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ABSTRACT

ON THE GENERIC INEFFICIENCY
OF DIFFERENTIABLE MARKET GAMES

It is shown in this paper that differentiable market games remain
generically inefficient when one makes their smooth "Strategic Outcome
Function" vary. The proof is mainly based on Thom's Transversality Theorem
and drops any restriction regarding the dimension of the Strategies Spaces
or the rank of the Strategy~to-trade map. We complete this first result by
determining the Bertrand-1ike non-differentiabilities inherent to most
competitive market mechanisms, and in the same time we suggest a synthesis
between the Cournotian and Bertrand-type approaches of Walrasian equilibrium,
both developed in the recent literature.
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RESUME

SUR L'INEFFICACITE GENERIQUE DES
MECANISMES DE MARCHE DIFFERENTfBLES.

On démontre dans ce papier que les mécanismes de marché différentiables
(i.e dont la fonction de résultat est C») sont génériquement inefficients
au sens fort ou leurs équilibres non-coopératifs sont incompatibles avec les
équilibres Pareto-Optimaux de 1'économie d'échange associée, et donc a fortiori

avec les équilibres walrasiens de cette économie. De facon complémentaire,

on met en évidence les non-différentiabilités "a la Bertrand" inhérentes a

Ta quasi-totalité des mécanismes de marché "compétitifs" pour lesquels il
existe au moins un équilibre non-coopératif simultanément walrasien. Une
synthése est alors suggérée entre les mécanismes compétitifs finis et discon-
tinus de type Bertrand d'une part, et ceux asymptotiques et différentiables
de type Cournot d'autre part, développés jusqu'a présent dans la littéra-
ture.



I. INTRODUCTION

On considering the recent literature on market games, one may
notice that in almost all cases the authors endeavoured to conciliate
Cournot's non-cooperative approach with Walras' theory of general equili-
brium. This is particularly true of the finite competitive models of
Hurwicz [1979], Schmeidler [1980] and Dubey [19821 as well as of the
asymptotic studies of Postlewaite-Schmeidler [1978], Dubey-Mas-Colell-
Shubik [19801 and Mas-Colell [1982]. One exception should, however, be
mentioned : namely, the original attempt of Dubey [1980] who established,
in the case of a finite number of agents, the generic inefficiency of
Shapley-Shubik's smooth market game when consumers' preferences vary.
However, this result is substantively based on an additional restrictive
assumption verified by Shapley-Shubik's model : the fact that the dimen-
sion of the strategy spaces is stnictly inferion to the number of com-

modities in the exchange economy considered.
This paper has two purposes :

1) The first is to show that the generic inefficiency of smooth
market games in the finite case is a more general phenomenon that shown
by Dubey [1980], to the extent that the only limitative assumption it

requires is the differentiability of the Strategic Outcome Functions.

Our method, which is different and in a way complementary to
that followed by Dubey, consists first (Sections 2 and 3) in fixing
consumers' preferences so as to verify the assumptions introduced by
Debreu [1972] and to make the Strategic Outcome Function describe the

£n that

Cm(SJRen) space, where S denotes the space of messages and R
of allocations. We then get generically non Pareto-Optimal Nash

equilibria.



The same result is obtained when, in a second phase (Section 4)
we make the consumers' preferences vary simultaneously with the Strategic
Qutcome Function, which permits us this time to keep only the differen-
tiability of utility functions and to lay aside the strict monotonicity,
the strict quasiconcavity and the non-zero Gaussian curvatures‘for all
indifference surfaces (Debreu [1972]). The method of demonstration is the
same in Sections 3 and 4 : it is mainly based on a differential formula-
tion of the Nash equilibria associated with market games, and on a
Transversality Theorem established by Thom and used in its simplest

form here.

2) The second purpose of the paper is in a way complementary to the
first in that it is mainly concerned with determining the Bertrand-Like
non difgerentiabilities inherent to most competitive market mechanisms.
To do this we only have to supplement the method already used in sections
3 and 4 by introducing explicitly the Transaction Price Functions asso-
ciated with the Strategic Outcome Functions (Section 5). We are then in
a position to establish, in particular, the discontinuity of the mecha-
nisms developed by Schmeidler [1980] and Dubey [1982] as a requisite of
their competitivity. Furthermore, with two examples of competitive market
games, one finite and discontinuous, the other asymptotical and diffe-
rentiable, both dealt with by the same method as previously, we suggest
a possibility of undertaking, in further research, a synthesis of all

the models constructed by the authors mentioned above.

We endeavoured to use elementary mathematics as far as possible
and we apologize for breaking this rule in the proof of Theorem 1, for
which we briefly recall definitions that can be found in Golubitsky-

Guillemin [1973] among others.



