ON ENDOGENOUS COMPETITIVE

BUSINESS  CYCLES

Jean-Michel GRANDMONT

N° 8316

June 1983, Revised September 1983



ABSTRACT

This paper develops an example in which persistent determinis-
tic business cycles appear in a purely endogenous fashion under Laissen
gaine. These cycles are not attributable to exogenous "shocks" nor to
any variation of policy since there are none in the model. Markets clear
in the Walrasian sense at every date, and traders have perfect foresight

along the cycles.

The origin of these cycles is the potential conflict between
the wealth effect and the intertemporal substitution effect that are
associated to real interest rate movements. Business cycles appear in
particular when the degree of concavity of a trader's utility function is
sufficiently higher for old agents than for younger ones. The techniques
employed to study the occurrence and the stability of such business cycles
are borrowed partly from recent mathematical theories that have been cons-
tructed by using the notion of the "Hopf's bifurcation" of a dynamical system
in order to explain the emergence of cycles and the transition to turbulent

("chaotic") behaviour in physical, biological or ecological systems.

The equilibrium level of output is shown to be negatively rela-
ted to the equilibrium level of the real interest rate., A similar
relation exists (but in the opposite direction) between equilibrium
real money balances and real interest rates. These relations hold both
in the long run, i.e. along business cycles, and in the short run, i.e.
on the transition path, and whether movements of the real interest rate
are anticipated or not. The basic ingredient there is the condition that

older agents have a higher marginal propensity to consume leisure.



Monetary policy by means of nominal interest payments is shown
to be extremely effective. A permanent change of the rate of growth of
the money supply by these means will be superneutral, Yet, there exists
a very simple deterministic countercyclical policy that enables monetary
authorities to stabilize completely business cycles and to force the eco-
nomy back to the unique (Golden rule) stationary state. Due to the non-
linearity of the model such a policy affects not only the variances of

real equilibrium magnitudes but also their means.



RESUME

Cet article développe un exemple dans lequel des cycles
économiques déterministes apparaissent de maniére purement endogéne.
Ces cycles ne sont dus ni & des "chocs" exogénes ni a des changements
de politique économique puisqu'il n'y en a aucun dans le modéle. Les
marchés s'équilibrent au sens Walrasien & chaque date et les agents

prévoient correctement 1'avenir le long des cycles.

L'origine de ces cycles est Te conflit potentiel entre
1'effet de richesse et 1'effef de substitution intertemporel associés
a une variation du taux d'intéret réel. Des cycles apparaissent en par-
ticulier lorsque la concavité des fonctions d'utilité des agents est
plus prononcée lorsqu'ils sont jeunes que lorsqu'ils sont plus agés.
Les techniques utilisées pour étudier 1'existence et la stabilité de
ces cycles sont empruntées a des théories mathématiques récentes qui
ont été développées en employant Ta notion de "bifurcation de Hopf"
afin d'expliquer 1'apparition de cycles et la transition vers la tur-
bulence (le "chaos") dans les systemes physiques, biologiques ou

écologiques.

Le niveau de production d'équilibre est dans ce modéle relié
négativement au niveau d'équilibre du taux d'intérét réel. Une relation
analogue existe (mais dans la direction opposée) entre niveaux d'équi-
Tibre des encaisses monétaires réelles et du taux d'intérét réel. Ces
relations sont valables non sed]ement dans le long terme, c'est-a-dire
Te Tong des cycles, mais aussi dans le court terme, c'est-a-dire le
Tong du sentier de transition, que les mouvements du taux d'intérét
réel soient anticipés ou non. L'hypothése principale ici est que les

agents plus agés aient une propension marginale & consommer du loisir

plus importante.



IT est montré que la politique monétaire au moyen de paie-
ments de taux d'intéréts nominaux est tres efficace. Un changement
permanent du taux d'intérét nominal est bien sir superneutre. Cepen-k
dant, i1 existe une politique contracyclique trés simple qui permet
aux autorités monétaires de stabiliser complétement cette économie
et de Ta ramener & 1'unique état stationnaire correspondant a la
Regle d'Or. Etant donné le caractére nonlinéaire du modéle, cette
politique altére non seulement Ta variance des quantités réelles

d'équilibre mais aussi leurs moyennes.



ON ENDOGENQUS CQMPETITIVE
BUSINESS (CYCLES

Jean-Michel GRANDMONT ™

The belief that the Tong run equilibrium of a competitive mone-
tary economy that does not experience any exogenous shocks — whether
originating from the external environment or from policy — should be
modelled as a state that is stationary or perhaps growing at a constant

rate, seems to be deeply rooted in the mind of economists,

The most outspoken believers in the market's invisible hand go
indeed as far as claiming that any departure from a long run Walrasian
equilibrium should be regarded as purely transitory and that accordingly the ba-
sic tendencies of a competitive economy may be represented adequately
by such a “"Classical" stationary equilibrium. The most recent reformu-
lation of the Classical approach has been to model economic fluctuations

by adding random shocks to the deterministic stationary state and to
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underscore the role of incomplete (and asymmetric) information in the
influence of economic policy on real equilibrium variables. The outcome

of this reformulation is a model that preserves very cleverly stationarity
while incorporating in the analysis something that Tooks like business
cycles (Barro (1981), Kydland and Prescott (1982), Lucas (1972, 1975, 1977,
1980, 1981), Sargent and Wallace (1975)) ' . An important implication of
many, but not all, of these models is that the systematic (deterministic)
component of economic policy can have no real effect whenever it is anti-

cipated by the private sector.

The arguments put forward by the opposing (Keynesian) school appear

often, by contrast, almost exclusively defensive. Proponents of this school
seem to accept in effect the theoretical validity of the claim accor-
ding to which the Tong run equilibrium positions of a competitive econo-
my may be described by (deterministic or stochastic) stationary states.
They tend to question primarily the practical relevance, for the descrip-
tion of short run and medium run phenomena, of the mere notion of a long
run stationary equilibrium and of its underlying assumptions. The list

is long : prices cannot move fast enough to clear markets, anticipations
adjust only slowly, New Classical macroeconomic models rely upon extreme-
ly specific assumptions concerning the distribution of information, the
Classical stationary state may be unstable or convergence to it may be so

4 2
slow that it becomes practically irrelevant in calendar time, and so on

The purpose of this work is to demonstrate that, by contrast to
currently accepted views, a competitive monetary economy of which the

environment is stationary may undergo persistent and large deterministic

———————————————————— v o ———

1
See also Grandmont and Hildenbrand (1974),

2
For an excellent account of the Tong feud between Keynesian and (01d,

Neo - or New) Classical economists, see e.g, Tobin (1980).
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fluctuations under zaiééen gjaire. That these cyclical fluctuations may
display moreover the sort of correlations that recent Classical macro-
economic models have seeked to incorporate, without haying to make the
ad hoc assumption that cycles are due to exogenous shocks. And finally,
that the Government, in the face of such autonomous deterministic fluc-
tuations, has indeed in principle the power to stabilize the economy by
implementing simple deterministic — and publicly known — countercycli-

cal policies.

Although one of the goals of the present work is to develop
concepts and methods that can be applied, it is hoped, to a larger class
of situations, the analysis will proceed by studying a particular example,
i.e. an overlapping generations model very much alike the model developed
by R.J. Lucas in his seminal paper (1972), with the noticeable difference
that we shall assume that the economy is not subjected to any shock of
any sort. Business deterministic cycles will be shown to appear in a
purely endogenous fashion under Laisser faire. Markets will be assumed
to clear in the Walrasian sense at every date, and traders will have

perfect foresight along the cycles.

The origin of these endogenous deterministic cycles will be
seen to be the potential conflict between the wealth effect and the
intertemporal substitution effect that are associated to real interest
rate movements. Business cycles will emerge in particular when the
degree of concavity of a trader's utility function — which we shall
measure, although there is no uncertainty in the model, by the
the so-called Arrow-Pratt "relative degree of risk aversion" —

is sufficiently higher for old agents than for younger
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ones.1 An important outcome of the analysis will be that cycles of
different periods will typically coexist — in some cases, there may
be a countable number of these. The techniques employed to study the
occurrence and the stability of such business cycles will be borrowed
partly from recent mathematical theories that have been constructed
by using the notion of the "Hopf's bifurcation" of a dynamical system

in order to explain the emergence of cycles and the transition to tur-
2

bulent ("chaotic") behaviour in physical, biological or ecological systems

The equilibrium Tevel of output will be shown to be negatively
related to the equilibrium Tevel of the real interest rate. A similar

relation exists (but in the opposite direction) between equilibrium real

! The idea that endogenous deterministic cycles may emerge in an over-
lapping generations model is already present in the literature. For
instance David Gale (1973) presents a numerical example of a cycle of
period 2, while David Cass (1980) discusses graphically the possibi-
l1ity of their occurrence. Moreover, the deterministic business cycles
that are the subject of this paper may be assimilated to what has been
called recently "sunspots" equilibria. The analysis of sunspot equili-
bria has been started by Karl Shell (1977) and Tater developed by
C. Azariadis (1981) and D. Cass and K. Shell (1981, 1983). Indepen-
dently of the present work, a forthcoming paper by C. Azariadis and
R. Guesnerie (1983) that I have not yet seen, establishes that there
are sunspots equilibria if and only if deterministic cycles exist.

Finally, a recent paper by P. Diamond and D. Fudenberg (1983)
provides an example of an endogenous rational expectations business
cycle in a search equilibrium model, in an otherwise stationary environment.

One important mathematical reference in this field is Collet and
Eckmann (1980). For a stimulating review of various applications of
the theory, see May (1976). Part of this theory has been already
applied in economics or game theory, in particular by Benhabib and

Day (1981, 1982), Dana and Malgrange (1981), Day (1982, 1983),

Jensen and Urban (1982), Rand (1978). The results of this theory that
seemed (to me) relevant and useable by economic theorists are reviewed
in Grandmont (1983b).



money balances and real interest rates. These re]ation; hold both in the
long run, i.e. along business cycles, and in the short run, i.e. on the
transition path, and whether movements of the real interest rate are
anticipated or not. The basic ingredient there will be the condition

that older agents have a higher marginal propensity to consume leisure.

Finally, monetary policy by means of nominal interest payments
will be shown to be extremely effective. A permanent change of the rate
of growth of the money supply by these means will be seen to be superneu-
tral. Yet, it will be shown that there exists a very simple deterministic
countercyclical policy that enables monetary authorities to stabilize
completely business cycles and to force the economy back to the unique
(Golden rule) stationary state. Due to the nonlinearity of the model,
such a policy affects not only the variances of real equilibrium magni-
tudes but also their means. The central point here is that there are
typically many long run periodic equilibria that coexist under Laisser
gairne, and that policies may be designed which force the economy to
settle at only one of these — here the stationary state '

The paper is organized as follows. We specify in Section 1
the structure of the model and study there the traders' microeconomic
behaviour. The dynamic system describing the evolution over time of
the economy as well as long run periodic equilibria are defined in
Section 2. The issue of the stability of these periodic equilibria
is partly analysed in Section 3. The existence, the multiplicity, and

The idea that there may be a large number of "rational expectations”
or perfect foresight equilibria in a monetary economy and that accor-
dingly, one possible role of policy is to select one of these, is also
already present in the literature. In particular, this fact has been
well known by theorists who worked with the overlapping generations
model. The point has been most forcedfully reiterated recently by

F. Hahn (1982).



the bifurcations of periodic competitive equilibria are investigated
systematically in Section 4. The long run and short run relationships
between equilibrium output or real balances, and anticipated or unanti-
cipated real interest rates are established in Section 5. Finally, the
impact of monetary policy through deterministic money transfers is
dealt with in Section 6. A few concluding remarks are given in

Section 7, while some proofs are gathered in a separate Appendix.

Section 4 is the most technical, and although it is in some
respects the most interesting one, the nonmathematically oriented
reader may skip it on a first reading. Section 5, and to a large extent,

Section 6, can be read right after the first two sections of the paper.



