choose between the computation of i , with 
the risk of remaining in the undetermination area, and the computation of the 
correct statistic ~·(v ~ ,.-1 ~ • with the additional cost of computing terms n as n n such as J which are not direct by-products of the maximisation of the af3 

likelihood function under H0 • 

5.c - Properties of the score statistic based on simulations under 
the general hypothesis. 

The determination of the score statistic is similar to that of the previous 
subsection, except that at the first stage the parameter e is estimated by 
the unconstrained maximum likelihood method applied to the observable model. 
This modification of the estimation procedure of e implies a modification of 
the simulated values and of the constrained ML estimator of p • For sake of 
simpl!city, we keep the same notations as before, simply add1ng a "bar" on z 
and S 
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The score statistic is given by: 

* - "' n a Log 1 (z lx ;o,p ) 

(5.12) I 
in i on 

l = 
n vn aa 

i=1 

THEOREM 5.!3: 

Proof 

Under a set of regularity conditions described in the appendices, l 
n 

1s asymptotically normally distributed under the null, with zero mean 

and with an asymptotic covariance matrix given by: 

aa -1 aa aa -1 aa -1 
V E = V E + < I ) J (l ) (J ) 
as n as n 

aa -1 -1 
where < I ) = I I (1 ) I 

aa ap pp Pa 
aa -1 -1 

(J ) = J J (J ) J 
aa aP pp Pa 

See appendix 5. D 

- -1 -
ln order ta comp~re 

cified one E'CV 
the right test statist1c E'CV E > E with the misspe-
A -1 - n as n n 
E > E we have ta compare the two asymptotic 

n as n n 

covariance matrices V E and V E 
as n as n 

Property 5 j4 : 

The asymptotic covarianceAmatrix V E 
as n 

V E » V E 
as n as n 

is greater that V E 
as n 

Proof: It is possible by using an orthogonalisation procedure Csee appendix 4, 

i)) ta only consider the case I = a • Under this condition, we have : 
aP 
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-1 aa -1 aa aa -1 aa -1 
V ~ V ~ = - J J J + CI ) J CI ) (J ) 

as n as n ap pp Pa 

aa 
= I J I J 

aa aa aa 

-1 -1 aa -1 
Since I » J , we have J » I and in particular J » I 

aa 

aa 
Then V ~ V ~ = I J I J 

as n as n aa aa aa 

» I J » 0 
aa aa 

D 

- -1 - -1 -
Therefore : ~'CV ~) ~ < ~'CV ~ > ~ and whenever the null is 

n as n n n as n n 
accepted with the misspecified procedure, it is also accepted with the right 

one. 

Property 5.15: 

We have the following inequality: 

V~« V~ [1+µ-~] 
as n as n µ 

1/2 -1 1/2 -1 
where µ is the maximum eigenva lue of I J 1 , or I J • 

Proof : Considering w1thout loss of general1ty the case I = 0 , we 
-- aP 
have: 

aa 
V ~ = V ~ + I J 1 J 
as n as n aa aa aa 

1/2[ +1/2 aa +1/2 -1/2 I -1/2] 1/2 
= V ~ + I I J I I J I 

as n aa aa aa aa aa aa aa 

1/2 1/2 
« V ~ + I Cµ Id - Id) I 

as n aa µ aa 
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1 
= V ~ + 1 (µ - - ) 

as n aa µ 

= V ~ ( 1 + µ ) 
as n µ 

D 

-1 -1 1/2 -1 1 /2 
Since J >> I I J I >> ld, the maximum eigenvalue µ 

1 
1s greater than one and 1 + µ - - 1s also greater than 1 • As in the 

previous subsection, the misspeci~ied test may be considered as a test with 

three possible answers, but in this case this is the misspecified rejection 

region which 1s separate in a rejection and an undetermination region 

if 

1f 

if 

where " 

-1 A 2 
~' CV ~ ) ~ > À x95"L CK) rejection 
n as n n 1 

A -1 2 
~' CV ~ ) ~ ' x95"L 

CK) acceptation 
n as n n 1 

2 A -1- A 2 

x95"L 
CK) < ~' CV ~ ) ~ < À x CK ) . undetermination 

1 n as n n 9b"L 1 

1 
= 1 + µ - :- and µ is a consistent estimator of µ 

µ 

5.d - Asymptotic behaviour of the genera1ised wa1d test and the 
genera1ised like1ihood ratio test 

Up to now we have onl( considered the generalised score test statistic, 
because the statistics .:..!!. or ..1!. appear as sample means and, therefore, their 
asymptoti c be havi our i s /neasi 1yln tack1 ed through the genera 1 i sed centra 1 1 imi t 
theorem 2.4. However it is natura1 to a1so consider the asymptotic behaviour of 
the genera1ised wa1d test and of the genera1ised 1ike1ihood ratio test. 

We consider the same genra1 framework as in 5.b and 5.c. The z1n are 
obtained from simulations based either on the constrained maximum 1ike1ihood of 0 

or on the unconstrained maximum like1ihood estimator of 0. In the seque1 we consider 
the constrained case but the other case wou1d provide exact1y the same resu1t. 
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From the z. we can compute unconstrained and constrained second stage ,n 
estimators by maximising, respectively, 

n * n * Ï Log 1 (zin/xi' a, a) and .I Log l (zin/xi ; O, 8) 
i=n 1=1 

~ = ( ~n) ~ =(O ~ will denote the unconstrained and the constrained n 8 on ~ 
n on 

estimator, 

Using Taylor expansions and the law of large numbers previously shown 
we have, under H

0
: 

(
f;n)- 1 0 - -

ln 

- I(~) ln(~ - 0) + o (1) o no o p 

Substracting these expansions we get: 

( :n) = I (e0 ) ln(~n - 'iïn0 l + op(Il 

ln ~n = Iaa(eo) f;n + op(l) 

It follows immediately that the generalised Wald test, based on ~n , 
is asymptotically equivalent, under H

0 
, to the generalised score test. As far 

as the generalised likelihood ratio test is concerned, it can easily be shown, 
using the standard expansions that 

~ * ~ ~ n * 2[ ,l Log l (zi/xi ; an' ~n) - ,l Log l (zi/xi ; O, è0 n] = f;~ Ia0 (e0 ) f;n + op(l) 
1=1 1=1 

Since I00 (e
0

) is not the inverse of the asymptotic covariance matrix of ~n , this 
generalised likelihood ratio is not asymptotically distributed as a chi-square but as 
a mixture of chi-squares [see Foutz-Srivastava (1977)], In particular, this statis­
tic is not asymptotically equivalent to the qeneralised score and wald statistic; 
the situation is similar to the one found in the pseudo-likelihood theory (see 
T ROGNON ( 1983) , G OUR! EROUX-M ONFORT-T ROGNON ( 1984b) ) • 
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5.e - Asymptotic equivalence of the misspecified score, Wald anÊ. 

likelihood ratio test statistics, in the case of a linear latent 

model 

In the previous subsections, we have discussed the correct asymptotic 

properties of generalised statistics and the correct interpretation of the 

misspecified score test statistics. In practice the usual estimation packages 

also provide the values of some 11misspecified 11 Wald type statistics (e.g. student 

or Fisher statistics) and of the maximum of log-likelihood function. Considering the 

case of a latent linear model, we are going to prove that these three kinds of misspe­

cified statistics are asymptotically equivalent under the null and in particular that 

the level correction procedure described in 5.b, 5.c is val1d for all these 

tests procedures. 