2. THE GENERAL MODEL : NOTATIONS AND DEFINITIONS

We consider a pure exchange economy including n = 2 consumers
and £ = 2 commodities. Each agent i € I = {1,...,n} has a consumption
set equal to ]RK and a utility function uj ]RZ +~R which verifies the

following standard assumptions : (Debreu [1972] and Balasko [1979]) :

(A1) Uy A8 smooth and surnfective

ou

(A2) : u, is differentially monotonic, i.c. —;;(xg ) >0 fon
axh
=10l . !

(A3) : Uy 48 strictly quasi-concave

(A4) : the indifference hypersurface u1f1(t) L8 bounded 4rom

below for all t € R

(A5) u;1(t) has a non-zero Gaussdian curvature for all t € R

If wy = (w},...,wf) EIRK denotes the vector of initial endowment
of agent i , the net utility function Vi ]R£—>IR of this agent is defined
by :

V.i(y.i) = U1(y.i + w.i) Y
in which Yi €]R£ is a net allocation vector.

The v function obviously verifies the same assumptions as uj

from which it is deduced by mere translation. In particular, for every
£

price system p €1R+*

» the maximization program :

max v(y)

p.y =0
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P .
has a unique solution gi(p) € R™ which represents the net Walrasian

demand of agent i at the price p .

The app]ication thus defined 9; !JRE* >His a smooth diffeo-

morphism which verifies Walras law :

p.gi(p) = 0 for every p Ein;

A strategic market game (mechanism) is obtained by completing

the pure exchange economy E = {I,v = (Vi) with the introduction of :

ier)
(a) a Strategy space P gon each agent i €1

In the following, we shall assume that the Si spaces are open
subsets of R" (m €N), or more generally, submanifolds of R™ of the same

d < m dimension.

The Cartesian Product of all the Si will be noted by S . Its
elements s = (51,...,sn) will be called messages (Hurwicz [1979]) or

selections (Schmeidler [1980]).

(b) a Strategic Outcome Function (SOF) z : S-+H?en, which

determines the interdependence between the agents i € I by linking

every selection s = (51,...,sn) with the final allocations zi(s) e]RZ

that result from it for every agent i ; we note : z(s) = (21(5),...,zn(5)) €R

The S.0.F. z is said to be balanced if and only if :

Vs€S, J z.(s)=0,.
ier | R*



We will denote B the set of all balanced S.0.F. z : S »JRzn . Let us

n

consider now a mapping ¢ : S —>]R+ where :

_[ad
¥s €5, 6(s) = Ley(s)lier qosap

¢ is said to be a Transaction Price Function compatible with the S.0.F.

z if and only if :

Viel,¥ses: T ¢d(s).zi(s) =0.
1sjse ! !

Example : In the paper by Schmeidler [1980] where for all i agents :

L.t j
S. = {(p:»9.) ER” xR .q. = 0 and Y =1},
i Pi»9; + lp1q1 1§§§£ Pj

the mapping ¢(s) defined by :
$3(s) = SR T TUUP S IS TR

is an obvious Transaction Price Function associated with the S.0.F. deve-

loped by this author.

Convention : Instead of adopting Schmeidler's normalization " ¢g = 1",
i

we shall fix the,tth-commodity as a numeraire in Section 5 by confining

ourselves to mappings ¢ such that :
¢$(S) =1, i=1,...n .

(The conclusions established in Section 5 through the explicit introduc-
tion of the ¢ mappings do not depend in the least on this particular

choice of normalization).



Notation : Henceforth the Strategy Spaces S; are fixed for all agents

{1,...5n} ,

it

i €1 . We denote J(v,z) the.market game defined by I

S= X S. , the preferences v = (Vi) and the S.0.F. z : S >R

i i€l

(s:,...,s:)

[

Noncooperative Equilibrium : A selection s

is a noncooperative equilibrium of the mechanism J(v,z) if and only if :

. S (* S ( *
¥iel, Vs eS8, viozi(s) 2 viozi(si,s o),
h *) (* * * *)
where : (s55s_5) = Spsee9S4520557555,4000025,)

The set of Noncooperative Equilibria of the J(v,z) market game will be
denoted N(v,z) . (N(v,z) < S) .

Pareto-Optimal Equilibrium : A selection s = (s:,...s:) €5

is a Pareto-Optimal equilibrium of J(v,z) if and only if the net final

£Zn

allocation z(s*) € R 'is Pareto-Optimal in the ordinary microeconomic

sense, i.e. if there are no y = (y1,...,yn) Elen

[\%

Viel, vi(y) 2 v(zi(s")

with at least one strict inequality.

The set of Pareto-Optimal Equilibria of the J(v,z) market game will be
denoted P(v,z) .

Walrasian on Competitive Equilibrium : A selection
* .
s=(s’;,,,,s:) €S is a Walrasian Equilibrium of J(v,z) if and only if
the net final allocation z(s*) €]R£nis walrasian, i.e. iff there exists

*
a price system p EZRf* such that :

allocations such that :
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(@) viel,z(s)=g5p).