1. BEHAVIORAL ASSUMPTIONS.

We shall use the simpie structure of an overlapping generation
model, with a constant pupulation and without bequests, in which agents
Tive two periods only. For simplicity we shall assume that all agents
are identical, or equivalently that there is a single member in each
generation. There will be accordingly two agents in every period, one
"voung" and one "old". The model involves one perishable consumption
good, which is produced from the labour that is supplied by consumers.
There is no production lag, and producing one unit of output requires
one unit of labour. Young consumers have the opportunity to save part
of their income in each period by holding a nonnegative money balance.
For the most part of the paper, the money stock will be assumed to be

constant over time. It will be denoted M > 0 .

At each date t , there are competitive spot markets for the
consumption good, for labour and for money. The money price of the good
and the money wage rate will be denoted Pt and Wy s respectively. However,
in equilibrium, a positive amount of the good is consumed and therefore
produced (think of the old agent who has a positive money balance to
spend on the good market at every date). Profit maximization in the
production sector implies then the equality of the equilibrium real
wage and the equilibrium marginal productivity of labour, which is
unity. This fact allows focusing attention on the case in which Py = Wy

for all t , without any loss of generality.



An agent's intertemporal characteristics may then be described
as follows. Consumption c. in each period t of his life (v = 1,2) must
be nonnegative. On the other hand, it is assumed that the agent has a
labour endowment in each period of his life, E: , and that his labour
supply KT , or equivalently his consumption of Teisure EI-—KT , must
satisfy 0 < Z: - ET < K: for T = 1,2 . The agent's 1ntertempora1 tastes

are represented by the utility function

* *
*
which is defined on the set of c and KT-KT that satisfy the foregoing
feasibility constraints. We shall assume

(1.a) &%

1 >0 and z§>o

(1.b) UT(cT,KI-KT) A5 continuous, increasing in each argument and

Aiﬂidiﬂg concave for t = 1,2

We consider now the decision problem that a young agent has
to solve at an arbitrary date. Let p > O be the money price of the good
that he observes in the current period and let pe > 0 be the price that
he expects for the next date (the reader is reminded that current and
expected money wages are taken to be equal to p and pe respectively).
The agent's problem is then to choose his current consumption Cq » his
current Tabour supply Zl , his demand for nominal money m , and to plan
for the next date his future consumption c, and labour supply 22 .

Formally,



Choose cl,ﬁl,m,cz,ﬁz 50 as to maximize Ul(cl,ﬁz-zl) + UZ(CZ,KE—KZ

subject to ¢z 0,0 gL < zf; (t=1,2) , m > 0 and the cuwrent

(1.1) | and expected budget constrainis

p(cy-£y) + m =0

pe(cz'f—z) =m
It is routine to verify that under assumption (7.b), this problem
has a unique solution. It is moreover clear that the optimum values of
(cT-KT) for 1t=1,2 are unchanged whenever current and expected prices
are changed proportionnally -+ in other words they depend only on the
ratio 6 = p/pe , or equivalently on the consumer's expected real inte-
rest rate p = 6 - 1 (absence of money illusion). We shall denote them
le(e) and 22(6) , respectively. Since one unit of labour yields one
unit of good, we may interpret these values as the trader's current
and expected excess demands for the good. On the other hand, the optimum
value of m that arises from (1.1} — the trader's demand 4ox money —
is clearly a function of p and of pe that is homogenous of degree 1
with respect to these variables. The trader's demand for money md(p,pe)
is in fact linked to the excess demand functionszl(e) and 22(9) by the

following identities, which are consequences of the budget constraints

of (1.1).
(1.2) pz;(0) + m(p,p%) = 0
(1.3) p°z,(8) = n(p.p®)

for every p,pe and 6 = p/pe . These identities imply of course
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(1.4) ezl(e) + 22(9) =0 for every o >0

One may note that the demand for "real balances”, md/p is then

given by -zl(e) = zz(e)/e .

It is convenient to decompose the decision problem (1.1) into -
two subproblems. Let us rewrite the budget constraints of (1.1) under

the following form

(1.5) pcy + (£-27)1 + m = pf]

(1.6) pe[cz + (33-12)3 = pez; +m

Then it is clear that the consumer may solve (1.1) in two steps. First, given
an arbitrary m satisfying 0 < m < pzj , he may choose the consumptions

of good and of leisure in each period of his Tife that maximize each

utility function UT under either the budget constraint (1.5) when =1 ,

or (1.6) when =2 . Having achieved this, the trader may then choose the

optimal Tevel of m . This motivates considering the following problem.

Given a > 0 , choose ¢ and £5-£_ , with c_ > 0 ,
T T T T T -

0<&* -2
=Tt T

A

(1.7) Ki , 40 as to maximize UT(cT,K:-zT) subject to

. . _
c_ + (KT-EQ) = 3

T T

Under assumption (7.b),(1.7) has a unique solution. In fact,
this problem determines the agent's optimum consumption cT(aT) and his
optimum labour supply KT(aT) in each period of his 1life as a function

of his "real wealth" a_ - These functions are linked by



Hi
3]

(1.8) c(a)+ L5 -2 (a)

for every a_> 0
T T T T T =

Let VT(aT) be the maximum of UT that is obtained in (1.7). It
is quite easy to verify that under assumption (7.b),VT is continuous,

increasing, strictly quasiconcave. Let us consider finally

Given p > 0 , p > 0 , choose ay 2 0, a,:z 0O andm >0

40 as to maximize Vi(ay) + V,(a,) subject to

" _ *
pa; +m = pll

pea2 = peﬁz +m

By comparing the budget constraints of (1.9) with (1.5) and
(1.6), it is clear that the optimum values of a1~£§ , of az-ﬁz and of
m that result from (1.9) coincide indeed with zl(e) R zz(e) and md(p,pe),

respectively.

Note that problems (1.7) and (1.9) admit a very simple graphi-
cal representation as shown in Fig. 1l.a and Fig. 1.b. The first Figure
is a direct description of (1.7) and need no comment. Fig. 1.b, which
represents (1.9),1s drawn in the plane (al,az) . The two constraints

become there the intertemporal budget constraint
* *
ba; + a, = ezl + £2

which is obtained by adding the two budget constraints of (1.9) and
by dividing the result by the expected price pe , and the liquidity

constraint a < EI which expresses the fact that money balances
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cannot be negative.
Fig. l.a Fig. 1.b

The main advantage of going through (1.7) and (1.9) is that
such a procedure will enable us to state our assumptions compactly and
more transparently by using the indirect utility functions VT(aT) instead
of deriving them from the original functions UT — which would have

been in some cases quite tedious.

We have seen that under assumption (7.b),each indirect utility
function VT is continuous, strictly concave and increasing. We shall make

in fact the stronger assumption :

(T.c) For each © = 1,2 , the indirect utility function V_ 4s continuous on

[0,+=) and twice continuously differentiable on (0,+=), with V;(aT) >0

2
limV'(a ) = + « , V;(a ) < 0.

a+o T T T
T

- = - = e e = e N e . e A

Going through (1.7) and (1.9) shows incidentally that considering a
variable production model like this one is formally very similar to
looking at an exchange economy (i.e. without production) in which

every agent is endowed with the quantity Z: of the good in each period
of his Tife.

It is possible to derive such differentiability properties under appro-
priate (differentiability) assumptions involying the original utility
functions'UT only, provided that "corner"” solutions are prevented to
occur in (1.7). Such is the case for example if each UT is continuously
differentiable and if the marginal rate of substitution between consump-

T
and to +o whenever ¢_ = 0 ,£% - £ > 0 or whenever £*=£_-£* (see Fig.1.a).
T T ) T T T T

. . ' . v * _
tion and leisure, UTC/U p*eg o 18 equal to 0 whenever c_ > O’VKT"ZT =0,



)
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We end up this section with a brief analysis of a few elemen-
tary facts about the excess demand functions Z and Z, that will be

used repeatedly in the sequel.
LEMMA 1.1. Assume (1.a) and (1.c) and Let o = Vi(ﬁ:)/Vé(K;). Then 21(6) and
22(9) are continuous on the open interval (0,+) . Moreover,

1) z;(8) = z,(6) = O whenever 6 < & , and -KI < zy(8) <0,

z,(6) > 0 whenever o > &

2] fon every 8 > 6 , one has

We shall not give a formal proof of this statement, which follows

from elementary considerations, but rather give the intuition behind it by
looking at Fig. 1.b. The parameter ¢ is indeed the inverse of the marginal
rate of substitution Vé(az)/Vi(al) at the endowment'point (KI,KE) . If

& < 6 , the liquidity constraint a; < KI is binding. The demand for

money then vanishes and zl(e) = 22(6) =0 . If o >6 , the Tiquidity
constraint is no longer binding — the demand for money is positive —

in which case zl(e) < 0 and 22(9) >0 , and the optimum of (1.9)

requires a; > 0 (since V1(0) = + «) , thus zl(e) > - Kf . Therefore

at the optimum of (1.9), one must have Vi(al) = oV5(a,) , hence (1,10).
Note that in view of (1.4), the relation (1.10) may take the equivalent

form

(1.11) = z(8) Vi(£] + z1(8)) = z5(0) V5(45 + 25(p))  for every o > &
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This brief argument implies that a consumer will have a posi-
tive demand for money if and only if 6 > 8 . We shall be concerned in
the sequel with monetary competitive equilibria, where the agents have
to hold the outstanding money stock, which is positive. In order to
ensure the existence of such equilibria, it will be particularly impor-
tant that the traders have enough incentives to save when the price of the
good is constant (and is expected to be constant) over time. This case
corresponds to pe = p and thus to 8 = 1 . We shall need accordingly

that 1 > 6 . Formally,

(1.d) 8 = V] (£])/V5(&5) 4s Less than 1.

The next fact gives more information about the variation of

zq and z, with 6 .

LEMMA 1.2, Assume (T.a) and {1.c). Then the hestrnictions of the excess demand
functions zq(e) and z,(s) to the interval [6,+») are continucusly diffe-

nentiable. For every s > 6

23(0) = [V3(L5 + Z,(0)) + zp(0) V5(£5 + 2,(8))1/a

25(6) == V1 (£] + 21(8)) + 21(6) Vi(£] + 21(0))1/a

2

in which A = VI(KI +z4(6)) + o vg(zg *+ 2,(8)) < 0 . In particular

z5(8) > 0 for every o

v

6 . Moreovern z,(p) diverges to +» whenever e

tends 1o +e
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The first part of this statement is obvious by differentiating
(1.10) or (1.11) and by using (1.4). On the other hand, the fact that
22(6) diverges to +~ whenever 6 increases without bound is not difficult
tb verify. Indeed, we get from (1.4) that when 6 tends to +e , zl(e)
must tend to O if zz(e) remains bounded. But in that case, the left
hand side of (1.10) is bounded while the right hand side diverges to +~ .

This is a contradiction which shows that 1im Z,(0) = 4= .
f->+e

The foregoing analysis gives some insight about the consequen-
ces upon a trader's behaviour of a variation of & (or of his "expected
real interest rate" which is given by 6-1) . A change of 6 generates an
intertemporal substitution — through the variation of the relative
price of future and current consumption — as well as income o wealth
epgects — in particular because intertemporal income in (1.9) is equal
to eﬁf + ZE .Lemma 1.2 states that a rise of ¢ induces always an increase
of zz(e) . Loosely speaking, this is because intertemporal substitution
and income effects do work then in the same direction. On the other
hand, the induced variation of zl(e) is ambiguous. We know indeed from
Lemma 2 that - z5(s)/z{(6) = & . Therefore z;(8) < O , and thus by
continuity zi(e) < 0 if @ is larger than but close enough to & . However,
the sign of zi(e) is a priori indeterminate for large values of o ,
because income and substitution effects are working in opposite direc-
tions in such a case. As a matter of fact the onigin of the business
cycles that are godng to be analysed in the present papern 45 precisely
this potential conglict between intertemporal substitution and wealth
eqhects,
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Examination of the expressions of zi(e) and zé(e) suggests
that an important role in this regard should be played by the so-called

Arrow-Pratt relative degrees of nisk aversion

R(a)=-V"(a) aT/V;(aT)

T T T T
which are well defined whenever a_ > 0 . These expressions measure in effect
the degree of concavity (curvature) of each VT . We shall stick throughout to
the usual terminology and speak of "risk aversion", although it is slightly
ackward in the present context, which involves no uncertainty. We shall use

the following assumption
(1.e) Rz(az) i85 a nondecreasding function of a, forn every a, > 0 .