Let us consider the following latent linear model : 

* (5.16) y 
i 

: X p 
i 0 

+ w a 
i 0 

+ u 
; 

i=1, ... ,n, 
2 

u i.1.d, u ~ NCo,o) 
i i 0 

and the null hypothesis given by 

Ho = {a= o} 
* Since y is unobservable, the observations 
1 

variable are replaced by the simulated values 

C5,16)bY the misspecified one : 

* 
Y. 

1 
z 

in 

of thè latent endogenous 

and the initial model 

(5.17) Z : X p + W a + U 
in i i 1 

2 
i = 1, ••• ,n , u i.i.d, u ~ NCo,a) 

i ; 

The misspecified test statistics of the null hypothesis are given by the usual 

formulae. Let us denote by M Cresp M ) the orthogonal projector on the 
X X,W 

space orthogonal to that generated by the columns of X Cresp. of X, W 
~ 

and by a the unconstrained o. l.s. estimator of a based on the misspecified 

model : 

-1 
a = lW'M WJ W' M Z 

X X 

The misspecified test statistics are : 

score test statistic n 

~ ... 
a' W'M W a 

X 

Z'M Z 
X 
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... 

Wald stat1stic n 

a' W'M W a 
X 

Z'M Z x,w 

Z'M Z 
X 

Likelihood ratio statistic n Log --­
Z'M Z x,w 

= n Log 

Then the asymptotic equivalence of these statistics under the null 1s simply a 

consequence of the law of large numbers (2.6), which implies that, under the 

null 

1 1 'le, 'le 2 
plim-2' M z = pl im -Y M y = a 

X X n n 0 

1 1 1c' 'le 2 
plim - Z' M z = plim -Y M y = 0 x,w x,w n n 0 

and of the asymptotic properties of a 

For instance, let us cons1der the prob1t model of section 1. From the valuesAof 

the information matrices I and J given in 3-b, we obtain an estimate µ 

of µ equal to 5.34 

If we want ta test at level 5 t the null hypothesis H
0 

CP= 1) using the 

misspecified student statistic, we have the following three answers Wald test 

If the t-statistic has a modulus smaller than 1.96, we accept the null 
hypothesis. 

If the t-statistic has a modulus greater than 

1.96 ~ = 4.86 , we reject the null hypothesis. 
µ 

Otherwise the test is inconclusive. 

The observed values of the t-statistic is - 2.044 and the last answer is the 
right one. 
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CONCLUDING REMARKS 

The results proved in this paper, though they are not 

trivial from a technical point of view, are very easy to use in practice. 

In particular, if the latent model is linear, the basic tools are simply the 

usual residuals provided by standard regression packages. This implies that 

variou;graphical checks or genuine statistical tests can easily be implemented 

for various models such as probit, Tobit, disequilibrium models ••• These new 

possibilities seem to be important since, in these kinds of models, it is well­

known that specifications errors may have much more serious consequences 

than in the usual linear model. 
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APPENDIX 1 

PROOF OF THE Gl:NERALISEO CENTRAL LIMIT THEOREM. 

1) The theorem 

* Let CX ,Y> i EN be i.1.d random variables whose values are in 
i i 

R 

d +d 
0 1 

The common distribution of these pairs belongs ta a parametrised 
k 

fami ly <P , e E e c R > and is associated with the value e of the parameter. 
8 O 

d 
1 

For a given function g from R into R 
* 

d 
2 

, we define the transformed variables: 

Y = gCY) , 1 EN. If the observed variables are CX , Y> 1 = 1 ••• n , an 
1 1 i i ,,.. 

estimator e 
n 
K 

of e is a measurable function of CX , Y) i = 1 ••• n, with 
1 i 

values in R • From this estimator, it is possible ta generate approximations 
* of the latent variables Y by drawing independently from the conditional 
i 

* distribution of Y given Y and X 
i i i 

, associated with the value e 
parameter; these simulated series are denoted by Z 

in 

n 
, i = 1 ••• n 

of the 

, n E N • 

We are now interested in the asymptotic properties of an empirical mean: 

n 

n 

\ h(Z ,Y ,X) , where h is a H-dimensional function. L 1n i i 

i=1 

Theorem 2.4 Let us assume that 

vn<e -8 ) = 
n o 

n 

\a(Y ,X ) 
L 1 1 

1=1 

+ € 
1n 
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with a function a satisfying: 

2 
E I la<Y,X>I 1 < oo , E a(Y,X) = 0 
8 8 

0 0 

and a random terme tending in probability ta zero 
1n 

p 
8 

0 
e --> 0 • 

1n 
n-+• 

Then, under the regularity conditions given below, the random variable 

1 
( = -
n 

n 

I[ h<Z. ,Y.,X.> - 1:. hCY*,Y,X>] 
ln 1 1 8 

0 
i=1 

tends in distribution ta a normal distribution with zero mean and a 

covariance matrix given by: 

\
5
( = ï ChCY*,Y,X)J - ï [i Ch<Y*,Y,X)/Y,X>] 

0 0 0 

+ ï {i [hcY*,Y,X)/Y,X] + i {~:, i[h<v*,Y,X)/Y,X]e=e a (Y,x>] 
0 0 0 0 

ii) Regularity conditions 

H1 : 8 belongs ta the interior of 0. 
0 

H2 The marginal distribution of X is independent from e , e E e. 
i 

* Y /X=x 
H3 : The conditional distribution P has a density with respect ta 

8 

* Y/X=x 
P for any x and this density function is strictly positive. It is 
8 

0 * 
denoted by l(y /x;8) . 

H4 This density function is continuous at e 
0 

* 4 
H5 E J t 'h ( Y , Y, X> J < + oo 

8 
0 

H 
'f/ t E R 
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H6 V t,V k,3 n Ck) : V n > n Ck> V a= 1,2,3,4 
0 0 

i
0

(1t'[hcY*,Y,X> - i
0

<Y*,Y,X>]la sup k llCY*/Y,X;0)-11) 
e: 110-e 11<-

o 

* * Y /Y,X 
where lCy /y,x;O) denotes the density function of P with respect ta 

e 
* Y /Y,X 

p • 
8 

0 

* H7 i ct'hCY ,Y,X)/Y,Xl is differentiable with res~ect to 8 and the first 
derivative 1s continuous at 8 , for any t ER 

0 

H8 E I I ~ E [t ' h C Y* , Y, X> /Y, x] Il < + oo , V t E R 
0 a0 0 

0 0 

H9: For any t , there exists c > 0 such that: 
0 

E 
8 

0 

sup 
8: 118-8 l l<c 

0 0 

Il~ E[t'h<Y*,Y,X)/Y,Xl- ~ E [t'hCY*,Y,X)/Y,X]II < + oo 
a0 0 ae 0 

0 

i i 1) A lemma. 