(b) 1} (p") = 0
g:;{p ) = .

ier RE

The equilibrium condition (b) becomes evidently redundant when the

Strategic Outcome Function z is balanced (z € B) .

The set of Walrasian (Competitive)Equilibria of the J(v,z) market game
will be denoted W(v,z) .

We always have the inclusion : W(v,z) < P(v,z) =S .



3. THE GENERIC INEFFICIENCY OF NONCOOPERATIVE EQUILIBRIA IN SMOOTH MARKET

GAMES : A FIRST APPROACH WHEN THE PREFERENCES ARE FIXED

In this section the preferences v; of agents i € I are fixed
once for all and they verify the assumptions (A7), (AZ), (A3}, (A4i, (A5)

set out in Section 2 (see Balasko [19791).

The Strategic Outcome Function z describes the Cm(SJRKn)
“ (1)

space which is provided with Whitney's c” topology . Provided
with this topology, the Cw(SJRKn) space is a Baire Space (Golubitsky-

Guillemin [1973]).

The following theorem is the main result of this paper :

THEOREM 1 : (a) The set of smooth Strategic Outcome Functions z such
that N(v,z) n P(v,z) = ¢ {8 dense in Cm(SJRtn) .

(b) The set o4 smooth and balanced S.0.F. z such that
N(v,z) n P(v,z) = ¢ 48 dense in B n Cw(SJRﬂn) .

Corollary 1 : The set of smooth S.0.F. z (respectively smooth and
baLanced) such that N(v,z) n W(v,z) = ¢ is dense in Cm(SJRzn)
(respectively dense in B N (s RM) .

(1) It is recalled (Golubitsky-Guillemin [1973]) that a sequence of
smooth mappings fm € CW(SJRzn) converges towards f € Cw(SJRKn) in
the sense of Whitney's C” topology if and only if there exists a
compact K = S such that :
(a) fm and their differentials of any order converge uniformly on K
respectively towards f and the differentials Dkf .
(b) fm = f on SNK except perhaps for a finite number of m indices,



Remark 1 : The almost certain incompatibility established in this corol-
lary between the noncooperative equilibria of smooth mechanisms J(v,z)
and the Walrasian equilibria of the associated exchange economy does

not follow from any ad hoc assumption of price rigidity and, more gene-
rally, from any Timitation of the strategy spaces S; or of tﬁe
consumption sets Xi c]R£ of the agents i € I (1) : it translates more
simply the g§rictional character inherent tomost smooth market games, in
particular when their smoothness results from a differenciation of the
products as in Hotelling [1929] or from an .imperfect information of the
economic agents (2).

Remark 2 : In the 1ight of the foregoing, Hurwicz's mechanism in [1979]
seems to us exceptional as it is both competitive (N(v,z) = W(v,z) = ¢)
and smooth. Its exceptional character could not proceed from a generi-
city result concerning only the preferences v , all the more since the
dimension of Hurwicz's "Price-Quantity" Strategy Spaces is necessarily
greater than the number of commodities £ , contrary to the Shapley-
Shubik's model considered in Dubey [1980]. We shall now explain why, in the
genericity concerning the S.0.F. z , it is unnecessary to make any
restrictive assumption regarding the dimension of the Strategy Spaces Si .

(1) See in this connection Y.Youngs [1982]. The case where the X; are
strictly included 1n]R£ is treated in our concluding remark.

(2) J. Bertrand [1883] explains very clearly why in the absence of
frictions in the market, especially when the product is homogeneous
("sources of identiéaTﬁ&ua]ity“) the duopoly mechanism becomes dis-
continuous and therefore competitive (i.e. N(v,z) < W(v,z)). This
last point will be dealt with in our Section 5.
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Proof of Theorem 1 :

(a) Consider any smooth mechanism J(v,z) where z € Cw(SJRzn),

and let be s* € N(v,z) nP(v,z) :

*
1. The Pareto-Optimality of s € P(v,z) may be written :

F ¥ Vi *
#F Tz (6) = iz, (M) L 153501, 25

<n ,
Vig Vig
where v%j denotes the partial derivative —3 and
* * * on oz
z(s ) = (z1(s )seeesz (s)) €RT L

2. On the other hand the fact that 5" € N(v,z) implies the following

first order necessary conditions :

. ) * s
Viel, SET(Vi'Zi)(S ) =0 d° where d = dim Si .
i R
In other words : .
N * az% *
(#)" 2 ] widz(s).—Hs) =04, 1sisn ,
1sjse J 35 R
32'1] * d .
where —(s ) €R™ denotes the gradient vector of the partial
3S 3

i

1 *
mapping : s; € S, > zd(s;,s ;) €R, for all i and for all j .

i

The proof is then based on the following intuition : it is

known (Balasko [1979]) that whenever preferences v verify the

assumptions (A7) to (A5) set forth above, the set Q of Pareto-Optimal

allocations is a strict submanifold of lRKn diffeomorphic to ]Rz xIRn"1 .