For a justification of such an assumption (in a context involving uncertainty)

see Arrow (1970, Ch. 3). It is then easy to get the following fact.

LEMMA 1.3. Assume (7.a) and (T.c). Then for every e = o , zi(e) <0 i and

3 l -
onky if Ry(L5 + 25(6)) < (5 + 2,(8))/25(8).  Accondingly,

1) if Ry(ay)

A

1 forn alk a, > 0 , then zi(e) < 0 for every

2) 4 (1.e)holds and 4§ there exists a, > O such that Ry(a,) > 1,
then there exists a unique 8 > & such that zi(e) < 0 4for eveny

- * '

8 <6 <8 ,zl(e*) = 0 and zi(e) >0 4on every 6 > 6.

The claim that zi(e) < 0 if and only if
Rz(ﬂz + z,(8)) < (Kz + zz(e))/zz(e) is immediate to verify by looking
at the expression of zi(e) in Lemma 1.2.Then if R2(a2) < 1 for all

a, > 0 , the left hand side of this inequality never exceeds 1 ,

n o e e S A e e R e e e e G W e e e O W

! We allow the value += when 8 = 6 .
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while the right hand side 1is always greater than 1 whenever & > 8 , which
shows 7). If (7.e] holds, the left hand side of this inequality

is a non-decreasing function of & . When 6 tends to +~ , z,(8) tends

also to +~» and thus under the assumptions of 2], RZ(KE + zz(e)) exceeds
1 for & large enough. On the other hand, (KZ + zz(e))[zz(e) decreases

from +» to 1 when ¢ rises from 6 to +~ . There is thus, by continuity,

a unique 6™ > 5 such that

*

Ry (25 + 2,(07)) = (€5 + 2,(67))/z,(6™)

and it is clear that zi(8) < O whenever 8 < 6 < 6%, z!(6¥) = 0 and
1 = 1

z1(8) > 0 when 6 > 0%

It may be useful to illustrate our findings by drawing in the
plane (al,az) a consumer's offer curve, that is, the Tocus of all points
of coordinates a) = KI + zl(e) » Ay = tz + 22(6) when o varies. The
result is shown in Fig. 2 below. According to the previous lemmas,
the offer curve is smooth and goes through the endowment point A = (KI,K;)
— this corresponds to 6 < 6 . Its normal there is the vector (8,1). The
curve lies below the 45° line AB when 8 < 8 < 1 , and above when & > 1.
Figures 2.a and 2.b are drawn under the assumption that & <1 . Of
course, if @ > 1, the curve would Tie entirely above AB. Fig. l.a cor-
responds to the case considered in 1) of lemma 1.3, in which R2(a2) <1
for all a, > 1 . The curve is then "monotone", i.e. it has no critical
point. Fig. 1.b corresponds to the case in which (7.e¢) holds and in which
R2(a2) > 1 for some ap > Q . The offer curve has then a unique critical

point corresponding to the value 6 = 6"

Fig. 2.a Fig. 2.b
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Remarnk. The preceding lTemmas have been stated by employing the excess
demand functions Z; and zZy . The implications of these results on the

demand for real balances

n(p.p®)/p = 2y(0)/8 = - zy(0)

are obvious. Finally, note that the elasticity of the excess demand
function z, , i.e. ezé(e)/zz(e) , 1s greater than 1 if and only if

21(8) > 0 .
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2. PERIODIC COMPETITIVE EQUILIBRIA.

The preceding Section was devoted to rather elementary and stan-
dard considerations about the "microeconomic" behaviour of a consumer. We
turn now attention to the study of the dynamics of the economy and to the

definition of periodic equilibria.

Since there are competitive spot markets for output, labour and
money at every date, the evolution of the economy is described by a se-
quence of temporary competitive equilibria. Agents are assumed to forecast
at every date future prices through a given learning process, during the
adjustment of the economy toward "steady states” — which will mean here
periodic sequences of temporary competitive equilibria. It will be postu-
lated however that along such periodic sequences, traders have “"rational”
expectations, i.e., that they forecast correctly the periodic sequence of
prices. This way of proceeding comes from the fact that learning processes
belong in our view to the important characteristics of the traders on the
same level as preferences, endowments and the 1ike, and that perfect fore-
sight must be modelled as a property of those learning processes in rela-
tionship to specific environments. In particular, perfect foresight appears
to be a plausible outcome of learning when a trader's environment is
repetitive enough (here periodic), but seems to be far Tess acceptable
out of such special circumstances. An other reason that justifies our approach
is that we shall study later on the stability of a long run periodic equili-
brium, and that for that purpose, taking into account that traders are lear-
ning on the transition path is important.

Let us consider the economy at some date t . We look first at
the “o1d" consumer 1iving at t . This consumer holds the outstanding
stock of money M. If the price quoted at t is Py > 0 , his problem is

* *
£, - £ s 2, and

then to maximize U (C,ZZ-K) subject toc 20, 0 2 2

v

A
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* *
peLc + (KZ - £4)71 = pt£2 + M

(we have taken advantage here again of the fact that the nominal wage
rate Wy must be equal to Pt in equilibrium). In view of the problem
(1.7), the result will be C2(£§ + M/pt) and KZ(ZE + M/pt)) . But the
important point to note at this stage is that, since one unit of labour
yieldsone unit of output, the old consumer's excess demand for the good
may be described by c-£ , and that this quantity is equal to the real

value of his money stock M/p, .

Consider next the "young" consumer living at t , This consumer
observes the current price Pt > and we assume that he knows past prices.
To simplify, we shall postulate that the consumer processes only the
current price Pt and the past (positive) prices Pioq 2o 00 PeoT to com-
pute the (positive) price pi+1 that he expects to prevail at the next
date. In what follows, we shall think of T as finite, but "large”. We
describe this "learning" process — which may be a simple rule of thumb

or a complicated statistical technique — by an expectation function

e
pt+1 = w(pt s pt—l LIS ) pt__T)

We assume that the Tag T as well as the function y are independent of
1

time. Thus, in view of the analysis of the preceding section, the

young trader's excess demand for the good is given by

Zl(pt/w(pt > Piog 2o pt_T))while his demand for money is

d
m(Py > ¥(Py > Pyog 2e--0 Pro7)) -
! The assumption that a trader's information about the past is composed
only of prices is innessential. The arguments of this paper all go
through without any alteration if young traders were informed of past

quantities as well.
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A temporary competitive equilibrium at t is then defined as a
price Pt > 0 such that all markets clear at that date. For the good mar-

ket, this yields
(2.1) 21(pp/W(Py > Py_q »--0s Peoq)) + (Wpy) = 0
As for money, we get
d
(2.2) M (Pes¥(Py 5 Pyog so-vs Peop)) = M

Of course, in view of the young trader's current budget cons-
traint (1.2), the two equations are equivalent. This is in fact Walras's

1
Law

The next assumption on the expectation function is made to
guarantee the existence of a solution Py to the above system of equations,
when past prices are given. It is there essentially to ensure enough in-

tertemporal substitution when the current price Pt yaries.

(2.4) The expectation function ¢ 48 continuously differentiable. The
elasticity of v with respect to the curnent price 4s between 0 and 1 ,
2
that s
0 < wg(PpsPi_qseeesPy )P/ W(PysPy_15-- 5Py ) £ 1
Moreover, the ratic w(pt,...,pt_T)/pt tends to 0 when Py gues Zo += .

! We have not to write down of course the equilibrium condition for
labour since it has been already taken into account by assuming that
Wy = Py and that output was equal to the traders' labour supply.

2
The notation wj(pt"f°’pt—T) stands for the partial derivative of y

with respect to pt-j for j =0,1,...,T .
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We may then state

PROPOSITION 2.1, Assume (1.a) and (7.c). Then under assumption {2.4), there
exists a unigue temporary competitive equilibrium price Py given the

past prices PioqseeesPeoT - The temporary Walrasian equilibrium function

40 defdined Py = W(pt_l,...,pt_T) L8 continuously differentiable.

The proof of this claim is simple. By virtue of Walras's Law,
we may focus attention on the good market equation (2.1) alone. Then
when Pt toes to 0 , the real balance M/pt goes to infinity while the
young consumer's excess demand for the good is bounded below by -EI .
Thus we are sure that aggregate excess demand goes to += on the good
market when Pt decreases to 0 . This is due to the real balance effect,

which operates on the old trader alone.

We wish now to show that an excess supply of the good appears
when its price increases without bound. Or equivalently — again by
Walras's Law — that an excess demand for money appears in such a cir-
cumstance. But that is easy if one considers the money equation (2.2)
which can be put in the following equivalent but more convenient form

by using the young trader's expected budget constraint (1.3)

(2°3) w(Pt,---,Pt_T) ZZ(Dt/w(pta'--apt_T)) =M

Under assumption (Z.4),v and pt/w are nondecreasing functions of Py -

Moreover pt/w tends to +» when Pt increases without bound. In view of
Lemma 1.2,the left hand side of (2.3), that is, the young trader's demand
for money, is nondecreasing and goes to +e (énd thus exceeds‘the money

supply M) when Py tends to +«» , which proves our claim. Here, it is the
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intertemporal substitution effect that acts upon the young trader which

1
plays a central role

We may therefore conclude that by continuity, (2.1) admits a
solution. Unicity follows readily by considering (2.3), which is equiva-
lent, as we said, to (2.1). We showed that the Teft hand side of (2.3)
is nondecreasing. This implies either that it is positive for all Py ,
or that it is equal to O whenever Py < 5t for some 5t > 0 and positive
otherwise. When it is positive, we may meaningfully consider its partial

derivative with respect to Pt » which is given by

Py
tYo
——)

1 +ZI
v

by Zp * 251 -

(we have suppressed here the arguments of the functions involved for
notational simplicity) and which is positive under assumption (2.4).
The left hand side of (2.3) is therefore increasing whenever it is
positive, which proves uniqueness. Continuous differentiability of
the temporary Wairasian equilibrium function W is then a consequence
of the implicit function theorem by the same sort of argument. Partial

derivatives of W can be easily computed for instance by differentiating

. . 0 G e G s et At e B e b Ve e ot

! For a further discussion of the respective roles of wealth and intertem-
poral substitution effects in a competitive monetary economy see
) Grandmont (1983a).

The fact that the equilibrium price Pt at t depends only on past prices

is due the simplified structure of the model. For instance, if there were
several different consumers, the current equilibrium would depend also on
the initial distribution of money holdings. If utilities were not separa-
ble over time, it would depend also on past consumptions. In general,
current equilibrium prices would depend on past equilibrium states (prices,
consumptions, money holdings and so on). See, e.g. Grandmont and Hildenbrand
(1974), Grandmont and Laroque (1973).
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It may be noted in addition that under the assumptions of the

Proposition, the unique ftemporary equilibrium price Py 44 stable in any
Walrasion tatonnement process at date t in which prices nespond positively
to excess demand.

We proceed now to the definition of periodic competitive equilibria,

A perdodic competitive equilibrium with (primitive) period k
45 a sequence of temporary equilibrdia, that &s, an infdnite sequence of
positive prices (pt) that satisgies (2.1) and (2.2) for all t , such
that Prek = Pt gon akl t and such that k 45 the smallest period of the

sequence (L.e. therne 45 no k' < k such that Pesk = Pt fjor all t) .

On gets of course as a particular case a stationary equilibrium
when k =1 ., We may and we shall often identify a periodic competitive
equilibrium with the orbit of the periodic sequence (pt) » 1.e, with the
k consecutive values (p],...,p) that (py) takes. This identification
supposes of course that the two orbits (p),....py) and (pi,....pgsP]s---sE5 1)

are considered as equivalent.