In the proof of the theorem we use several times the following lemma 

Lemma * Let Ca,, ,, ) i = 1 ••• n be random variables such that : 
i i i 

* + (1) a (resp, , , ) takes its values in R Crespin C) ; 
i i i 

Cii) the random variables a are independent and integrable 
i 
* (iii) 1, 1 < 

i 
and 1, - , 1 < a V i = 1 •.• n; then 

i i i 

n 
n * n 

IEC ff, > - EC ff, >I 
1=1 1 i=1 1 

, exp( I E a/ - 1 

1=1 
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Proof of the lemma: Let us first remark that, since IT 1 < 1 , the product 
1 

n 
ff, is integrable. Denot1ng P

1
• 

1=1 1 
* = 'I' 
1 

,, 
1 
n 

we have 

n * 
1T 'I' 

1 = 1 1 

n n 
1T 'I' = ff {'I' + p) 

1=1 i 1=1 i i = ~ I (J~p1l L}A '1) 
n 
1T ,, 

i = 1 1 

p 

whereQ. 1s the fam1ly of the subsets of <1 ••• n> with p elements 
p 

Taking the absolute values of each member of the equation, we obtain the 

following inequality: 
n 

n * n I 1 n 'I' - ff ,, 1 < 
i=1 i 1=1 1 

p=1 

n 

' I p=1 

n 

' p=1 

I ff 1P
1

1 
i€A 

A€().. 
p 

I ff 1 P .1 
iEA 

AEQ, 
p 

ff a 
i€A i 

AE(L 
p 

1 

;}A l'I' 1 
i 

C f rom C i i i )) 

(f rom C 1 i i )) 

Since the random variables a are independent, we have 
i 

n * n 
El 1T 'fi - ff 'I' I < 

i=1 i i=1 1 

n 

p:1 AEa 
p 

n * n 

1T Ea 
iEA i 

n 

Therefore El ff 'I' 1 < El ff 'I' I + 
i=1 i i=1 i 

~ ~ ff Ea 
L L i€A i 
p:1 A€ â. 

p 
n * which means that ff 'I' 1s integrable and we have 

i=1 i 

n * n n * n 
IE 1T 'I' - E 1T 'I' .1 < E I 1T ,, - 1T 'I' 1 

1=1 i i=1 1 1=1 i 1=1 i 

< 00 
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n 

' I I 1T <Ea ) 
1EA 1 

p=1 AEO...., 
p 

n 
= 1T ( 1 + Ea) - 1 

1=1 i 

n 

' exp I Ett1 - 1 

1=1 

Q.E::.D. 

iv) Proof of the theorem: 

The asymptotic distribution of ~ is deduces from a study of its 
n 

characteristic function. 

a) Expression of the characteristic funct1on. 

We have : 

E exp(jt'~) 
8 n 

0 

{ 
jt' 

= ~ exp -
o vn 

n 

\ Ch(Z ,Y ,X) L 1n 1 1 

i=1 

~. h<Y* ,Y,X)]} 

0 

= E E 
8 8 

0 0 

[ 1T exp - Ch(Z , Y ,X ) - E h(Y , Y ,X)] <X , Y ) ••• <X , Y >] n jt' * y{ 
1=1 in i i 8 1 1 n n vn o 

Since the simulated observations 
* distribution of Y given Y ,X 
i i i 

parameter, we deduce : 

E C exp jt' ~ l 
8 n 

0 

n 
= E c 1T 1P l 

8 i=1 in 
0 

are drawn independently from 1he conditional 

associated with the value 8 of the 
n 
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jt' * * 0 with cp = ; [exp - Ch(Y ,Y ,X) - E hCY ,Y,X>J .,Y.] 
in - i i 1 e , , 

e vn o 
n 

We are now going to asymptotically expand the expression of cp • For this 
in 

purpose, we define for each pair of integers Cn,k>, the subset 

Q = 
n,k 

[ 11 e - e 11 
n o 

< _k ] n 

vn 

b) Expansion of cp on Q 
in -- n,k 

b.1) If x is a real number, we have 

lexp j x -

2 
X 

- j X + -
2 

* 

1 . 

< k] 

3 4 
lxl X 

' -- + 31 41 

Therefore, denoting h = hCY ,Y ,X> , we get 
i i i 1 

t' 
exp j - Ch 

1 vn 

with lo (1) 1 
1n 

E h> 
8 

0 

= +_l_t'Ch 
i vn 

+ 0 ( i) 
1n 

< 41 [ t' (h t ~o hl r 

E h> 
8 

0 

+ -
3! 

-
1 

[t'(h 
2n i 

t'Ch - E h) 
i 8 

0 

i h>]2 
0 

3 

b.11) From assumptions H5 and H6, we deduce that E 
8 

* a 

for a= 1,2,3,4 and for 8 satisfying 

lt'ChCY ;Y,X> - E hJI < ~ 
8 

0 
k 

11 e - e 11 < 
0 
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Therefore the cond1t1onal expectations 

E [ lt'(h(v*,v ,X) - E h)l(l/v ,X ] 
8 1 i 8 i 1 

0 

ex1st under the same conditions. This 
the expectat1ons; [ lt'(h<Y*,Y ,X> 

1 i 

implies that on the 

- ~ h>t/r,.x1] 
subset Q 

n,k 

8 0 
n 

have a sense. 

Then 1t is possible to express the general term • as 
in 

•1n 
t' 

= ; [exp j - Chi - E h) /v ,X 
8 i 1 

8 vn 0 
n 

jt' 
= +-; 

vn 8 
n 

2n 
; 
8 
n 

jt' 
= + -; 

vn 8 

2n 

n 

; 
8 
n 

[t'!h -E hll /v ,X l 1 8 i i 
0 

[[t'<h1 - ~ h>J2/v1,x1 J 
0 

[
t' (h - E h) I /v ,X ] 

i 8 i i 
0 

] 

+ ; 0 ( i) 
tn 

8 
n 

+ 0 ( i) 
2n 

The residual term o Ci) depends on all values X , ••• ,X ,Y , ••• ,Y through 
2n 1 n 1 n 

the estimator 8 of 8 
n o 

variable depending only on 
* n (Y ,Y ,X) = n (1) 

k,n i i k,n 

• However, it 
X ,Y • More 

1 i 
the quantity 

is smaller on Q than a random 
n,k 

precisely, if we denote by 
* sup llCY /Y ,X ;8)-11 

k i i 
8: 118-8 11<-

o vn 
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we obtain on the subset g 
n,k 

1 o Ci>I < o CY ,X> 
2n 2n 1 1 

with: o CY ,X > = -
1 

E [[t'Ch - E h>J
2 

Il (1)/Y X >] 2n i 1 2n 8 1 8 k,n i i 
0 0 

+ --2 ~ [[t, Chi - i h>]4 / \ ·\] 
4!n o o 

3 
+ --3/-2 ~ [[t'Chi - i h>] / Y1,X1] 

3!n o o 

b.111) Since 8 tends to 8 , 1t is natural to expand the second term of 
n o 

the expression of , 
1n 

; 
8 
n 

[
t' Ch - E h) I /v ,X ] 

1 8 1 i 
0 

= E 
8 

0 
[
t'Ch -Eh>1/v,x] 

1 8 i i 
0 

+ r_ô E Ct'h /Y ,X>] C8 - 8 > + o Ci) 
la0' 8 i 1 i n o 3n 

0 

The res1dual term 0 ( i) is on g smaller than 
3n n,k 

a a 
10 ( 1) 1 ' Il 8 - 8 11 sup A I 1- ECt'h /Y ,X> - - E Ct'h/Y,X>II 

3n n 0 ô8 0 1 1 1 a0 0 i 1 i 
8€[ 8 , 8 l 0 

k ' -

0 

sup 
k vn 8: 110-0 11-

o 

n 

= o CY ,X) Csay) 
3n 1 1 

a a 
I 1- ECt'h /Y ,X> - - E Ct'h /Y ,X >I 1 

a0 0 1 1 1 a0 0 1 1 1 
0 
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b.iv) Using the asymptotic expansion of 8 
1 

and the fact that Ile Il < -
1n k n 

on Q we next obtain 
n,k 

~ (t'(hi - E h)/Y ,X ) = E (t'(hi - E h)/Y ,X ) 
8 1 1 8 8 1 1 

8 0 0 0 
n 

n a 
( t, ) . + - E h /Y ,X - I aCY ,X ) + 0 ( i.) + 0 ( i) 

ae' 8 i ; i n i 1 3n 4n 
0 

1=1 
e a 

( t' ) 1n 

1 
with lo (1) 1 = E h /Y X 

4n ae' 8 i i 1 
0 vn 

1 a Il (t, 
) 11 ' -- E h /Y X = o CY ,X ) ae' i ;, i 4n i 1 

k vn 8 
0 

b.v) Replacing in the expression of cp 
in 

, we get : 