It may therefore be easily admitted that, generically on z € Cm(SJRZ") .
the (##)P system has a rank a least equal to one in s € S . Consider now
)N

Nash system (#)" : it includes n.d = dim S equations in s € S , and

may become of n.d maximal rank through an infinitesimal perturbation
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of z € Cw(SJRKn) ; moreover, the presence of the terms of first order
524
-1 provides the (##)N system with an additional degree of Tiberty

BS_i

toward the (##)P system which includes only terms of order zero in
zi(s) (1). It is therefore clear that generically on z € Cw(SJRﬂn) R
the global system (#) = (##)P and (##)N will include at least (nd+1)
independent equations in the S space of dimension nd and then will have

(1

no solution s* € S , which is the desired result

This intuitive reasoning involves simultaneously the strategies

s €S , the allocations x = z(s) € Q c:]RZn » and the partial derivatives

oz, d

3§—(s) €R" . More strictly, the proof of Theorem 1 requires the use of
i

a transversality result stronger than the one usually used, precisely
Thom's Transversality Theorem on jets of order one (1-jets) whose defi-

nition we shall now recall :

En)

Definition : Let X and Y be smooth manifolds. (X =S , Y =R . I4

X, € X and f € C'(X,Y) , the 1-jet of f in x, designates the triplet

5TTR(G) = (%, F(xg),dF(x,) , where df(x,) denotes the differential

of f in x (See Milnor [19651, § 1).

o °

The set of 1-jets o = j1f(x),where f describes C1(X,Y) and x
describes X,is denoted J1(X,Y) . According to Golubitsky-Guillemin

(19731, J1(X,Y) is a smooth manifold such that for every f € C1(X,Y) .

1

the mapping j'f : x->j1f(x) is differentiable from X to J1(X,Y) .

(1) The absence of terms of an order different from 1 in Vs in both the
(##)P and (%#)N systems justifies on the contrary Dubey s additional
assumption : dim Si =d =42 -1 to ensure the generic inefficiency
of Nash Equilibria of the J(v,z) mechanism when the S.0.F. z is fixed

and only the preferences v vary.
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Now Thom's Transversality Theorem adapted to the particular case of 1-jets

reads as follows : (Golubitsky-Guillemin, op. cit., p. 54) :

THOM'S TRANSVERSALITY THEOREM : Let X and Y be two smooth manifolds, and

W a submanifold o4 J1(X,Y). The set

T, = {F € C°0LY) | §'f 48 transversal o W}

(1)

is dense in C7(X,Y) fon the C™-Whitney Topology.

This result applies to our proof in the following way :

Consider the submanifold W of J1(SJR£") defined by :

W= {f(s) € 3" (SR such that :

Vi
#AP | r(s))

vy
; Mg (s) s 1s5sL-1, 25050,
1

il
In
where f(s) = H1b)“.ufﬁsn ER
\ of]
and (&) : Yovi(F.(s)). 5§l(5) =04 ,1sisn ,

15 V7 i R
of]

where 35_(5) 'is the gradient of the partial mapping
i

S —>f‘1?(s1.,s_.)} .

1 1

According to Balasko [197¢], the (##)P relations are equivalent

to : "f(s) € Q" , where Q is a submanifold of RN

RE x R

diffeomorphic to
» i.e. of codimension £n - (£+n-1) greatern on equal to 1

when n 2 2 and £ 2z 2 which was assumed at the beginning of Section 2.

(1) More precisely Tw is a countable intersection of dense open subsets of
C”(X,Y) , therefore a Ga-dense subset of C (X,Y) which, provided
with the Whitney Topology, is a Baire Space.
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On the whole, the codimension of W in J1(SJR£n) is greater
than (nd+1) , where nd is the rank of the system (##)N which is independent
from (##)P in J1(SJR£n) because (##)P does not include terms of order 1 in f.

Let us now consider a Strategic Outcome Function z € Cw(SJRzn)
such that N(v,z) n P(v,z) = ¢, and let s belong to this intersection ;
N and ()"
be verified by the 1-jet j1z(s*) € J1(SJR£") ; in other words we have

in the light of the above, the necessary conditions (# will

j1z(s*) €W .