Note that the above definition involves only the functions
zl,zz,md and ¢ which describe a trader's behayiour — it does not use
assumption (2.4).1f (2.4) is postulated, the temporary equilibrium map
W is well defined and one may view a periodic competitive equilibrium

as a periodic solution of

(2.4) = W(

Py = WPp_gse sPeoy)

In fact, it is more convenient to look at (2.4) as defining a dynamic
system in a space of larger dimension. For any Qp.1 = (pt—l""’pt—T) s

let us consider qy = W(qt_l) that is determined by

(2.5) g = (H(Pg_1se-sPyp) Py sPy1a1)
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This procedure defines a function W that takes the interior ofIRI into
itself, and it is clear that the equation q¢ = W(qt_l) describes the
same dynamics as (2.4) through the relation Q¢.1 = (pt-l""’pt-T) for
all t .

1
We may in particular state for later reference

LEMMA 2.2. Assume (1.a),(7.c) and (2.4). Let (pt) be a periodic sequence of posi-
Live prices with period k and Let (pi,..,pz) be its onbit. Let us define
for all i =1,....k

* * * * *

q; = (pi,.‘.,pl,pk,...,pl,...)
An which q? L5 a vecton oﬁIRT . Then (pI,...,pE) L5 a perlodic competi-
tive equilibrium Lf and onbly A (q;,...,qz) s a perdodic onbit of W with

period k .
As such however, the concept is not very interesting, for it

permits that traders still make forecasting errors eyen though their
environment is repetitive enough to enable them to discover the laws
governing this regularity. The next assumption states that the traders
may "learn" and thus make mistakes when their environment is chaotic,

but that they are clever enough to recognize that prices are periodic.

! The iterates of a function f of a set X into itself are defined recur-
sively by f1(x) = f(x) , f1(x)=F(F "1(x)). A periodic orbit (or a cycle)
of (primitive) period k of the map f is then defined by (XI,...,XE) such
that 1) x; is a fixed point of fk , 1.€. xi = fk(xi) , and 2)

X? = f1-1(xi) z XI for all 1 = 2,...,k . This definition implies of
course that all x? of the orbit are fixed points of fk , and that they
all differ. In particular (x?,...,xi,x{,...,x?_l) defines the same

periodic orbit.
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(2.9) The expectation function ¢ 45 consistent with periodicity k .
More precisely, for any sequence Py » Pgogo-res PioT that displays
period k , that is, such that Pi_j = Pe_ 5ok gor j=0,1,...,

w(pt’---spt_T) = pt-k+l

This assumption implies that agents make correct forecasts along
a periodic competitive equilibrium with period k. We shall then speak of a
periodic competitive equilibrium with perfect foresight. We get then the

following very simple characterization

PROPOSITION 2.3. Assume (1.a) and (71.c), and consider an Lnﬁin&td sequence
0f positive prices (py) that displays period k . Unden assumption (2.g),
(pt) 45 a sequence of temporary competitive equilibria if and only i{

Lt satisfies fon all t .

(2.6) Zl(et) + 22(9t—1) =0

d
(2.7) m (pt’pt+l) = Pty Zp(0) = M

. ’ . . - = -1 *

An which 6y = pt/pt+l . One has then 8 < 6, < 8 =2, (zl) gor all t .
The statement is in fact immediate. Consider an infinite se-

quence of positive prices (pt) with period k . Then under assumption (2.g)

(pt) is a sequence of temporary competitive equilibria if and only if

it satisfies (2.1) and (2.2), or equivalently (2.3), in which

w(pt,...,pt_T) = Pyl for all t . This yields for all t
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(2.8) z,(6,) + (M/py) = O

d _—
(2-9) m (pt’pt+1) = pt+1 Zz(et) =M

in which 6y = pt/pt+1 . Then (2.9) is nothing else than (2.7). Moreover,
this relation tells us that an old trader's excess demand for the good
at an arbitréry date t , M/pt , 1S what he planned to do when he was
young, i.e. Zz(et-l) - Replacing M/p, by 22(et—1) in (2.8) yields (2.6).
The fact that M is positive implies zz(et) > 0 and thus 6y > 6 . One has

= -1
then ZZ(Gt) = - Zl(et) < KI , and thus b, <8 =12, (Ki) .

The system (2.6), (2.7) states simply that markets clear and
that consumers forecast correctly future prices at every date ! . The
important property of the system is that it dichotomizes. The good mar-
ket equation (2.6) determines the periodic sequence of 6y — or equiva-
lently of real interest rates oy = 8¢ - 1 — and indeed all real equili-
brium quantities (consumption, output, real balances M/pt) independently
of (2.7), i.e., of the level of the money stock M . The level of prices
is then in turn determined by the money equation. As a matter of fact,
given a sequence 0y > o satisfying (2.6) for all t , it suffices to
fulfill (2.7) at some specific date to guarantee that the whoie sequence
of prices defined by Pyl = pt/et satisfies the money equation at all
dates. Indeed, if (2.7) is fulfilled at date t-1 , then according to (2.6)

M= pyZp(8g q) = - P2y (0¢)
' That sort of system has been used by numerous writers when studying
the dynamics of the overlapping generation model with perfect fore-

sight. See e,g., Azariadis (1981), Cass (1980), Benhabib and Day (1982),
Gale (1973). The same sort of approach has been used in Grandmont (1983 a)
to study monetary steady states in a model involying seyeral goods.
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and thus from (1.4)
M= pezp(00)/8¢ = PriaZp(6g)

Given the equilibrium sequence (et) , the leyel of corresponding equili-
brium money prices is proportional to M . A once-for-all change of the
level of the money stock is thus neutral in the Tong run. This is the

traditional Quantity Theory.

It may be noted that under assumptions (7.a) and (7.c), the res-
triction to the interval [6,+=) of the excess demand function zz(e) is
increasing (Lemma 1.2) and therefore has an inverse. Then (2.6) gives

rise to a very simple difference equation of the form

(2.10) 8.1 = 2o (—zl(et)) = @(et)

in which the function ¢ zélo(-zl) maps the interval [8,+~) into [6,6)

The outcome of this inquiry is then that {inding a periodic (monetary)
competitive equilibrium with pernfect fonesight (satisgying (2.g)) with period
k 45 equivalent to finding a periodic solution of (2.10) with period k such

that 8, > 6 fon all t . Indeed, under assumptions (7.a},(7.c) and (2.g), if

t
(pT,...,p:) is a periodic competitive equilibrium with period k, and if one define

e: = p:/p?+l for i = 1,...,k (with pi+1 = p]) » then e? > 8 for all i
and (ei,...,e;,ei) is a perdodic onbit of @ with period k . Conversely
if (ez,...,ei) is a periodic orbit of @ with period k , and if e? > 8
for all i = 1,...,k , then the prices (pI,...,pE) defined by using (2.7)
. * g * . . * % . TN
i.e. ps = M/Zz(ei-l) for 1 = 1,...,k (with 8, = ek) determine a periodic
1
competitive equilibrium with period k . It goes without saying that

! This shows incidentally that the prices (pi,...,pi) that compose the
orbit of a periodic competitive equilibrium with perfect foresight,
with primitive period k , must all differ.
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the equivalence we just stated concerns only periodic competitive equi-
libria and periodic orbits of . By contrast, the "backward
rational expectations” dynamics that are implied by (2.10) do not re-
present any "true" dynamics. The only dynamics that actually describe
the evolution of this economy over time is represented by the equation

(2.4) or equivalently by the map W .

It may be worthwhile to end up this section with a simple
graphical illustration of the backward dynamics associated to (2.10)
and the map ¢, by using a trader's offer curve. This is done below
in Figure 3, which is drawn under the assumption g < 1 . Starting with
0y > 6 , we first draw the intertemporal budget Tine of equation
04d7 t ay = etzi + z; . It intersects the trader's offer curve at the
point of coordinates (KI + zl(et) , KZ + zz(ot)) . Finding the value
of o,_; that satisfies Zl(et) + Zz(et-l) = 0 is then achieved by fol-
Towing the arrows on the Figure, by going first vertically to the 45° line
AB  that passes through the endowment point (z{,zg) » and then hori-
zontally back to the offer curve. This procedure yields the point of
coordinates (z; + Zl(et—l) R 2; + 22(et—1)) and thus the corresponding
value of 0p.1 = w(et) by drawing the corresponding intertemporal budget
Tine. The Figure shows that ¢ has always a fixed point 6 = & , which
corresponds to a nonmonetary stationary state, and that e = 1 is the
unique monetary stationary state whenever § < 1 . The Figure gives more-

over an example of a cycle of period 2.

Figure 3
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Remarks. 1. Under assumptions (7.a) and (7.c), the backward perfect fore-
sight dynamics that is implied by (2.6) is well defined, as we have seen,
and is described by the map ®. On the other hand, it is easily seen that
a "forward perfect foresight" dynamics that would yield 6, as a function
of 04.1 is not well defined by that equation. Figure 3 gives an example
of multiple solutions since trying to go forward from 841 would give the
choice among two possible points on the offer curve. Indeed, if one starts
from the point of the offer curve that corresponds to 4.1 » the forward
dynamics associated to the equation zl(et) + 22(et—l) requires that one
should go first horizontally to the 45° line AB and then vertically back
to the offer curve. In the case of Fig. 3, this procedure yields two
points. If one goes back to Fig. 2.a, one sees easily that the forward
dynamics implied by (2.6) is eventually undefined in that case, if one
starts with a value of 6 that is greater than 1 . The reason is that at
some stage one should have zz(et_l) > EI , and thus there could not exist

a6, such that zl(et) + zz(et_l) =0 .

2. The assumption that traders use the same expectation func-
tion v over time may be interpreted as follows. Consumers have a given
“model" of the workings of the economy and use a g{ven statistical tech-
nique (Bayesian methods or maximum 1ikelihood procedures) to estimate the
parameters of the model and to forecast future prices. This way of pro-
ceeding yields the map ¢ . One might envision more sophisticated Tearning
processes in which traders change over time their models of the economy
(their expectation functions) according to some prespecified rule that
would for instance take into account previous forecasting errors. Note
that this supposes an exchange of information between generations about

which "model" they use. Moreover, the description of the state of the econcmy
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at each date involves then not only the current price Py but also the
expectation function 28 that consumers are employing currently. Such
learning procedures have been considered by Fuchs (1976, 1977a, 1977b,
1979, 1979b).
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3. STABILITY AND LEARNING.

The example given in Figure 3 suggests that several periodic
competitive equilibria involving different periods will typically co-
exist. In the particular case of Fig. 3, a cycle of period 2 coexists
with the unique stationary (monetary) equilibrium 6 = 1 . We shall say
more on this question in the next section, when analyzing the existence
and multiplicity of periodic equilibria. But this preliminary remark
shows that the issue of stability is an important one. The purpose of
this section is to study more precisely this issue. Specifically, it
will be shown that while stability of a periodic equilibrium must take
into account that traders learn over time — i.e. it must be defined by
using the temporary Walrasian equilibrium function W or equivalently
the map W — such stability may still be studied fruitfully by looking
at the simpler but fictitious backward perfect foresight dynamics implied

by (2.6) or its associated map ¢ .

We shall assume throughout this section assumptions (7.a), (1.},
as well as (2.4) , so that the functions W (or W) and ¢
are continuously differentiable. Let us first define stability. Consider ac-
cordingly a periodic competitive equilibrium (pI,...,pE) with period k ,
and the corresponding cycle (qi,...qz) of the map W (see Lemma 2.2.). Since
the dynamics implied by the functions W and W are equivalent, we may say
that the periodic equilibrium (pI,...,pE) is locally stable if and only
if the cycle (qI,...,q;) itself is locally stable. Or if and only if
there exists a neighbourhood Q of qI such that for all q in Q , the
orbit of q by the map W stays in Q and converges to qI , 1.e. ﬁkt(q) e Q
for all t > 1 andglzﬁ ﬁkt(q) = qI (by continuity of W , this ensures
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that W<t

(w1_1(q)) converges to q: as well for i = 2,...,k) . Since under
(2.4),W and W are continuously differentiable, the foregoing stability
condition is equivalent to stating that the eigenvalues of the Jacobian
matrix of ﬁk at qI , 1.e. Dﬁk(q;), have all a modulus less than unity.
In order to make sense, the definition should not depend upon
whether we start near qi or near any other point q? of the periodic orbit
(q]5--->qy) of W , since (q?,...,qz,qi,...,q:_l) describes the same cycle.

k-1

From Wk(q) =W (W(q)), we get by employing the chain rule of diffe-

rentiation,

~k

Dif*(q}) = D!