* j j 
cp = cpin + 0 ( 1) + - 0 ( i) + - 0 ( i) 

in 2n 3n 4n vn vn 

where 
j 

+ -

vn 
E (t' Ch - E hl/Y X ) 
8 i 8 1 i 

0 0 

n 
J a 

+ - E (t'h/YX) ~ a<Y ,X > L ; ; n ae' 8 i 1 i 
o vn 

i=1 

E { (t ' Ch - E h)) 
2 
;y , X } 

2n 8 i 8 i i 
0 0 

Therefore, for n suff1ciently large: 

1 "Q 
n,k 

< o CY ,X ) 
n,k i 1 

1 -= o CY ,X) + - o CY ,X) 
2n i 1 3n i i 

1 -
+ - o CY ,X> 

4n i 1 vn 

vn 



c) Comparison of 11 
Q 
n,k 

n 
u cp 

1=1 in 
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and 11 
Q 

n * 
i~1 cpin 

n,k 

c.i) Noting that o CY ,X ) is integrable, a direct application of the 
n,k i i 11 * 11 * lemma given at the beginning, with ,, = cp. 

,, = cp. 
in Q ,n in Q ,n 

o CY ,X > 
n,k n,k 

a = gives 
i n,k i i 

n 

1 ~Q 

n -4 n 
cp~ 1 exp(6 ;; (Y ,X l l E 1f cp. 1f < E 

8 1=1 ,n Q i=1 ,n 8 n,k 1 i 
0 n,k n,k 0 

= exp [ n E -;; CY ,X >] 
8 n,k i i 

0 

c.11) If we examine the decomposition of n o CY ,X) it is easily seen 
2n i i 

that lim n o CY ,X) = 0 , since lim n Ci) = 0 from H4 • Using 
n-+• 2n i i n .. • k , n 

the dominated convergence theorem, we deduce that : 

1 im E o CY ,X ) = 0 
n ... 8 2n 1 i 

0 

c.111) Similarly, we have 

E 
8 

0 

n 

o CY ,X > 
3n i i 

vn 
= k E 

8 
0 

sup k l la: i 
e:110-e 11<­

o vn 

(t'h/Y,x) 
1 i 1 
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Using H7 and H9 , we deduce from the dominated convergence theorem that 

11m E n 
n-+• 8 

0 

c. iv) Finally 

o CY ,X ) 
3n 1 i 

vn 

E 
8 

0 

n 

c.v) Therefore : 

= 0 

o <Y ,X > 
4n i i 

vn 
= - E 

k 8 
0 

1 
~m .. s~p i 1 ~ Q i ~ 1 cp in - ,4 Q i ~ 1 cp: n 1 

o n,k n,k 

Finally, using H8 we get 

l im sup 
k .. DO 

lim sup E 
n-+• 8 

0 

~ cp -11 
i=1 in Q 

n * 1 • 1T cp. 
1=1 ln 

n,k 

d) Comparison of 11 
Q 

and 4 
Q 

n ** 1T cp • 
i=1 in 

n,k n,k 

d.i) Let us define the random variable 

** cpin = exp Cj A + B ) 
in in 

= 0 



where 
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A = 
in vn 

E (t'Ch - E h)/Y ,X) 
8 i 8 i i 

0 0 

n 
a 

+ - E (t 'h /Y ,X ) ~ a(Y ,X > L 1 1 n ae' 8 i 1 1 
o vn 

i=1 

B = i {(t'(hi E h>)
2

1Y ,X} 
in 2n 8 i i 

0 0 

+ _1 {E 
2n 8 

(t'(hi - E h)/Y ,X )}
2 

8 i 1 
0 0 

= V (t'Ch - E h)/Y ,X) 
2n 8 1 8 1 i 

0 0 

** It is natural to consider the variable •in since !~ has 

expansion. Since B
1
n is non positive, we have 1•

1
nl < 

* 
•;n 
1 

as second order 

d.ii) Following the same lines as in parts b) and c) of the proof, it is 

eas1ly verified that : 

lim sup 
k .... 

lim sup E 
n-+oo 8 

0 

e) Asymptotic distribution of ~ 
n 

1) We have : 

~ •** = exp j [~ A 
1=1 in L in 

1=1 

- j 

~ .~*I 1=1 rn 
= 0 
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n n 

with I A - j I B 
in in 

1=1 i=1 
n n 

I (t'(hi ~ h>I\ ,x1) 
1 a 

= E + -I- E (t'h /Y ,X ) 
8 n ae' e 1 i 1 

vn 0 0 0 
i=1 i=1 

n n I aCY ,X ) 
j 

I V Ct'Ch - E h)/Y ,X ) + -
i i 2n 8 i 8 i i 

vn 0 0 
1=1 i=1 

n 

I [ a = E (t'Ch - E h)/Y ,X) + E -E Ct'h /Y ,X>] 
8 i 8 i i a ae' e i i i 

vn 0 0 0 0 
1=1 

n I aCY ,X > 
j 

E V (t'Ch - E h)/Y ,X> 0 (1) + - + 
i 1 2 e 8 i 8 i 1 p 

vn 0 0 0 
i=1 

where o (1) is a negligible term in probability. Since the first three terms 

convergepin distribution, we deduce that the same is true for 
n n 

, A - j , B and that the limit of E ~ ~** coïncides with L in L in 8 1=1 in 
0 

i=1 1=1 
the asymptotic characterist1c function associated with these terms : 

n ** 
exp [j t' [ t] 11m E 11 ~- = t' m -

n-+• 8 1=1 ,n 2 
0 

with : m = E E [<hi E h) /Y ,X >] 
8 e e i 1 

0 0 0 

[ a + E -E Ch /Y ,X >] E a(Y ,X) = 0 
e ae' a i 1 i e i i 

0 0 0 

and r = E V [<h 1 - E h) /Y ,X ) ] 
e e 8 i i 

0 0 0 
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+ V [Ee Ch /Y ,X ) + E [ ~ E Ch /Y ,X >] aCY ,X >) e ; ; ; e ae' e i 1 1 i i 
0 0 0 0 

= V h 
8 i 

0 

- V E Ch /Y ,X> 
8 8 i i i 

0 0 

+ V 
8 

0 
[

Ee Ch /Y ,X ) + E [ _a_ E Ch /Y ,X >) a(Y ,X >) 
i i i 8 ô8' 8 1 i 1 . 1 1 

0 0 0 

11) The end of the proof is obta1ned by noting that 

n ** 1 E eocp(jt l > - E 1T cp. ) 1 
e n 8 i= 1 ln 

0 0 

n ( 11 n 
< IE ( 1T cp. ) - E 1T cpin ) 1 

8 1=1 ln 8 Q 1=1 
0 0 n,k 

c4 n <4 n * 
+ IE 1f cp ) - E 1T cp. ) 1 

8 Q i=1 in 8 Q 1=1 ln 
0 n,k 0 n,k 

<4 
n * c,i n ** 

+ IE 1T cpin 
) - E 1T cp ) 1 

8 Q 1=1 8 Q 1=1 in 
0 n,k 0 n,k 

c-1l 
n ** n ** 

+ IE 1f cpin 
) - E ( 1f cp1n ) 1 

8 Q 1=1 8 1=1 
0 n,k 0 

C 
111 

n 11 n * < 2 p [ Q ] + E 1T cpin - 1T cp in 1 
8 n,k 8 Q 1 = 1 Q 1=1 

0 0 n,k n,k 

1-t 
n * t n ** 

+ E 1f cp. - 1f cp. 1 
8 Q 1=1 ln Q 1=1 ln 

0 n,k n,k 

and, s1nce the right hand side member tends to zero when n and k tend to 
1nf1n1ty, we get : 
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n ** t' [ t 
11m E exp{jt'E: ) = 1 im E 1T 1P. = exp -
n-+oo 8 n f:-+oo 8 i=1 ,n 2 

0 0 

Q.E.D. 