1

Therefore : N(v,z) N P(v,z) = ¢ = Imj'znW=2¢ , which

is equivalent to the implication :

Im j1z NW=2¢ = Niv,z) nP(v,z) = ¢ ,

1 1

z denotes the image j z(S) of the set S of messages by the

differentiable mapping j1z : S > J1(SJR£n) .

where Im j

Let us now apply Thom's Transversality Theorem :
For every z belonging to a (Ga)-dense subset of Cm(SJRK") » the mapping

1

J'z is transversal to the submanifold ¥ . (we note : j1z m W) . This

means :

- either

o GsEMY =T, we ', () .
i'z(s) i'z(s)

(1) ¥sesS , T

(TXX denotes the Tangent Space to the manifold X at the point x € X ; and

1

(dj1z)S denotes the differential of j'z at the point s € S) ;

- or

1

(2) Imj'znW=y.
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In order to show that (1) is impossible here, we will reason on dimensions ;

in fact if we note :

ay(s) = din T, (@SR
j'z(s

d,(s) = dim T W

: i'a(s)

dyls) = dim (dj'2)  (TS)

we obtain :
dy(s) = dim 3" (s R
dy(s) = dim W

d3(s) < dim TSS =dimS =nd .

with : codim W= d1(s) - dz(s) 2nd +1>nd .

Therefore the following strict inequality :
d1($) = dz(s) > d3(S) ’

which eliminates possibility (1) , is always

verified here and leads finally - to the conclusion that the set

1 Zn) )

T, = {z€ Cw(SJRLn) | Imj'z nW=¢} is dense in C*(S,R

The general part (a) of Theorem 1 is thus proved. To prove

the second part (b) on balanced outcome functions, it suffices merely :

1) To replace in the foregoing ‘che]Rf‘n set of all the alloca-

tions by the subspace 5% CIRKn of balanced allocations (y1,...,yn) E]RKn
such that 2 yi = 0 2 - |
i€l R
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2) To use the diffeomorphism (also proved in Balasko [1979])
between the set Q0 = @% n Q of balanced Pareto-Optimal allocations and

n-1

the space R . As the codimension of Q0 in ﬁ% is always greater thnan

1 , the proof of part (b) is the same as that of part (a) above.

This completes the proof of Theorem 1. ele
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4. THE GENERIC INEFFICIENCY OF SMOOTH MARKET GAMES J(v,z) WHEN THE S.0.F.z

AND THE PREFERENCES v VARY SIMULTANEOUSLY

In this section, we assume that the v; utility functions
w, £
describe the C (R JR) space which is also provided with Whitney's

C“LTopo1ogy.

THEOREM 2 : The set of smooth couples (v,z) such that
N(v,z) n P(v,z) =¢ 4s dense in the Product-Space [C°°(]R£JR)]n X Cw(SJRen) .

The proof of this theorem is similar to that of Theorem 1 :
ol N
= €
o (v01.)1.EI = [C”(RY,R)]

and z, € Cw(SJREn) , and let V0 X ZO be an open neighbourhood of (vo,zo)

Let us consider any couple (vo,zo) where v

in the Product-Space [CmGRKJR)]n x C7(S JRKn). It is clear that, by
perturbing v, very slightly, we may find v € V0 such that the (##)P

system :
P . Vig Vi
(#) :W-(-Xi)=vﬁ"(x1)s1§j§'e'192§.i§ns
il 12

defines, in x = (x1,...,xn) , a submanifold Q of R of codimension
gheater on equal fo 1. From here on the proof follows closely that of
Theorem 1 and ensures the existence of a Strategic Outcome Function

z € Zo such that N(v,z) 0 P(v,z) = ¢ . Q.E.D. .o.

Remark : We also obtain, as in Theorem 1 (b), that the smooth and

batanced market games J(v,z) such that N(v,z) n P(v,z) =¢ are dense

in the set of all smooth and balanced mechanisms. This very strong result
about generic inefficiency of smooth market games will now be completed by.
a determination of non-differentiabilities and especially discontinuities
inherent to most mechanisms J(v,z) such that N(v,z) N W(v,z) = ¢ , in par-

ticular when these mechanisms are competitive.
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5. NON-DIFFERENTIABILITIES IN MARKET GAMES J(v,z) SUCH THAT
(1)

N(v,z) n W(v,z) = ¢ .

Preferences v; of agents i €1 are fixed again so as to verify

assumptions (A7} to (A5).

In the following we shall confine ourselves to Strategic Out-
come Functions z : S +]R£n which are quasi-differentiable in the sense
that, for all i € I , the partial mappings s; > Zi(si’s-i) are diffe-

rentiable except on a finite or countable subset of S..[z(s) = (z4(s),...,z (s)) I.