(q3) DH(}) = ...= Di(q,) ... Dii(qy)

~ * ~
Thus Dwk(qi)is obtained as the product of the Jacobian matrices of W ,
Dﬁ(q:) , at the different points of the cycle. Applying the same proce-

k

dure to DW (q?) , we obtain

~k ~ ~ ~ o~
D" (q) = DH(q}_;) ... DW(qy) DH(ay) ... DW(q})
Now for any two square matrices A and B , the eigenvalues of the products

AB and BA are the same (see e.g. Wilkinson (1965) p. 54), so that the eigen-

values of the Jacobian matrices DWk(qI),...,DWk(qE) , are all the same,

which establishes the equivalence we were looking for. We have thus the

following result, which will be taken as a definition.

(3.1) Unden assumptions (1.a),(1.c) and (2.4), the periodic equilibrium
(Pys«--sPy) 48 locally) stable &if and onby if the eigenvalues of
the Jacobian matrnix

ik ~ ~
DW"(a]) = Di(qy) ... Di(q))

have all a modulus Less than 1 .
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Computing the eigenvalues of a (T x T) matrix — or checking
that they have a modulus Tless than 1 — 1is not a very pleasant task when
T s large. But we have shown in the preceding section that under
assumption (2.g), one may associate to the periodic equilibrium
(pi,...,pE) the cycle (ez,...,ei) of the map ¢ defined in (2.10), through
the relations e? = p?/p?+1 (with p;+l = p;) — and conversely.

One may hope to exploit this equivalence by looking at the stability

*

EIER
bility in that case is much simpler. If we transpose the argument given

of the cycle (8 ,ei) under the dynamics implied by ¢ . Indeed, sta-

above concerning the Tocal stability of the periodic orbit (q;,...,q;)
of the map W , we see that (ei,..,,e;) 5 (Locally) «-stable L4 and

only Lf the absolute value 0§ the derivative of wk at GE , i.e.

tik(eE)l , 45 Less than 1 . Again, this definition does not depend upon

the point chosen on the orbit since by the chain rule of differentiation,

k-1, % *

Do (87) = Do (07 ;) Dos})

*

Dcp(el) Dcp(ek)

1

Do (07)

The hope to ascertain some relation between the stability of
a periodic equilibrium (p{,...,p;) and @-stability may seem somewhat
foolish at first sight. After all, the map ¢ describes a fictitious and
very abstract backward dynamics with perfect foresight, while the actual
dynamics given by W or W go "forward". The enterprise is not as vain as
one might expect, however. Under assumption {2.g), anticipations are
correct along a periodic orbit, and thus by continuity, nearly correct
in its neighbourhood. On the other hand, the essence of learning is

precisely to forecast future prices by looking backward at past prices.
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Indeed let us consider

(3.h) For any perniodic sequence (pt’pt-l""’pt-T) that has period
k , the expectation function satisfies wé = 0 and wj >0 for alt
j=1,...,T.

1
Then we have the following

PROPOSITION 3.1. Assume (1.a),(7.c) and (2.4), (2.g).

Consdden a perdodic competitive equilibrium (pi,...,pﬁ) and the as-
socdated cycﬂe.(eﬁ,...,ei) 04 @ . Unden assumption (3.h), @-stability of
(0Fs---+0]) 4mplies stability of (p]s---sPy) 4n the sense of (3.1).

Assumption ({3.h) says that a trader facing a periodic sequence
of current and past prices thinks that a small variation of the current
price has only a secondary importance, and that a small increase of past
prices does not lead to a downward revision of the expected price. It is
instructive to see what are the implications of (3.h) in the light of
assumption (2.g) The latter assumption says that for any periodic sequen-
ce (pt""’pt-T) with period k , one has w(pt,...,pt_T) = Pp ksl Note
that this implies that the expected price y is then unchanged, for each
integer 0 < j < k-2 , whenever the (constant) sequence (pt—j’pt—j-k seens
pt-j-nk"“)-is multiplied by an arbitrary real number A > 0 , and that
¢ changes proportionately to A when j = k-1 . When y is differentiable,

one gets then by differentiation with respect to A in each case

(3’2) wl+q)j+k+'..+w:}+nk+..Q=O

e .t O W gy G g g - e v -

1 The proof of this claim, which is mostly computational, is given in the
~ Appendix = in order to ease the exposition,
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for 0 < j < k-2 (here n runs from O to the largest integer that is

compatible with j + nk < T) and

A

(3.3) wﬁ—l + Wék-l +o..+ wﬁk-l +... =1

in which n runs this time from 1 to the largest integer compatible with
nk-1 < T (we recall that we consider T as finite but "Targe"). The argu-
ments of these partial derivatives are of course the particular periodic

sequence <pt""’pt-T) under consideration. In view of these relations,

assumption (3.h) implies then that

(3.4) wé = 0 . AL other partial derivatives wj arne zero, except those
of the form wﬁk—l s N2 1, which are nonnegative and satisfy (3.3)

What this condition means is that a trader facing a periodic
sequence of prices (Bt,...,ﬁt_T) with period k behaves fLocally (in a
neighourhood of the sequence) as if movements of the current prices,
and of the past prices other than those of the form Pionksl > Were
only of secondary (negligible) importance. His forecast is then — again
Tocally — some sort of "average" of the relevant past prices Pipe]
Pio2kel ° and so on. Indeed, for any (even aperiodic) sequence
(pt""’pt-T) in a neighbourhood of the original periodic sequence

(Bt,,..,Bt_T) » the expected price is approximately given by

T

W(PgsesPy) = W(PyaesPyy) ¥ jéO(pt-j = Pyog) ¥5(PyseeesPy_g)

which yields in view of (3.4)
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w(pt""’pt-T) = nzl pt—nk+1 wﬁk_l(Pt,...,pt_T)

(the first term of this sum being 0 if k=1) . Such a behaviour does not

1
sound implausible

Proposition 3.1 will lead to a great simplification of our ana-
lysis in the sequel. For it tells us that if we succeed in finding a
cycle (e;,...,e;) of the map ¢ that is stable, the corresponding perio-
dic equilibrium (p;,...,pz) is automaticably stable itself, provided
that anticipations verify{3.h). It should be emphasized however, that
the result goes one way only. It is possible in particular that a cycle
(eE,...,eI) is unstable in the dynamics associated to ¢, whereas the

corresponding periodic equilibrium (p?,,,.,pz) is stable,

' As a matter of fact, Proposition 3.1 is still valid if (3.h) is replaced
by the weaker condition that (3.4) is satisfied at all sequences (pt""’pt-T)
originating from the infinite periodic sequence of equilibrium prices
(pt) that is associated to the given periodic equilibrium (pI,...,p;)
(the proof of the Proposition uses only that condition). It should be
noted on the other hand, that the concept of stability is "structurally
stable", i.e. stability is preserved if the expectation function is
slightly and "smoothly" perturbated ("smoothly" meaning that ¢ and
its partial derivatives undergo a slight change). In particular, the va-
Tidity of Proposition 3.1 is preserved if v satisfies only approxima-
tively (3.n) (is close enough to a function satisfying (3.h) in the C
pology) provided that it still satisfies (2.g). We do not elaborate on
this point.

1 to-



- 41 -

Another outcome of the foregoing analysis is that one should
genenally be very cautious when Lnterpreting the stability nesults that
are obtained in a model employing the convendient but abstract assumption
that thadens have perfect foresight even out of "steady states" — as
has been customary recently under the impulse of the so-called "New
Macroeconomics” school. For {f the tradens' Rearning processes are
taken explicitly into account when modelling the dynamic evolution of
an economy — as they should since Learning 45 agtern all the primitive
concept that enables model buildens to justify at Least implicitly the
mere assumpiion of penfect foresight — zthen stability results may well
be reversed. The point is most forcedfully illustrated by the case repre-
sented in Fig. 2.a. As we have already seen (see the Remark at the end
of Section 2), the "forward" perfect foresight dynamics described by
the equation zl(et) + ZZ(GtFI) = 0 is then ultimately undefined if one
starts with ¢ > 1 . But at least such dynamics is well defined in a
neighbourhood of the unique stationary monetary equilibrium e =1
— 1t can then be approximated by the linearized system (et—l) = y(et_l-l)
in which y = -(zé(l)/zi(l)) . By differentiating (1.4) at 6 = 1 , we
get zé(l) + 21(1) + zé(l) =0 , and thus vy > 1 . The stationary equili-
brium 6 =1 is unstable in the forward perfect foresight dynamics
(equivalently, it is ¢-stable). Suppose now that traders use in fact a
Tearning process to form their forecasts and that the associated expec-
tation function y satisfies for every stationary sequence of prices
(p,c = p for all t) v(p,p,...,p) = p , that it does not depend on the
current price and that it is a nondecreasing function of past prices.
Then y satisfies (2.g) and (3.h), and Proposition 3.1 tells us that the sta-
tionary equilibrium, being ¢-stable, is indeed stable when traders

employ the above learning process, which appears quite reasonable.
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Remark. Stability of a stationary monetary equilibrium has been studied
in the more general context of temporary equilibrium theory by Fuchs
and Laroque (1976) — see also Tillman

(1983). The issue of stability of a stationary equilibrium when traders
employ more sophisticated learning procedures — in particular when they
may revise their expectation functions over time in view of previous fore-
casting errors — has been investigated by Fuchs (1976, 1977a, 197/b,
1979, 1979b). Stability of a periodic competitive equilibrium when con-
sumers revise their expectations functions over time, and its relation

to @©-stability is an open issue in that case. Note that the problem
becomes much more complicated, since the state of the economy at a

given date must then be described by a price and an expectation function.
The paper by Fuchs and Laroque (1976) contains also a few partial results

concerning local dynamics in a neighbourhood of a given cycle.

The.question of the stability of perfect foresight or rational
expectations equilibria when traders employ a given learning procedure
has also been addressed to in a macroeconomic stochastic model by

M. Bray (1982), P. Champsaur (1983) , B. Friedman (1979).
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4. EXISTENCE, STABILITY AND BIFURCATION OF PERIODIC EQUILIBRIA.

THe results that were obtained in the precedfng two Sections
imply first that finding a periodic monetary equilibrium with perfect
foresight is equivalent to finding a periodic orbit of the map
8, 1 = ®(8,) with 6, > 6 for all t , and second that @-stability
implies stability of the true dynamics with learning described by W or
W, if expectations satisfy assumption (3.h). We take advantage of these
facts and study in the present Section the conditions that lead to the
occurrence of cycles of the map @, their multiplicity and stability,
without any further explicit reference to the underlying dynamical pro-
cess with learning. The tools that we shall use are borrowed from recent
mathematical theories that have been constructed by using partly the
notion of the "Hop{4's bilfurcation” of a dynamical system in order to
explain the emergence of cycles and the transition to turbulent ("chaotic”

or aperiodic) behaviour in physical, biological or ecological systems

The general idea is that cycles with a period k > 2 will appear
in the present model whenever there is an important conflict between the
intertemporal substitution effect and the wealth effect that results from
a variation of the real interest rate, so that a trader's offer curve

el R R R N el e e L L Y ey ——

One important mathematical reference in this field is Collet and
Eckmann (1980). For an excellent review of various applications of

the theory, see May (1976). Part of this theory has been already
applied in economics or game theory in particular by Benhabib

and Day (1981, 1982), Dana and Malgrange (1981), Day (1982, 1983),
Jensen and Urban (1982), Rand (1978). The results of this theory that
seemed (to me) relevant and usegble by economic theorists are reviewed

in Grandmont (1983b).
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displays a significant "hump" as in Fig. 3. For this to be the case, it
is necessary that an old trader's relative degree of risk aversion
R2(a2) is greater than 1 for some a, > 0 , The phenomenon will be seen
to appear in particular — in the case of a constant relative risk
aversion — when old consumers are sufficiently more risk averse than

young traders.