A MODIFIED VERSION OF THE GtNlRALISEO CENTRAL LIMIT THEOR~M. 

i) Another set of regularity conditions. 

The initial set of regular1ty conditions H1 to H9 may be replaced by H1 , 

H2, H3, HS, H6 and 

H4' There exists a neighbourhood V of 8 in which the likelihood 
0 

function has a derivative with respect to e and this derivative is 

H10 

continuous at 8 
0 

There exists a measurable positive function M from R 

R such that : 

* * 

d +d +d 
0 1 2 

a) the product I lhCY ,Y,X>I I MCY ,Y,X) is P 
8 

integrable, 

a * 
b) l(Y /Y,X;&)I 

ae 
j 

any 8 E V 

0 

* 
< MCY ,Y,X> P a.s. for any j and for 

8 
0 

In effect condition H4' 

H4' , H10 imply H7 

H10 imply H7, H8, H9 

We have: 

* 
* E lt' h(Y ,Y,X)/Y,XJ 

8 
= t' f * * hCy ,Y,X) lCy /Y,X;8) dp

y /Y,X * 
(y) 

8 
0 

into 

A direct application of the dominated convergence theorem allows to show that 
* 

the function e-+ E ct'hCY ,Y,X)/Y,XJ is derivable on V and that the 
e 

derivative 1s given by: 

a * 
E ct'h(Y ,Y,X)/Y,X)J 

ae e = t' f * a * 
hCy ,Y,X> - lCy /Y,X;e) 

ae 

* 
dp

y /Y,X * 
(y) 

8 
0 
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In particular the value of this derivative at e is : 
0 

(
a 
- E ae e 

Ct'hCY*,Y,X)/Y,X>1) = t' E 
e 

0 

( 
* a Log 1 * ) 

h(Y ,Y,X) ae CY /Y,X;OOJ/Y,X 

e=e 
0 

Moreover another application of the dominated convergence theorem and the use 
a * 

of the continuity of -- lCY /Y,X;O) at e gives the continuity at e of 
ae o o 

a * 
the derivative E ct'h(Y ,Y,X)/Y,Xl 

ae e 

H4' , H10 imply H8: 

This 1s a direct consequence of the inequality 

a * * 1- lCY /Y,X;B)I < MCY ,Y,X) , 
ae 

j 

* * of the integrability of llhCY ,Y,X>II MCY ,Y,X> 

and of the expression of the derivative : 

E 
e 

0 

(
~ Ee ct'h(Y*,Y,X)/Y,Xl) 
ae 

0 

H4' , H10 imply H9: 

On the neighbourhood V of e 
0 

= t' ~ (h<Y*,Y,X> 
0 

, we have 

* alCY ,Y,X;O ) 

ae 
O 

) 

11 
a * 

E ct'h(Y ,Y,X)/Y,Xl 
ae e :e ~ Lt'hCY*,Y,X)/Y,Xlll 

0 

< E 
e 

0 

[ I lt'h(Y*,Y,X) [~ 1cv*1Y,X;8) 
ae 

* * 

a * ] - ôe l(Y /Y,X;Oo)) 11/Y,X 

< K lltll E CllhCY ,Y,X>II IIMCY ,Y,X>II / Y,XJ 
e 

0 
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where K 1s a f1n1te number. 

Therefore, from H10 a), 

E 
e 

0 
11 

a * - E lt'h(Y ,Y,X)/Y,X1 
a0 0 

:a ~ 1t'hlY.,Y,Xl/Y,x1II] 
0 

* * 
< K lltll E lllhCY ,Y,X>II IIMCY ,Y,X>IIJ < + 00 

8 
0 

11) Second form of the asymptotic covariance matrix. 

Under the set of conditions H1, H2, H3, H4', H5, H6, H10, it is possible to 

give another expression of the asymptotic covariance matrix of E • This is 
n 

a consequence of the equality 

E (~ EChcv*. y ,X)/Y ,x>) 
0 a0' e 0=0 

=E [ * 3 * ] hCY ,Y,X) - Log l(Y ,Y,X;8 ) 
8 38' o 

0 0 0 

we have 

V e = V h V E Ch/Y,X> + V ( E Ch/Y , X) 
as 8 8 8 8 8 

0 0 0 0 0 

ô * a<Y ,X>) + E Ch - Log HY /Y ,X; e }) 
8 ae· 0 

0 

= E V Ch/Y,X) + V (E Ch/Y,X> 
8 8 8 8 

0 0 0 0 

ô * a(Y ,X)) + E Ch - Log HY /Y ,X; e )) 
e 38' 0 

0 



where K is a finite number. 

Therefore, from H10 a), 
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1 1 

a * 
- E lt'hCY ,Y,X)/Y,X1 
39 0 

:
0 

~ 1t'h<Y.,Y,Xl/Y,x1II] 
0 

* * < K lltll E lllhCY ,Y,X>II IIMCY ,Y,X>ll1 < + 00 

8 
0 

iÜ Second form of the asymptotic covariance matrix. 

Under the set of conditions H1, H2, H3, H4', HS, H6, H10, 1t is possible to 

give another expression of the asymptotic covariance matrix of E. • This is 

a consequence of the equality 

E (~ EChCY*, Y ,X)/Y ,x>) 
8 38' 8 8=8 

0 0 

we have 

= E 
8 
0 

n 

[ * 3 * ] hCY ,Y,X) - Log lCY ,Y,X;8 ) 
39' o 

V E. = V h - V E Ch/Y,X> + V ( E Ch/Y, X> 
as 8 8 8 8 8 

0 0 0 o 0 

a * 
aCY ,X)) + E Ch - Log lCY /Y ,X; 8 )) 

8 38' o 
0 

= E V Ch/Y,X) + V (E Ch/Y ,X) 
8 8 8 8 

0 o o o 

a * 
aCY ,X)) + E Ch - Log lCY /Y ,X; 8 )) 

e 38' 0 
o 
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APPENDIX 2 

Strong law of large numbers 
. f I'\, and cons1stency o 0n 

i) - Strong law of large ntnnbers 

- Theorem and regularity assumptions 

The notations of appendix 1 and the assumptions H1 , H2, H3 
are maintained. h is a function, whose values are in IR.H, and we denote 

llE llE 
(Y., Y., X.) = h (Y., Y., X.) - E

0 
h 1 1 1 1 1 1 -

0 

Theorem 

1 n 
Under assumptions A1 and A2 given below, n E h0 i=1 0 

to O, P0 almost surely. 
0 

(Z. , Y., X.) converges 1n 1 1 ' 

i( A 

A1 : Since the z. are drawn from Jl (y· IY·, x., 0 ) and not from m 1 1 n 

Jl ( / 1 y i, xi, 0 
0

) we have to make an assumption about the speed of conver-
.... 

gence of 0n to 0
0

• We do this through iterated logarithm conditions 

"'k k ln (0 - 0 ) 
p0 [ lim sup n o = '1c ] 1 = 

0 ILogLogn 

"'k k ln (0 - 0 ) 
p0 [ lim inf n o 

sk l 1 = = 
0 ILëgLogn 

k=1, ••• ,K 

"'k k A 

where 0n (resp 0
0

) are the components of 0n (resp 0
0

) and ak, Sk are 
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real mnnbers. 