We shall then select Transaction-Price Functions ¢ : S +]an
that are compatible with the S.0.F. z and allow at most only the z non-
differentiabilities. From an economic point of view, it seems natural to

submit the ¢ transaction-prices to the following minimum condition :

(c) 14 s € W(v,z) , then for all i €1 :
Zi(s*) z 0 z‘#-¢i(s*) = p where p is the Watrasian price defined by :
R

* - .
zi(s ) = gi(p) s 1= 1,000,

(1) This section extends a result of Benassy. See Benassy [1984], Section 4.
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This condition, verified in particular in Schmeidler [1980]
and Dubey [1982] , is mathematically compatible with Walras'law :

p.gi(p) =0, 9 =1,.0.4n. (1)

Lemma : Letz : S R be a quasi-diffenentiable S.0.F. and ¢ a

transaction-Price Function compatible with z and verifying condition (C).
1§ z is diffenentiable at point s € N(v,z) n W(v,z) , then

the gollowing conditions (##)w are necessanily verigied at that point :
J

W J o¢ .
(#)" 1z (s"). ———(s ) =0 4 1<isn ,
1<j=<e-1
a¢~} .
whe/e T denotes the gradient o4 the partial mapping S; +-¢g(si,s_%) .

i

Proof : Let st € N(v,z) n W(v,z) be a differentiability point of the

*
S.0.F. z 5 s € N(v,z) verifies the first order necessary conditions :
523

N . ; . * ST - .
(#)" : 1§ng£ Vij(zi(s )). 851-(5 ) Ole s, 1sisn
On the other hand we have :

Zi(s) = - 1 e(s).2d(s)
1gje-1 !

(1) The existence of a Transaction-Price Funct&on b = (¢1, .3¢,) verifying
condition (C) can be proved very simply in -the following way :

1. On a neighbourhood of each s* € W(v,z) such that zi(s*) =z 0 7 by
e
applying the Impflicit Functions Theorem to the mapping ¥y defined by :
. .. _ N
v;(e:8) = oduzi(s) + p¥ k(s) + zK(s) , Where zJ(s ) =0 .
1sks2-1
k=j

We then get a un1que 9 mapping defined on a neighbourhood of s
and such that 63 (s) ﬁk if k=zJ.

2. The mappings ¢ thus constructed are then extended to the whole
manifold S by applying a Partition of Unit theorem (Golubitsky-
Guillemin, op. cit.).
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for every s € S according to the definition of ¢ (Section 2) .

By deriving we obtain :

- j 3
Y2 . az v . 4%
i 3 i j i
—(s) = - Yooes(s). —(s) - Y zi(s). —(s) .
9%y 1gjse-1 ! 984 1<j<e-1 354
a
%, N
By replacing ggf(s) by this equivalent expression in (#)" , we obtain :
i
_ vi. * N 52 * a¢4 x i %
R S N O RS [ DI E R 3e(s ).23(s7) , 1sis
1sj=0-1 V%K i 1sjse-1 77i

The lemma results then immediately from condition (C) on ¢ and from the

implication :

* Vi, . -

s € W(v,z) =»—1Q(zi(s*)) = p? where zi(s*) = gi(p) s i=1,...,n37=1,...8-1. .0,
Vi
il

This Lemma has three impontant consequences :

1. At finst, it determines the non-differentiabilities at the points
s* € N(v,z) n W(v,z) which do not verify the conditions (##)w.
Thus, for examp]e, without going into the details of the competitive
market games of Schmeidler [1980] and Dubey [1982], the simple fact

that the Transaction-Prices ¢g(p,q) associated with these mechanisms

; 3¢y 3¢9
are equal to the quoted prices pg (such that ——%-E 1 and ——% =0
3Py op

for k # j) makes necessary the non—differentiabi]ity of their Strategic
Outcome Functions z at the points " € N(v,z) = N(v,z) n W(v,z) such
that z(s*) 0 o - This non-differentiability is however equivalent,
in each of th;Ee two mechanisms, to a discontinuity (See Schmeidler

and Dubey, op. cit.).
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2. Moreoven, the preceding Lemma enables us to establish directly the
genenic non-competitivity of smooth market games already obtained
as a corollary of Theorem 1 : for if we consider any equilibrium

- N(v,z) nW(v,z) , it necessarily verifies the system :

( v!, oo a2
P (A (s - ) s =0 g s i =t
| 1sise-r vy, ] %4 R
(0) £
2 [
azi( . - azg( . ' .
\ 3;; s)=-73p". 3;; s ) for all agents i such that zi(s ) = %RK.

-~

'(p) L) -i=1,..,’n .

- *
where p is uniquely determined by zi(s ) = 9

In other words the 1-jet jjz(s*) belongs to the submanifold
Z of J1(SJR£n) defined by (D) and whose codimension in J1(SJR£n) is
obviously superior or equal to (nd+1). The genericity of N(v,z) n W(v,z) = ¢
when z varies obtains then by applying Thom's Transversality Theorem to

the submanifold Z . ‘ 0.