An interesting fact occurs, however, as cycles with different
periods will typically coexist. An instance of the phenomenon was alrea-
dy given Fig. 3, in which a cycle with period 2 coexisted with the
unique monetary steady state. Much more can be said in fact. If the set
of positive integers is ordered in a specific way — which we may call
the "Sarkovskii's ordering" from the name of the mathematician who dis-
covered it — and if the map ¢ has a cycle of period k , then we are
sure that it has also a cycle with a period k' in which k' is any inte-
ger that is ranked before k in the ordering. In particular, if there is
a cycle of period 2k , then there is also periodic orbit with period 2" in
which n=0,1,...,k-1. Moreover, if there is a cycle of period 3, then cycles
of period n , in which n is an arbitrary positive integer, will also

exist.

In the face of this bewildering multiplicity of periodic
equilibria, the stability issue is essential. There is indeed a condition
on the map ¢, namely that it has a negative "Schwarzian derivative",
that ensures that there exists at most one stable periodic orbit. This
condition will be re]atéd to certain properties of the traders' utility
functions. It will be seen in particular that the condition obtains,

in the case of a constant relative degree of risk aversion, when young
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consumers are only moderately risk ayerse (havé a relative risk aversion
that is Tess than or equal to 1) while old traders have a relative risk
aversion greater than or equal to 2, Needless to say, this result, as
instrucfive as it is, does not imply in general however that the true
dynamics with learning described by the map W or W possess a unique

stable cycle.

The last part of the Section will be devoted to the analysis
of the "bifurcations" of the dynamical system, and more precisely of the
emergence of @-stable cycles. It wii] be seen essentially that if one
considers a one parameter family of economies, then stable
periodic orbits do appearonceagain in conformity to the Sarkovskii's
ordering of the set of integers. We shall give a particular example of
such a bifurcation scheme in the case of a constant relative risk aver-
sion, in which the young consumers' risk aversion is held fixed, while
the old traders' risk aversion is increased progressively. The result
of this computer experiment will be that cycles do emerge for values of

the relative degrees of risk aversion that do not appear implausible.

Characteristics of the map ¢ and equivalent dynamics.

We begin the analysis by reviewing a few basic properties of
the map ® and define dynamical systems that are equivalent to the dif-
ference equation et—l = w(et) . These equivalent dynamical systems are

in fact obtained by making a change of variable B = h(e) .

We assume throughout this Section (71.a), (7.c).

Then the function
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(4.1) o = 73} (-2(0)) = 23X(z,(0)/6)

maps the interval [8,+«) into [8,6) in which & = zgl

(KI) , and is con-
tinuously differentiable. Clearly 6 is a fixed point of @ , that corres-
ponds to a nonmonetary stationary equilibrium. On the other hand, we have
o(6) < 6 whenever 6 > 1 . Thus if 6 > 1, there can be no monetary
cycle of any period since ¢J(e) decreases monotonically to 6 as j tends

to infinity. We shall assume accordingly 6 < 1 (assumption (7.d)). We have

then

LEMMA 4.1, Assume (7.a), (T.c), (1.d) . Then © maps the interval

[8,4o) into [6,8) in which 6

zél(zi) , and 45 continuously differen-
Liable. Moreoven

1)o(s) =6, ¢l)

1, o6) > 6 whenever 6 < 6 <1 and
®(8) < 6 whenever 6 > 1

2) One has ©'(8) = 1/6 > 1 and @' (1) < 1

3) Let a, = Sup Ry(a,). Then if ay < 1 ,0ne has @'(8) > 0
for akl 8 > 6 .

4) 1§ o, > 1 and 44 Ro(a,) 48 nondecreasing (assumotion
(1.e}) , then the map @ 48 unimodal with a unique nondegenerate
cnitical point, i.e. there exists e > & such that ©'(8) > 0 when
6 <0< o, w'(e*)l= 0 and @'(8) < 0 when 6 > 0" . In that case, the
conditions ¢ (1) <0 on 6" <1 on 8° < w(e*) ane equivalent. 14 anyone

of them is satisgied, one has 8" <1< w(e*) and wz(e*) <1< w(e*) .
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The proof of the lemma is straightforward, The first part
follows trivially from (4.1) and the fact that z, is an increasing

function. As for the last two points, it suffices to remark that
(4.2) @' (8) = - z;(8)/25(9(8))

which can be rewritten by differentiation of the identity 921(6) + 22(6) =0

(4.3) 0'(6) = T2(0) - (z5(0)/0)/Toz}(0(0)))

Thus (4.3) yields o' (o)

H

1/6 > 1 since z,(6)=0 and @'(1) < 1 . Finally,
the point 3) and the first part of 4) are obvious consequences of (4.2)
and of lemma 1.3. The last part of 4) is true for any unimodal

map ¢ that has ¢ = 1 as a fixed point.‘

The map @ seems to be the most natural to consider from an |
economic viewpoint since it originates from the perfect foresight equi-
Tibrium equation for the good market (2.6), which determines equilibrium
relative prices and thus real interégt rates independently of'fhe money
sector. Yet there is nothing intrinsic from a mathematical point of
view that is attached to this particular function, and its will be some-
times convenient in the sequel to modify the foregoing dynamical equa-
tion 04,1 = @(et) by making a change 04 variable of the,form‘€>= h(e)
in which the function h maps [6,+=) onto some 1ntekva1 fa,b) , is
continuously differentiable, and h'(s) > 0 for all 6 2 5 . The eduafion

01 = w(et) becomes then with the new variable
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~

~ : - ~ ~ N’ . ~ "1
041 = h&p(h (Bt))] or 8, 1 =¢(64) with ¢ = hogoh

The two maps ¢ and @ are then said to be topological confugates.
[t is clear that they describe the same dynamics : this follows from
the relation between the iterates of the two conjugate maps, that is

' k -1 . In part1cu1ar the two maps have the same cycles up to

ho(D oh™
the change of var1ab]e formu]a 8 = h(e) , and the stability or unstabi-

1
lity of a cycle is unaltered by the change of coordinates

We shall take advantage sometimes of this equivalence by con-
sidering-a particular change of variable, in which h(e) = z5(8) » and
shall denote the result x = zzo¢bz£1 . One may remark that the function
X has a particularly simple interpretation, for it describes the (back-
ward) perfect foresight dynamics on equilibrium neal balances. Indeed,
we know from (2 7) that these equilibrium real balances uy are associa-
ted to perfect foresight equilibrium real 1nterest rates 04 by
gel = z,(8 t) . Therefore the equation 041 —co(et) becomes through
this tfanSformation

(4.4) g = 2p(04.1) = a1/2p (igyy) = Xlgy)

-—---—-———--——-————n———————-\-———————-

! More prec1se1y, it is easy to Ver1fy by differentiation that

0% (h(s)) = ' (o (6)) De(e)/h (0)

Thus the sign of derivatives is unchanged. Moreover, if 6 is a

fixed point of uk

, h(e) is a fixed point of X, and Dgt(h(8)) =
Finally, it is readily seen by inspection that © (h(e)) > h(e)

if and only if @ (e) >0 .,

(8).
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The curves describing the maps ¢ and X are represented below
in Figures 4.a>and 4.b under assumptions (7.a) , {7.c) , (I.d) ,
(T.e) , and when ap = Sup Rz(az) > 1 . Of course, since the two curves
are deduced from each other through the change of variable y = zz(e) R
they must display the same qualitative properties. In particular, if
ay = Sup R2(a2)

critical point p" = zz(e*) when a, > 1 under assumption (7.e)

< 1, x is increasing everywhere, while X has a unique

Fig. 4.a Fig. 4.b

It is useful to note that the map ® (or X) may be defined
implicitly by an equation involving marginal utilities. If we look back
-at the identity (1.11) and apply it for 6 = by » We see that the back-

ward difference equation zl(et) + zz(et_l) = 0 is equivalent to

(4.5) zy(8,_q) Vi(4] - 2y(04_1)) = 25(8,) V(L5 + 25(6,))

which gives the function ¢ in implicit form. By making the change of

~ variable Migl = zz(et) » (4.5) becomes

' The transposition of lemma 4.1 into the corresponding properties of X
is straightforward and is Teft to the reader. One may remark that the
curve representing the map X is obtained simply from the trader's
offer curve by making a rotation of angle £~ in the plane (al,az)

around the endowment point (ZI,KZ) — see Fig., 3.
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17 p% _ 17p* y
(4.6) ng V(] =) = mgyg Voo + mgyg)

which defines implicitly the map x . As a matter of fact, if we define

the functions vy and vy by

(4.7) = uVj(£] - w)  for oy in [0,£7) and

<
—
—
=
~—
I

uV'(ﬂ* +yu) for allu>0
2\*"2 z

<
~nN
—_
1=
~—
1]

we see that Vi is a differentiably increasing function that maps the
interval [0,£]) onto [0,+) , while v, maps [0,+=) into itself. Then

one has x(u) = Wilo v2) (u) for all u > 0 . This way of defining the
function X has the advantage of involving directly the traders' charéc-
teristics, i.e. their utility functions, instead of their demand functions

zq and Z, Tike in (4.4). This feature will be quite useful in the sequel.

The reader might benefit from relating the properties of the
map X to the corresponding properties of the functions Vi and Vo In
particular, if ay = Sup R2(a2) <1, Vo is increasing everywhere, while
Vo has a unique maximum at yu = W= 22(9*) under assumption (7.e¢) when

an > 1 . It is moreover easy to verify that
(4.8) vy(n) > vi(zq)u and vy(u) < V5(£5)u for all >0

This statement, which says in effect that the curve representing Vi
(or v,) must 1ie above (or below) its tangent at the origin n =0,
follows directly from (4.,7) and the strict concavity of the utility

functions VT .
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Existence and multiplicity of perdiodic equilibria.

We Took now at the existence and multiplicity of periodic
equilibria. We shall assume throughout assumptions (7.a) , {7.c) ,

(1.d) , and shall note as before ay = Sup Rz(az) .

Since & < 1 , there is a unique stationary monetary equili-
brium 6 = 1 . We give first conditions under which there is no other

cycle with a period k > 2 .

LEMMA 4.2,  Assume (T.a) , (T.c) , (1.d) . 14 oy S 1, on 4§ as-

sumption (1.e) holds, ay > 1 and zé(l) 0 , then the map ¢ has

A

no cyele with a period k > 2 . Moreover, the unique stationary

monetarny equilibrium is globally ¢-stable, i.e. lim ¢’ (8) = 1
a Jorte

gorn every 6 > 6 .

The proof of this statement is immediate. Under the assump-
tions of the lemma, either © is increasing everywhere, or ¢ is uni-
modal with a unique critical point ¢* > 1 . Consider now an arbitrary
8, that differs from 6 and from 1 . In the first case, i.e. when
ay ¢ 1, then if o < 1 one has 8y < w(eo) < (1) =1, and one gets
the reverse inequalities whenever 0y > 1 . By applying the same argu-
ments to the iterates qﬁ(eo) , one gets that(pj(eo) converges monoto-
nically to 1 when j tends to infinity. In the second case, we remark
that ©(e6) < ©(6™) for all 6 , so that we may assume without loss of
generality that the initial point 6, belongs to the interval (8,0(6™)7.
Note next that e*; 1 implies @(s8”) < 6" . Thus ©'(s) > 0 for all o

in the interior of the interval (8,9(6%)] . One may therefore reproduce
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the argument given in the first case to conclude that wJ(eo) converges
to 1 as j tends to + «, This global stability result implies of course

the inexistence of a cycle displaying a period k > 2,

The foregoing result shows in particular that a necessary
condition for the occurrence of a cycle of period k > 2 (of a "nondege-
nerate" cycle) is that old traders are sufficiently risk averse (az > 1)
and that (under assumption (l.enzi(l) > 0 , or equivalently that
©'(l) < 0 . This condition means that the unique critical point of

satisfies 8" < 1 (equivalently x(y*) > v~ or vz(u*) > vl(u*)) .