A2: Let M(y) be 

K 2 2 
M(y) = k~1 Max [(ak + y) , (Sk - y) ] 

There exists y> 0 such that, Ve> 0 

(X) 

E 
n=1 

where 

/ 1 n * IP
0 

[-j.~1
h

0
(Y.,Y.,X.)j>e]n (y) 

0 
n 1- -

0 
1 1 1 n < + (X) 

~ (y) = exp {n E
0 

Sup 

0 2 
1 2 *1 t (Y. Y., X., 0) - 1 f} 

1 1 1 

110 - 0 11 < M( y) 
0 -

LogLogn 
n 

This condition de scribes the speed of convergence of 

1 n * 
- E h

0 
(Y. , Y. , X.) to zero : 

n i=1 -0 1 1 1 

this speed increase s wi th an average difference between 

2 !JE A 2 !JE 
t (Y. 1 Y. , X. , 0 ) and t (Y. 1 Y. , X. , 0 ) = 1 • 

1 1 1 n 1 1 1 o 
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- Proof of the theorem 

First st~: 

Let us define 

"'k k /iï (0 - 0 ) n o A = · n { p n_ry ILôgLogn 

k "'k 

B = n { 
P n_ry 

l'lÏ (eo - en) 
< -

ILogLogn 

From assumption A 1 , we have 

lim t P
0 p=oo 0 

(A ) p = 1 = lim t P
0 p=oo 0 

If we consider : 
... 2 

ni le - e 11 
{ n o ~M (y)} 

LogLogn 

and therefore : 

lim t P
0 

(C~) = 1 
p=oo O -p 

K } 

k = 1 • • • K } 
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Second step: 

To prove the theorem, we shall show that 

Il 
V E > 0 p0 [ u { ..l I I: h ( z. ' y. ' x.) 1 > d] - 0 

0 n_ry Il i=1 ""00 1Il 1 1 p=oo 

From the first step., this will be shown if 

1 Il 
[ c n u { - 1 . 2::

1 
h

0 
(Z. , Y., x.) 

p n_ry n 1 = -
0 

m 1 1 > d] --0 p=oo 

or if 

00 Il 
v E > o 2:: P

0 
[ c n { ..l 

n=p 
O 

p n 1
. __ 2::

1 
h

0 
(Z. , Y., X.) 1 > d] --+ 0 

1Il 1 1 p=oo 
0 

or, since the C are Il increasing, if : 

00 

C n { l 
Il 

VE > 0 I: Pe [ 1 . I: 1 he (Z., Y., X.) 
n:1 Il Il 1= 1Il 1 1 

0 0 

Third step : 

iE * depends on x1, ... , Xn, Y1, ••. , Yn 

it only depends on x1, ••• , Xn' Y1, ... , Yn and: 

p
0 

[C n{..l 
Il Il 

0 

(Z. ,Y.,X.) 1 >d] 
1Il 1 1 

1 > d] < + 00 

through e . Thus , Il 

= E 
0 

0 

(Z. , Y., X.) 
1Il 1 1 1 > E 1 (Y· , X. ) 1 · ] J 1 1 ~1<Il 
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But 

n 
[ 

n1 1 1·=E1 h00 (Zm. ' Y1.' x1.) 1 > e: 1 (Y1.' X-)1 . = (y.' x.)1 . ] 1 < 1 < n 1 1 < 1 < n 

Si1 = n 
·E h0 i=1 

with 

Yi< 1 (Y. ' X.) = p i< 1 1 
~n (dyi) 

Thus 

n 

0 
* 1 (y.' y.' x.) 
1 1 1 

(y.' x.) 
1 1 

n Yi< 1 (Y., X-) 1 1 = (y.' x.) 1 1 

© p ... i< 
0 (dyi) > e: i=1 n 

(y., X•) 
1 1 

p0 [ l 
o n 

i g 1 h0 ( z in' y i' X1. ) 1 > e: 1 (Yi' X. ) = (y. ' x. ) ] 
o 1 1<i<n 1 1 1<i<n 

i< 
(Y. , Y. , X.) 1 1 1 1 = (yi' x.) 1 1<i<n 

Therefore, by the Cauchy-Schwarz inequality : 
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Thus, in order to prove the theorem, i t is sufficient to show that, V E > 0 

00 

* (Y.,Y.,X.) 1 >E] 
1 1 1 

Fourth step: 

By definition of Cn 

n n2 * 1 
C X, (Y. Y. , X. , 0 ) - 11 c 

. 1 1 1 n n n 

2 Sup 1 

1 1 0 - 0 1 1 2 < M( y) LogLogp 
0 -

2 * t (Y· 1 Y· , X. , 0) - 1 1 = a 
1 1 1 in 

n 

Since the random variables ain' i = 1 ••• n, are i.i.d., we have from the 

lemma of appendix 1 

1J Ô2 *1 A .. r. X, (Y. Y· , X. , 0 ) ] '\.,n 1 1 1 n 

n n 
< E0 [ . II 1 u Si] + exp [i~1 E0 a. ] - 1 1= 1n 

0 0 

n 
< exp [ E E0 a. ] - i=1 - ID 

0 
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= exp [ n E
0 

Sup 
0 

11 

2 * 1 t (Y. 1 Y. , X. , 0) - 1 1 ] = nn (Y) 
1 1 1 

0-0 
0 

112 .2 M(y) L?gLogn 
Il 

which achieves the proof with the assunption AZ and the third step.o 

In the sequel it will be also useful to cônsider the tmifonn strong convergence 
of functions such as: 

i et', Y., x.;e) = h ci:, Y., x.;e) - E
80 

h ·~o 1 1 1 1 1 1 

Corollary 

If A1 is satisfied and if A2 is replaced by a similar condition 
A2 obtained frorn A2 by replacing 

n 
1 I h et' , Y. ; x.) 1 by . 1 ·-e 1 1 1 
1= 0 

n 
sup I l \ et', Y·, x. ;a) 1 
ab e i=l o 1 1 1 

converges P
0 

almost surely to O, 1.mifonnly in e € e 
0 

Proof : i t is the same as the previous one. 0 

Typically nn(y) will be equivalent to exp a 1/n Log Log n 
(a 1 > o); on the other hand, when Îi~, Yi' Xi;e) is a p.d..f. of ~ given Xi 
which is gaussian or derived from a gaussian distribution the probability 
appearing in Az or A2 will be equivalent to 

a 2 n-a3 exp[- a 4n] [a2 > o, a 3 ~· o, a 4 > o] in such cases 

A2, or A2, is satisfied. 
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ii) Consistency of ~n 

a) Wh.en the latent model is the linear model 

)t 

Y· = X· b + U· 
1 1 1 

where u~ is distributed, conditionally or xi, as N(O,o2) , the vector 
~ ' is (b' ~2) where n n' n 