3. At Last, zthe Lemma and its proof AuggeAt a simple and general method
fon the study of competitive mechanisms.

Consider in particular the two following examples : the first
one, with a §inite number of agents, relies on Bertrand-type discon-
tinuities (see [18831), whereas the second one-— differentiable —
corresponds to the limit situation of an .nfinite number of "small"
agents i € I whose individual influence on their own Transaction-

Price ¢.(s) is negligeable.
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Example 1 : (Dubey [1982]) .

We consider a partial market (j = 1, £ = 2) . For each agent
i=1,...,n (n2z4), a strategy s; consists of a Price-Quantity couple
5; = (pi,qi) e]R: XR =S, , where q; designates a net quantity of com-
modity 1 offered (qi < 0) or purchased (qi > 0) by agent i , and p; the
minimal ofger price or the maximal demand price quoted by this agent for
this quantity.

Given a selection (p,q) = [(p1,q1),...,(pn,qn)] €S =iéI S
the Aggregate Ogfer Curve 0(p,q) (respectively the Aggregate Demand
Curve D(p,q)) is constructed by classifying individual strategies (pi,qi)
in order of increasing offer prices (respectively in order of decreasing -
demand prices) so as to give the priority to the sellers who quote the

lTowest prices and to the purchasers who quote the highest prices (Figure 1).

Py 0(p,q)

Pn(P»q) I

D(p,q)

e o e s e e S . - . o Gt —

o o ot v i - —

o
-
o

v

£

d
9 * 9

Figure 1
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The Strategic Outcome Function z(p,q) = [21(p,q),...,zn(p,q)] is then

defined as follows :
- If D(p,q) N 0(p,q) = ¢ , there is no trade : z(p,q) = 0 ,
R

- If D(p,q) n 0(p,q) = ¢ , we note pn(p,q) the Aintersection
price of these two aggregated curves and we state, for all

agents i € 1 , that z.(p,q) = [z}(p,q) , 2§(p,q)]

where :

. q; >0 and p; > py(p,a) = 23(p,a) = a4
L q; >0 and py < py(p,a) = 24(psa) = O
. ;<0 and p; < py(p,q) = z}(p,q) = q;
. q; <0 and p; > p,(p,q) = zg(P,Q) =0

pn(p,q) = agent i is rationed in proportion of his

.
o

-
]

demand if q; > 0 or of his offer if q; < 0.

(On Figure 1, the o4fens at price pn(p,q) are being rationed) . Having
thus determined the non-numeraire components z}(p,q) we fix the numeraire

components z?(p,q) by Transaction Prices :

¢}(D,Q) =p; for i=1,...,n (1) )

E I
Consider now an active noncooperative equilibrium (p ,9 ) € S ,

for which there exist at least two active buyers and two active sellers.

(1) In other words we suppose that each agent transacts at the price
he quoted and that the differences between demand and offer prices

are retained by a broker (see Dubey [1982], concluding Remark 3).
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* * %
(a) ALL the prices p, are equal to p(p ,q ) .

* * *
Proof : Suppose that some agent i quoted a price p; = pn(p ,q ) and

obtained z, (p sq ) z 0 2 According to the lemma's proof above, we

(R

necessarily have :
1

Z
(1)( (z(p,q))-p) (p,q)=o
Via
| 821
-i** 1**
(2)( (z(p,q))-p) 3P sa) =1 xzi(pq) .
12 1

Now, from the above conventions about the S.0.F. z :

* * * % 321
p; = P(psa) and z;(p ,q) ¢0]Rz 8q1(p Q) =120

Consequently, by (1) :

(z (p »q )) f , which, by (2), leads to the absurdity :

12

32!

T IE PR '
xgﬁi—(p,q)—zi(p,q)zo.

This establishes (a).
* *
(b) (p ,q ) 48 a Walrasian equilibrium.

* *
Proof : Suppose for a moment that (p ,q ) & W(v,z). Proposition (a)
*
together with the activity assumption on (p*,q ) and the above convention
about shortage sharing at price pn(p, q) make then necessary for the

az * %
partial derivatives 59 (p ,q ) to exist and to be non-zero for all i € 1 .

*
(1) The partial mappings q zi(pi,q (p »q ) ;) and py>z.(p P;s9; (p »q ) ;)
are clearly differentiable at (p*,q ) if pi # pn(p »q ).
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We deduce by the stillvalid relation (1) :

v! * * *
Nz (p7,0)) = p; =
v!

i2

*
for all i € I . We thus obtain : (p*,q ) € W(v,z) , as the S.0.F. z is

* k. * ok * 0k
pa(p sa ), ie. z5(psa ) = g5(py(p sa )

balanced.

To avoid this contradiction, Proposition (b) must then neces-_

sarily be verified. o

Example 2 : (Shubik [1973], Shapley-Shubik [1977], Dubey-Mas-Colell-
Shubik [19801) .