It is straightforward to see that under assumptions (1.a), (I.é),

(1.d) a sufficient condition fon the existence of a cycle of period é L5
that the stationany equilibrium is ©-unstable, L.e. ¢ (1) < -1, on
equivalently zi(l) > zé(l) : . A cycle of period 2 is indeed described

by (eI,e;) in which each e? is a fixed point of the 1terate(02 , and

e; = w(ei) z eI . It is then clear that in order to find a cycle of

period 2, it is necessary and sufficient to find a fixed point 6 > @

of(p2 that differs from 1 — the corresponding orbit being then

(6,0(6)) . Now the function q? maps the interval [§,+w) into [8,6)

! In terms of the functions v, and v, introduced in (4.7), this condition
means vi(zz(l)) + vé(zz(l)) < 1 ., The reader will note also by using
(4.3) that the condition ¢'(l) < -~ 1 means that the elasticity of the
function z, at o = 1 is less than 0.5, or equivalently that the elas-
ticity of the demand for real balances 22(6)/6 at 6 =1 is less than

- 0.5,
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and is continuously differentiable, One has mz(é) = § , the derivative
of o at & is equal to (1/5)2 > 1 , and of course wz(l) =1, A suffi-

2 that

cient condition for the existence of a fixed point 6 » 8 of @
differs from 1 is therefore that the derivative of wz at 9 = 1 1is
greater than unity, that is

(4.9) po?(1) = o (1)71% > 1

Indeed, wz(e) > 6 for 8 > 6 provided that 8 is close enough to 6 .

Under (4.9), @2(9) <0 1if e is less than but close enough to 1 . Thus
by continuity, there exists & = 6 , 1 such that wz(e) =9 . Since
@'(1l) <1, the sufficient condition (4.9) means in effect ¢'(1) < - 1,

as announced.

It is instructive to reformulate the sufficient condition
zi(l) > zé(l) as follows by using the expressions of the derivatives
zi and zé given in lemma 1.2 (or by using directly the
equivalent condition vi(zz(l)) + vé(zz(l)) < 1)
25+ 25(1) , 25+ 25(1) (s 21(1)5

Z,(1) z; +24(1)

(4.10) Ry (5 + 2,(1)) > 2

This relation suggests that a cycle of period 2 will appear if old
traders are sufficiently risk averse. As a matter of fact, the reader
will verify by himself that in the case of a constant risk aversion
lea
. _ T _ = — :
- i.e, VT(aT) = a /(1 uT) and thus RT(aT) o then (4.10) is
satisfied if the old trader's risk aversion is sufficiently large, in

the case in which £ < 1 , £ < £] and £] + £, > 1 (Hint : find

bounds for zy(1) and z,(1)) .
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We have seen once again in the course of the previous argument
that cycles of period 2 were bound to coexist with the unique stationary
monetary equilibrium ® = 1 , One may thus expect that cycles displaying
different periods will coexist. It turns out that one can be much more
precise about this coexistence if the map ¢ is unimodal, that is if (7.e)

holds. Consider the following ordering of the positive integers

3>5>7> ...
> 23 > 25> 27 > ,,.

LI

(4.11) > 23> 25 5 27 > L,

> ..>2Ms . >8545>251
That is, first the odd integers greater than or equal to 3 , then the
powers of 2 times these odd integers, and then the powers of 2 back-

ward.

Given two positive integers k and k' , we shall note k >s k'
| the fact that k is greater than k' in the sense of the above ordering.

! 1
We then have

THEOREM 4.3,  Assume (T.a) , (T.c) , (1.d) and (1.e) . Then, if the
map © has a cycle of perniod k , £t has also a cycle of period k' for
every positive integen k' §° k,

—————————————————————————————————————

! The proof of this result, which is a direct application of Sarkoyskii's
beautiful theorem, is given in the Appendix.
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Some implications of this very strong result are worth to be
noted, It shows in particular that cycles with a period 2" ,m =0,1,2,...
must "appear first" before we have any hope to get a cycle with an odd
period. Moreover, if there is a cycle of period 3, there is also a perio-

dic equilibrium with period n , for every positive integer n .

In thev1ight of the preceding result, it is intekesting to inves-
tigate the circumstances implying the existence of a cycle of period 3.

Such a cycle is represented by its orbit (eI,e;,eg) in which each e:

2, x

is a fixed point of @° , 8} = o(6]) = 6} and o} = 0%(6}) = ] . It is

clear here again that a cycle of period 3 is characterized by a fixed

point & > 6 of w3 that differs from 1 — the corresponding orbit is then

described by (6,0(6) , wz(e)) . Now the function ©° maps [6,+») into
[6,6) and is continuously differentiable. One has w3(5) =6 , Dq?(é) is
equal to (1/5)3 > 1 and @3(1) = 1 . One cannot apply here however the

argument that we employed for the case of a cycle of period 2, since

But we can state thaf unden assumptions (1.a),(1.c),{1.d), a sufplelent
condition gon the oécunnence 0§ a cycle o4 period 3 L$ that there exisis
o such that § < 6 < 1 and ©>(8) < 6 . Indeed Do (5) > 1 implies

w3(e) > 6 when g differs from but is close enough to 8 , and the result

follows by continuityl + We may then apply the foregoing condition,
1 The cond1t1on is also neceAAany, For otherw1se the orbit (61,62,63) of
the cyc]e would satisfy e >1 and thus e > (6 ) That would imply
el > 62 > 63 > w(e3), a contrad1ct1on The same reason1ng shows that under
(T.a), (1.c), (1.d), a necessary and sufficient condition for the exis-
tence of a cycle of period 3 is that w3(9) > 6 for some 6 > 1, The reader
will note incidentally that the map ¢ must have generically an even number
of cycles of period 3. This comes from the fact that, generically, the

number of solutions of<p3(e) = 8 in (6,+») must be odd.
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under the simplifying assumption that ¢ is unimodal, to its critical

point 6% . Thus, under the additional assumptions (1.e) and
|

ay = Sup Ry(ay) > 1, a cycke of period 3 wikk exist provided that
6" < 1 and m3(e*) < 8" (we know from lemma 4.2 that 6" <1 is then a
necessary condition for the occurrence of any nondegenerate cycle).

llt is worth to note that under such a circumstance, one has necessarily

3 e* < 1 < w(e*)

(6%)

0% (6*) < @

HA

lIndeed we know from Temma4.1,4) that 6™ < 1 implies ¢?®*) <1<o(e®),

2

in which case ©°(6*) < ©>(6*) holds also from 1) of the same lemma.

What we just said for the map ¢ is of course valid for any
!of its topological conjugates, and thus for X = vilov2 : under the above assump-
tions (1.a),(7.c),(1.d),(1.e) and ay > 1, a cycle of period 3‘occurs
provided that x(x*)>u” and x3(u*) < u*. In that case we have also of
| course
%

P ) < B*) £t < zy(1) < x(w¥)

: Figure 5.a describes a case in which the phenomenon obtains.
‘The central feature of the example is, as one might have expected, that
the curve X displays an impoktant “hump" (this statement has an obvious
counterpart for a trader's offer curve since it is isometric to the curve
jx — see footnote 1, p.49), Fig. 5.b represents the implications of the
example for the respective shapes of the curves corresponding to the
functions vy and Vo (the Figure shows incidentally also how the dynamics

associated to the equafion vl(x(u)) = vz(ﬁ) may be described with the

"help of the curves vq and v2) . Again, what is important is that vy
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displays a large hump, so that Vz(u*) is "large" while vz(x(u*)) is "small",

Fig. 5.a ~Fig., 5.b

We wish now to translate these heuristic statements into a
formal condition that involves only the traders' utility functions, or
equivalently the functions vy and Vo - Let us assume accordingly (7.a), (7.c},
(1.d). Then under assumption (7.e) and a > 1 , the function Vo has
a unique maximum which occurs at the critical point u* of x = vilov2 .
The condition u* < x(n™) means in effect that vz(u*) > Vl(“*) . Since
vy is increasing, the inequality u* < X(u*) will thus obtain if and
only if there exists p = u" such that vz(u*) > vl(ﬂ) . Pick up now such

a 1 . Since we have u”* s < x(1”) and since X' (u) <0 for all y > u*

2

1A

we get that X“(u*) < x(n) . On the other hand, since the curve X Tlies

- 1
below its tangent at v = 0, i.e. X(u) < p/6 for all u > 0 , we have

(1) < X (*)/5 < x(7)/8
The condition x3(u*) < u* will obtain accordingly (in fact with a strict

inequality sign) if

b

X(3) = (vTovp) () 5 G

or equivalently if

(4.12) volu) g vq(ou™)

Since the curve representing the function vq must lie above its tangent
at the origin (see (4.8)), we have v, (éu") > Vi(e]) 6u* , and thus (4,12}

will automatically verified if

R R e e e L Y Sty ———

u > 0, One can also argue directly that the curve X is isometric to the
trader's offer curve. See Footnote 1 p. 49.
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(4.13) AOERHIRY
1
To sum up, we have obtained

PROPOSITION 4.4, Assume (1.a) , (1.c) , {1.d) , (T.e) , and

a, = Sup Ro(ay) > 1 . Let vy and v, be defined by (4.7) and Let v* be
the unique maximum of v, . Assume Zhat there exists 1 = u such that
vz(p*) > vi(n) , that satisfies Vo(u) < vl(éu*) on the strongen condition

*

- - 2
Vy(u) ¢ Vi(£]) Bu" . Then one has

k) < Py <t o< xwh)

and there exists a cycle of period 3 .

Apart from providing a criterion to verify whether a cycle of
period 3 exists, the foregoing Proposition gives a way to "generate"
uti]ity‘functions that entail the appearance of a cycle of period 3.
Choose u” and 1 such that u* < 1 < KI . We keep then fixed all the
characteristics of the model, except the old trader's utility function
V2 (or v2) which we shall vary subject to the restriction that (7.¢) holds,

and that Vo reaches its maximum at u~ . Choose a value of Vé(£;+u*)

that is sufficiently high to satisfy

The conditions that we get for the existence of a cycle of period 3
are closely related to the conditions obtained by Benhabib and Day
(1982) in their study of the occurrence of "chaotic" behaviour in an
overlapping generations model,

The same statement could have been made of course by using ¢ and its
critical point 0" .
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and pick an arbitrary value of Vé(ﬂg) (> Vé(£;+p*)) , Then it suffices
to impose a value of Vé(£;+ﬁ) that is sufficiently Tow ‘to satisfy (4,13),

The only restriction is in fact to fulfill assumption (7.e).

The next result confirms the intuition that we had when stu-
dying the occurrence of cycles of period 2, namely that the more a
trader's relative degree of risk aversion increases as he gets older,

the more Tikely is the emergence of cycles.

COROLLARY. Consider the case of a constant relative degree of nisk
(1'aT)

aversdon, that 45 V (a_) = a
T T T

/(l-a_) 4n which case R (a_) =a_ >0 .
T T T T
Assume 0 < £5 < 1 and keep fixed alk the characteristics of the model
except the old traden's nelative nisk aversion ay that is free to vary.
Then i zf+z§ > (1/45) , the assumptions of Proposition 8.4 are verified

— and a cycle of period 3 thus exists — when a, 44 Lange enough.

The proof of this assertion uées only elementary algebra,

In the particular case under consideration, we have
| w, \ 22
vi(u) = u(y-u) and  vo(us0p) = u(Lytu)

%2, %21 s . .
/(Kl) which is a decreasing function of

We have then §(a,) = (£3)
ay and goes to 0 as ay tends to infinity, since z; < 1 , Remark next
that when p is fixed and a, diverges to infinity, Vo(usay) tends to
infinity when 0 <y < 1 - 45 , to O whenu > 1 - ¢5 , and that

v2(1 - ZE , u2) =1 - ZZ for all ay On the other hand, when ay > 1,
the maximum of Vo with respect to p occurs at u*(az)_= EE/(az-l) .
which is a decreasing function of a, and goes to 0 as ay tends to

infinity. It is not difficult then to verify that the maximum of Voo

that is vz(u*(az),az),diverges to infinity when @, goes to +e
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If we have £f+£5‘> (1/£) , then g4 > 1 since £5 <1 , Choose
now an arbitrary u such that 1-£) < u < £ . We have clearly

u*(az) < 1 and Vz(u*(az),az) > Vl(p) for a, large enough. On the other

hand, (4.13) will be satisfied if one can choose u so that

Vo(isap)/ V] (£7)B(ap)u™(ap) 1 5 1

for oy large enough. But it is not difficult to verify that the left

hand member of this inequality goes actually to O when as tends to +e
if p+ 25 > (1/25) . Thus if we pick up u such that 1-2; <p < z{ and
Wty > (1/4;) — which is always possible when g+ > (1/45) — then
the assumptions of Proposition 4.4 are fulfilled when 0o is large, as

claimed.