"' n 1 n 
b = ( l x! x.)- l x! z. n . 1 1 1 . 1 1 ID 

1= 1= 

(12 _ 1 ~ "' 2 
n - iï .l (zin-xi bn) 

1=1 

In this case ~n can be explicitly expressed in tenns ôf the zin and xi; 
therefore the weak consistency of ~n is a straightfonvard . consequence of 
corellary 2.6. Note tr..at this weak consistency is sufficient for the proof of 
theorem 3 • 4. 

b) If the latent model is the non linear regression model 

lt y. = k(x., b) + u. 
1 1 1 

where the ui are, conditionally on xi, distributed as N(O,o2) , the log­
likelihood ftmction is 

L nLo 2 nLo 2. 1 n = - "Z g ,r - "Z g a - ,__,. 
2a2 

n n 2 1 
= - "Z Log 2 ,r - ! Log a - ---

2a2 

+ 

Ln 
Therefore : n converges P

0 
a.s., and unifonnly in e , [e' = (b' ,o2}] 

0 
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to 1 1 1 ·-* 2 1 2 - 2 Log 2 1T - "Z Log o2 - -- Ee ,[Yi-k(Xi'bo)] - __,. Ee [k(X,bo)-k(X,b)] 
2o2 O 2o2 o 

2 
1 1 °o 1 2 = - 2 Log 2 1r - 2 Log o2 - -- - --..- E0 [k(X,b

0
) - k(X,b)] 

2o2 2o2 () 

provided that 

unifonnly in b 

a2 
0 

1 n 2 
n .l [k(xi,b

0
) - k(xi,b)J converges P0 p.s. to 

1=1 0 

E
0 

[k(X,b
0
)-k(X,b)] 2 unifonnly in b 

0 

In fact, using Cauchy-Schwarz inequality, it is readily seen that the second 
condition is implied by the two other conditions. In particular we do not need 
a unifonn convergence in which the y~ are involved. 

As a consequence, when considering the strong consistency of 
en ' i.e. when the Yï. are replaced by the zin ' we only need the version of 
the previous theorem without unifonnity in order to obtain the unifonn strong 
convergence of the objective ft.mction to 

2 
1 Lo 2 -.! Log o2 -

00 
- -

1-E [k(X b) - k(X b)] 2 
- 2 g 1T ~ 2 2 0 ' 0 ' 

2o 2o o 

AsstDning the asymptotic identifiability of b from k(X,b) , this limit function 
bas a unique maximtnn in 0~[0~ = (b

0
, o~)] , and the strong consistency of ~n 

is obtained by standard argunents [see e.g. Jennrich, (1969)]. 

c) In the general case ~n is obtained by maximising 

1 n ,. 
- l Log t (zm. /x

1
. ;e) • n . 1 1= 
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Under the asStUI1ptions of the previous theorem for the tmifonn, strong convergence, 

this objective ftmction strongly converges tmifonnly in e , to 

E
0 

Log 1~ et" /X;e) 
0 

This limit objective ftmction is the same as the limit objective ftmction in 

the latent mode! which will be typically asstnned to have a tmique maximum in 

0
0

• The strong consistency of ~n follows. 
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Appendix 3 

Asymptotic properties of the test statistic 'n 

i) We assume that are satisfied the regularity conditions 

allowing the application of the generalised central li.mit theorem and of the 
0 

strong law of large numbers of appendices 1 and 2, for the true value 0 =(~) 
0 0 

of the parameter. Under these conditions, we have : 

1 n a2 Log 9.,* (z. /x. ;O;a ) m 1 o 
plim n i~1 ---------- =-ras 
n -+ 00 as as f 

and the estimàtor son of s defined as the solution of the equations 

* 1\, a Log t (z. /x. ;o;s ) 
m 1 on = 0 

is such that 

rn es - s ) = on o 
1 

lrï 

n 
.}:; 1 1= 

* a Log 9., (zin/xi;O;S 0 ) 

as 

ii) Let us now consider the asymptotic expansion of the statistic 'n. We get 

1 
' =­n lrï 

1 

1 
+ -n 

+ 0 (1) 
p 

* a Log t 
1\, 

(z. /x. ;O;s 1 m 1 on' 

aa. 

* a Log 9., (z. /x. ;O;s ) m 1 o 

a2 Log 9.,* (z. /x.;O;s) 
1n 1 o 

aa. as' 

S . the · · al 1 n mce emp1nc mean - n i~1 

a2 Log 9.,* (z. /x. ;o;s ) 
1n. 1 0 

aa. as ' 
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converges to the block: 

] 
aa. ae' 

of the latent infonnation matrix (see Corollary 2.6), we also have 

t = n 
1 

ln 

n 
• E 1 

* a Log JI, (zm. /x. ;O;B ) 
1 0 

1= 

- I ln (S - 8 ) + o ( 1) a.8 on o p 

Replacing in the expression of ~n' ln (~on - 8
0

) by its asymptotic expansion, 
we get 

~ = n 
1 

ln 

-r a.B 
1 

ln 

* a Log JI, (zin/xi;0;8
0

) 

aa. 

* a Log JI, (z. /x. ;O;B ) m 1 o + o (1) p 

Therefore, the asymptotic nonnality of ~n is directly obtained by applying 

the generalised central lirait theorem with 

h(z. , y. ,x.) = 
1n 1 1 

* a Log JI, (zin/xi;0;8
0

) 

* a Log JI, (zin/xi;O;B
0

) 

ae 

iii) ~n is asymptotically zero mean, since 

E h(y*, Y, X) 
0 

0 
Log JI, * (y* /X;0,8

0
) ·d -1 = E [ ] - I 1BB 0 a a. a.B 

0 

Log JI,* (y*JX;O;B
0

) ê 
E [ 

00 as 
] 
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is equal to zero as a combination of the expectation of the score vector. 

iv) The asymptotic covariance matrix of tn is 

V as 'n = V h - V E (h/Y,X) 
00 00 00 

+ V { E (h/Y, X) + E [h _a_ 
0 0 0 0 0 0 as' 

Log JI, (yt/Y,X;0 )] a(Y,X)} 
0 

__ J_1 a Log i (Y/X;O,s
0

) 

with a(Y,X) SS 
as 

since the estimator 0 on used for the simulations is the constrained maxinrun 

likelihood estimator of 0 . 

It is possible to express V as 'n in terms of the latent and observable 

infonnation matrices I and J by using the following equalities 

(1) a Log R, (Y/X;0) 
E [ a Lo~ i* (y* /X;0) /Y ,X ] = 

a0 0 a0 

>+ 
(yt /X;~) Log R, (Y/X;0l (2) a Log R. a + - = 

ae a0 

v) Expression of E [h a!, Log JI, (yt /Y ,X;0
0
)] 

0 

We have: 

= 
as' 

a Log R, (y* /Y,X;0l 

a0 
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a Log i* ct';x;eo) 

aa 

Tuen, using (2), we get: 

E [ 
a Log i* (/° /X;e 

0
) a Log t (-./ /Y ,X;e 

0
) 

0 
0 

ôa aa' 

1) Log t * (/° /X;e
0

) a Log i* (-./ /X;e 
0

) 

= E [ -
0 0 aa aa' 

a Log t * ct;x;eo) a Log t (Y/X;e
0

) 

- E [ ] 

0o ôa aa' 

= I - J aa aa 

] 

] 

since 
a Log i* (/° /X;e

0
) 

E [-------
a Log t (Y/X;e

0
) 