We consider the 1imit case where the set of agents I is a

continuum. (For example I = [0,1]).

There are two commodities (£=2) . For each agent i €1 , a
strategy (s1(t),52(t» € St =]RE consists of an offer of commodity 1
(s1(t) 2 0) and an offer of numerairerz_(sz(t) 20) .

(0,11

At every point s = (s;,5,) = [{s,(t),s,(t))y ] € GRE) S

such that JI s1(t) dt and JI sz(t) dt > 0 , we define the S.0.F. 2 :S+GR2)[O’1]

by :

[s
20 (t) S o) - s (1)
- Sy 1
’ J152
J So
Zg(t) = "‘I—‘ 51(t) = Sz(t)
I15;

for all t € I , and we extend to the case JI s1(t) dt = 0 or

JI sz(t) dt = 0 by writing : zl(t) = - s1(t) and zz(t) - sz(t) in

that case.
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[0,1]
The mapping ¢ : S »—HR%] ~ defined, for all t ¢ I , by :
| w
¢1(t) R S ¢1 (with ¢1 = 0 when s, =0 or S, = 0)
S [s S S I 1 I 2
11
62(t) = 1

is an evident Transaction Price Function compatible with z , and verifies :
0y adk
= =0 forallterl.
351(t) asz(t)

(The necessary condition (##)w of the lemma is in particular verified

here).

Consider now an active noncooperative equilibrium
*

* *
s = (51,52) € N(v,z) such that I ST and J s; are striictly posiiive.,
I I

According to lemma's proof, we have for all t € I :

1 1
v, oz_(t) 3¢ _(t)
Uz (0)) = 8L). —=(s") < == 2l(1) = 0
Vo 851(t) 851(t)
_Y ~ — )
= -1 = 0

v
1 .
Therefore : —Iﬂ(zs*(t)) = b » Teel zs*(t) = gt(¢s*) for all t €1 .

Vi2

As the mechanism z is bafanced, we automatically have :

L 9,000) =0, , e, s €N(v,2) NU(v,2) = ¢
tel R
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Remark : These two examples extend easily to any number of commodities
2 . It suffices to separate the global market (1 < j = £) into (£-1)
partial markets [.j,,£]1§j§£_1 by supposing as in Dubey [1?82] or in
Dubey-Mas Colell-Shubik [1980] that the final allocation z%(s) and the
Transaction-Price ¢€(s) do not depend on strategies SE quoted by agent

i on the other markets k = j .

oz ¢
i i .
In other words : —x = X% © 0 for1 sk =z2jc4L-1
9S. 3S.
i i
. _ord £2-1 -
and for all i , where s, = (Si""’si ) and s = (51.)1.€I .
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6. A CONCLUDING REMARK

In the foregoing we supposed that the consumption sets X; of all
the agents i €1 wére equal to the whole space]RZ‘, thus doing away with
the individual non-feasibility problems that generally relate to the study
of market games (Schmeidler [1980]). Let us now assume that the X; are
striictly dincluded inRE : win the preceding genericity results be still
relevant in that case ? For answering this question it will be convenient

to distinguish between the following two situations :
(a) ALL the X; are open in rY .

In this case, the necessary first order conditions for a selec-
*
tion s to belong to the intersection N(v,z) n P(v,z) remain the same as
in the proofs of Theorems 1 and 2 above. These results are therefore

still valid.

(b) There is at Least one agent i € 1 whose consumption set Xs

has a non-empty boundary X

*
In this case the Pareto-Optimality of an allocation z(s ) € aXi
may no longer be expressed through (##)P equations (see Sections 3 and

4 above), but rather through .inequations of the Smale [1974] type.

The proof of Theorem 1 may well then not be valid, with however
the following exception : the important case where oX; is included in a
ginite on countabfe union of submanifolds Vf of dimension (£-1) . For
examp]e, if Xi = Rf » the boundary 3X1 is included in the finite union

of hyperplanes {xj =0} ,J=1,...54 .
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Consider now the systems :
aJ

* Z, *
(#)N : Y vidzi(s)). 5;—:;(s ) =0 4 i=1,000m.

(s
1sjse VT R

* k
and zi(s ) € Vi .

Each of these systems (S?) defines an submanifold Xt of

J1(SJR£n) , of codimension superior or equal to : nd + codim , V? = nd+1 .
R
We know then by Thom's Transversality Theorem, that for z belonging to

k
i
As the countable intersection of dense and open subsets 0? is itself

a dense open subset 0; of Cm(SJRKn) , the system SE has no solution s* .
dense in the Baire Space Cw(SJRZ") , we are sure that generically on

) £n . * * ‘o N
z € C(S,R™) the Nash allocations z(s ) where s verifies (&) will

belong to ii (the interior of X;) .

We are thus brought back to the previous case (a) where Theorems

1 and 2 apply.
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