0 0 

------] 

a Log i* (-./ /X;e 
0

) 

= E { E [----~--- /Y,X] 
0 0 0 0 ôa 

a Log t (Y/X;e
0

) 

=E [------

Therefore, we deduce : 

E [ h-3
- Log t ('1°/Y,X;e) ] 

0 aa' 0 

0 

aa' 

] 
aa' 

from (1). 
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vi) Expression of: V (h/Y,X) + E [h....LLog 1 (y*/Y,X;e
0
)] a(Y,X)} , ________ 0....___...__ ____ 0 o _a_a_' ___________ _ 

FrOJll ( 1) , the condi tional expectation E (h/Y, X) is equal to : 
00 

E (h/Y,X) 
0 0 

= a Log 1 (Y/X;eJ 

aa 

a Log 1 (Y/X;e 
0

) 

aa 

Tuen, we have to detennme the covariance matrix of 

a Log JI, (Y/X;e
0

) 
-1 a Log JI, (Y/X;0

0
) 

- I 1aa aa aa aa 

+ (-J + I -1 -1 a Log JI, (Y/X;e
0

) 

a.a a.a 1aa 3aa) 3ea aa 

a Log 1 (Y/X;e
0

) _
1 a Log JI, (Y/X;e

0
) 

= ------- - 3a.a 3aa aa. aa 

This covariance matrix is equal to 

vii) Expression of V as tn 

Vas tn = V h - V 
0 0 

0 0 

* (y* /X;e
0

) a Log J1,*(y*/X;0
0

) a Log i 
-1 =V [ - I 1ea ] 

0 aa. a.a aa 0 

a Log 1 (Y/X;e
0

) -1 a Log 1 (Y/X;e
0

) 
- V [ - I 1ea 0 aa. a.a ae 0 

+ J - J J-1 J a.a a.a aa aa. 



= I aa 

- { J aa 

+ J aa 

= I aa 

- I 

- J al3 

- I 
al3 

-1 3Ba - 3aB aB 1
BB 

-1 3
BB 

3
Ba 

-1 
Il3a + I 1

s s al3 

- I 
-1 -1 

Il3a - J 
al3 

1
ss 

3
ss IBl3 o.13 

80 

-1 1
BB 

1sa + 1as 

-1 1
ss 

3
sa 

+ 3
as 

-1 
J 1313 J 13a 

This expression is equivalent to 

V z:- = I I I-l 
S ~Il - NO QQ a aa .... .., ..,.., 

-1 
1

BB 
3

BB 
-1 1
BB 

1Ba } 

-1 
IBl3 1

Ba 
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Appendbc, 4 

A 

Comparison of the asymptotic covariance matrices : Vas ~n ~ Vas ~n • 

We first consider the case in which the matrix 188 - J 88 is 
positive and we have to prove that 

is greater than: 

where À is the greatest eigenvalue ôf J;!12 188 J;!12 

i}-Orthogonalisation 

We can first remark that it is nossible to assume that IaB = o ,. 
In effect, if it is not the case, we can introduce the invertible rnatrix : 

p = -------~----------• 
0 

and it is easily seen that the condition 

f(I ,J) » f (I ,J) 

is equivalent to: 

f(Î ,J') » f(I ,J) 

'\, '\, 

with I =PI P' and J = P"'J P' • The possibility of choosing IaB = o ïs a 
consequence of the fonn of I 



'\., 

I = 
0 
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ii) Under the condition IaB = o, the inequality to be proved is 

I -1 -aa 1aa - Ja8 JB8 J8a >> T 

where ~ is the maxi.mtun eigenvalue of J-112 I J-1/ 2 
88 88 88 • 

This inequality is equivalent to: 

(1) -1 1 - 1 
Ja8 3aa J8a « 1aa(1 - ,:) = 1aa 1+µ 

where µ is the inverse of the maximum eigenvalue of J;!12 188 J;!12 - IK • 
2 

iii) To prove this inequality, we only know that the latent infonnation rnatrix I 

is greater than the observable one and that they are positive: 

I»J»O 

and 
J 8] Ja » 0 

88 

-1 
>> 0, I - J - J oCioo-..Joo) Jo aa aa a., .,., µp pa 

>> 0 

iv) Let us denote by Kas the rnatrix J aS J;!12 and by K80 the transoosed 
rnatrix K~ 8 • With these new notations, two known inequalities are 
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and the required inequality becornes : 

(2) K K « I 1 
aB Ba aa 1+µ 

v) Let us now consider: a spectral decomposition of the rnatrix 

[J-1/ 2 I J-l/Z - I 1-1 ; we have: ee ee ee K2 

[J-1/ 2 I J-1/ 2 - I 1-1 = Q A Q' where Q is an orthogonal rnatrix with ee ee ee K2 
size K2 and A a diagonal rnatrix with elements µk, k = 1 ••• K2 .• 
If we denote by I\ , k = 1. •• K2 the K2 coltmlll vectors of K013 Q , the known 

inequalities becorne: 

(3) 
Kz 
I µk Hk l-l' « I - J k= 1 ·1< aa aa 

and the required inequality is: 

Kz 
( 4) l H. ll' « I , 1 

k= 1 .. 1< ""k aa 1 +µ with µ=Min µk • 
k 

vi) The proof is completed by noting that (3) irnplies 

Kz 

and also 

l (1 + µk) Hk Hk << 1aa 
k=1 

Kz 
(1+µ) l I\ 8k « I 

k=1 aa 

Kz 
1 

* l p'k ~ « I aa l+µ k=1 
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vii) Finally, the result is easily extended to the case in which I88 - J 88 is 

only non negative. In such a case, we can introduce the matrix 

JE 1 J h • 1 • . . 1.-= l'+Ë , w ere E 1s a rea pos1t1ve numutr. 

Since J is positive, JE is positive and the same is true for 

Tuen the previous resul t can be applied to the pair (I, Je:) and leads to the 

inequality 

where ÀE , maximum eigenvalue of , is equal to 

In tenns of J and I the inequali ty can be wri tten 

and we only have tolet E go to zero to obtain the required inequality 
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1 

Appendix 5 

Asymptotic properties of the test statistic 'fn 

Let ~n be the unconstrained second stage esti.mator of a , based 
on the zin obtained from the unconstrained M.L. estimator. From the result 
of subsection 5,d, we know that rn is asymptoticallJ equivalent to 

./n [I00 {e
0
)]-l~n • Moreover the asymptotic distribution of ./n~n is obtained 

from theorem 3.4: it is the zero-mean normal distribution whose covariance 
matrix is {dropping e

0
) : 

Iaa _ {Iaa : 1ae) J{Iaa: 1ae)' + Jaa 
• • 

Therefore rn is asymptotically zero-mean normal and its asymptotic covariance 
matrix is 

{Iaa,-1 [Iaa _ {Iaa : 1ae) J{Iaa • IaB)' + Jaa 1 {Iaa,-1 
• 

Using the ~quality {Iaa,-lraB = - Iae r;! , we get: 

= {Iaa,-1 + {Iaa,-1 Jaa{Iaa,-1 _ J + I 
aa ae 

-1 -1 
- Iae Iee Jee Iee Iea 

and, from the expression of Vas ;n given in appendix 3 , 

= {Iaa)-1 + {Iaa)-1 Jaa{Iaa,-1 _ J + V ~ _ 
aa as n 

-1 
+ Jae JBS JBa 

= V ; + {Iaa)-1 Jaa{Iaat-1 _ {Jaa,-1 
as n 
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