Unicity o4 ©-stable cycles.

Theorem 4.3 ébove shoWs that cycles of very different periods
will typically coexist. The stability issue is therefore éssentia](
We present now a condition that ensure that there exists at most one
¢-stable cycle. The condition is essentially that the map¢ — or one
of its topological conjugates — has a "Schwarzian derivative" (to be
defined shortly) that is negative. This condition is there to guarantee
that the map © has good "expansive" properties, It will obtain in par-
ticular, in the case of a constant degree of relative risk aversion,
when traders have a degree of risk aversion less than or equal to 1
in their youth and greater than or equal to 2 when they are older,

The result has obviously strong implications concerning the backward
perfect foresight dynamics associated to ¢ , But it should be empha-

sized that it leaves open many possibilities concerning the actual
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course followed by the economy when agents are learning, i.e. concerning

the true dynamics associated to the Walrasian short run equilibrium func-
tion W or W , and this even when the traders' learning process y satisfies
assumption (3.h) . Specifically, even in that case, a cycle that

is @-unstable may be stable under the dynamics described by W or W .

We shall need a refinement of the definition of stability for
the purpose of the present study. A cycle (e; yeoes eI) of ¢ will be said

k

to be weakly stable if Do (e?) s 1 . If ¢ is unimodal, the cycle will be

superstable if the critical point of © belongs to the periodic orbit, that
k

is if Do (e;) = 0 . The notion of @-stability is defined of course as

before.

The object of the analysis that follows is to study the con-
ditions under which the map @ has at most one weakly stable periodic
orbit, under the assumption that ¢ is unimodal, Of course, in view of Lem-
ma 4.2 , in order to make the problem nontrivial, we need to assume, in
addition to (7.a), (7.c) , (1.d) , (1.e) , that ay = Sup Ry(a,) > 1
and that ©'(1) < 0 , or equivalently that the critical point of ¢ satis-

fies 8" < 1 ,

The result that we shall present uses the notion of a
“Schwarzian derivative", which we define now. If f is a thrice conti-
nuously differentiable function that maps the interval [a,b] of the
real line into itself, then the Schwarzian derivative ! of f , noted

Sf , is defined for every x in [a,b] such that f' = 0 by

dynamical systems has been discovered by Singer (1978).
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fll 3 > 1) 2
SR

(4.14) St
fl ?fl

1/2

Direct inspection shows that Sf = « 2|f'] D2E|f'|_l/2] . So the

condition that "f has a negative Schwarzian derivative" (Sf < 0 at

every x such that f'(x) = 0) means that |1"'|—1/2

is convex on every
interval of monotony of f . It will be satisfied in particular if |f']
(or Log |f'|) is concave on such intervals. But these sufficient con-
ditions are by no means necessary. Finally the reader will note that

the concavity of f is neither necessary nor sufficient to guarantee

Sf<0.

In order to use this notion, we must ensure that ¢ and thus the
excess demand functions z and z, are thrice continuously differentiable.
This is achieved if we reinforce (1.c) by adding to it the

following condition

(4.c") The indirect utility gunctions V_ have continuous third and

gjourth derivatives on (0,+o) .

It is then clear that all topological conjugates of ¢ obtained
through a change of variable § = h(6) will be also thrice continuously
differentiable provided that h has continuous third derivatives. This

will be in particular the case of the map X .

Then we haye the following important result.
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THEOREM 4.5. Assume (1.a), (1.c), (1.d), (1.e), (4.c'), oy = SupRz(az) > 1
and that the crnitical point of © satisfies e* <1 . Assume moreovern that
© (on one of its topological conjugates @) has a negative Schwarzian
derivative on the interval [5,@(9*)] (on on the comresponding interval

[h(8) , h(e(6™))1) . Then

1) The map © has at most one weakly stable periodic onbit.
2) 14 there exists a weakly stable periodic onbit, then the
*
cuitical point 6 48 attracted to it, that is, this periodic onbit coin-

1, % 1
cides with the set of accumubation points of the sequence (I (e7)).

Besides the unicity of weakly stable periodic orbits, the
foregoing result gives an "experimental" way of establishing whether
or not a particular map ¢ has a weakly Stéb]e cycle provided that it
has (itself or one of its topological conjugates) a negative Schwarzian
derivative. It suffices to iterate the critical point by using a compu-
ter, to cheék whether or not the iterates converge and to verify that
the Timit cycle, if any, is indeed weakly stable. Of course, since
the iterations must be stopped in practice after some time, this pro-
cedure permits to discover cycles that have a.sma11 period, but is not
able to distinguish between the presence of a weakly stable cycle
that has a long period and the absence of any weakly stable periodic
orbit. Finally it should be emphasized that there are maps that do not
have any weakly stable periodic onbit. Such maps are called aperlodic.
The foregoing result tells us that a map ¢ that has a negative Schwarzian
derivative wiiT be aperiodic whenever the iterates of e* do not converge

or if they converge to an unstablfe cycle.

Ry 6 0 D M R e I W G SO M we e AR N e T A T R e e o R O

-

" The proof of this statement which is a direct appiication of the results
reported in Collet and Eckmann (1980) is given in the Appendix.
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There is an obvious difficulty in applying Theorem 4.5 as it is
stated, for the negativity of the Schwarzian derivative, like any state-
ment involving convexity is not invariant when making a (nonlinear) change
of variable. We may get accordingly from a particular economic model a
perfect foresight map ¢ that does not satisfy Sy < 0 whereas one of its
topological conjugates does. In that case, Theorem 4.5 applies but the
model builder may not be able to diagnose it by looking at the map @ .

So it is important to have a criterion using the basic characteristics
of the model (i.e. utility functions and endowments) that allows reco-
gnizing directly that Theorem 4.5 applies. A partial answer to this

question is provided by the following

LEMMA 4.6.  Assume (1.a) , (1.c), (1.d), (1.e), (4.c'}), oy = Sup R2(a2) >1,
and  that the cnitical point of © satisfies 6° < 1 ., Consider
the functions vy and v, defined in (4.7) and assume that Svq(u) 2 0
for all w in [0,£]) and Sv,(u) < 0 on the interval [0,X(v*)] . Then
SX < 0 on [0,X(1*)] and Theorem 4.5 applics.
In particular, the foregoing condition on vy and v, obtains

(1"0'«.]_-)/(

Ain the case of constant nisk aversion — v.(a ) =a l1-a,) and

thus RT(aT) =a >0 —4f0<ay 21 anda, 2 2.

The proof of this statement uses the fact which may be veri-
fied by direct computation that the Schwarzian derivative of the
composition of two (thrice continuously differentiable) maps f and g

is given by
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(4.15) S(fog) (x) = SF(g(x))Lg' (x)1° + Sg(x)
Applying (4.15) to VioX =V, , we get for alln > 0

Svp(n) = Svq0e(u))0x " (1)1° + Sx(u)
The first part of the Temma is then immediate.

In the case of a constant relative risk aversion, one has
-0l -
vi(u) = w(@) 1 oand vy(u) = u(@m) 2 . Since vi(u) > O for all
u in [O,EI) s Sv1 is defined everywhere on that interval. Direct compu-

tation shows that Sv1 is equal to (up to an everywhere positive factor)

*

(1-ay) [(1-ay) (2ap) uZ = 4€}(2-ap)u + 6(¢])%)

The expressions between the brackets is easily seen to be a monotone
function of u on the interval [O,K?),which is positive on this interval.
Thus Sv; > 0 on [O,EI) if and only if a; <1 . As forv, , sz is
defined for every p=yu on [0,+=) and the same sort of computation

shows that it has the same sign as

*,2

2
- 485 (0ym2u + 6(£3)°]

- (ap=1)C(0p=1) (ap=2)

It is not difficult to verify that the expression between the brackets

is positive for every u > 0 when ay 2 2 , which shows the Lemma.



- 68 -

Remark, — Undern the assumptions of Theorem 4.5, it 48 possible to show
that if the dynamical system ¢ has a weakly stable perdodic onbit, then
the set of points that anre not attracted to &t is "exceptionak®, 4i.e.
has Lebesgue measure zero (this follows from Collet and Eckmann (1980,
Proposition II.5.7)). We do not insist on this otherwise nice result
for the backward perfect foresight dynamics ¢ has no clear meaning in
the present context, beyond the fact that ¢-stability implies stability
in the "true" dynamics with Tearning under assumption (3.h).We mention
the result nonetheless since it shows that some claims that "period
three implies chaos" are generally unwarranted, In particular, Benhabib
and Day (1981, 1982), Day (1982, 1983) use a result of Li and Yorke
(1975) , or a variant of it , to exhibit , under the assump-
tion that there is a cycle of period 3, a "chaotic set”, that is a set
such that any perfect foresight trajectory starting from it becomes
eventually erratic. This discussion shows the limits of such a state-
ment. For if there is a weakly stable periodic orbit, the "chaotic set”
-— of which the existence is rightly asserted — may well be of Lebesgue
measure zero, and erratic behaviour may thus be essentially unobservable

— see also the remarks in Collet and Eckmann (1980, p. 20).

Bigureation of stable perdiodic equilibria,

We consider now the following experiment. Suppose that we
take a "onedimensional" family of economies. That is, we index the
characteristics of the economy by a real number and then move this
parameter over the real Tine, Sarkovskii's theorem suggests that the

emergence of cycles as the parameter moves on should display some
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regularities, We show below that it is indeed the case for stabfe cycles,
and that theseregularities are in particular very strong for those stable
cycles that should 'appear first" according to the Sarkoyskii's ordering
(4,11), namely cycles that have a period equal to

a power of 2. Finally, we shall report on a computer experiment that

was done in the case of a constant relative risk aversion, in which the
old traders' risk aversion is varied — in fact increased. The result

of this experiment is a "period doubling" bifurcation scheme very much
alike the diagrams that are traditional in the analysis of nonlinear one-
dimensional dynamical systems. It shows furthermore that cycles do appear
for values of the degrees of risk aversion that seem plausible, i.e.

that are compatible with recent estimates of these parameters.

In order to go on we must make precise what we mean by a (onepara-
metern) gamily of economies. Let us index the characteristics of the
economy (the endowments KI and the indirect utility functions VT) by
some parameter ) , which will be taken as a real number that belongs
to say, the interval [0,1]. The result of this indexation is denoted
KIA and VTA(aT) , T = 1,2 . We assume of course
that for each A the characteristics of the economy satisfy assumptions
(T.a) , (1.e) , (1.d) , and in order to make the problem non-
trivial, also assumption (1.e) as well as
Opy = SUpa2 RZA(aZ) > 1 . The corresponding backward perfect fore-
sight map 0, has then a unique critical point for each A , say

*

0, > and we shall postulate that e: < 1 for all % (again, this

condition is necessary in view of Lemma 4.2 to get nondegenerate cycles).
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We shall say finally that the family is continuous if in addition to
these assumptions, the endowments K:A depend continuous1y on A and if

er(ar) as well as VTK(aT) are jointly continuous in (aT,A) for T = 1,2 .

In order to state the results most clearly, it will be convenient
to consider a family of economies that is "rich" enough. We shall say
accordingly that the family is 4uff if it satisfies the two following

conditions

1. When » = 0 , the second interate of the critical point

e; . 1is such thate; < ¢§(e;) . In other words, since from Lemma
* *
4.1, 4) we have already ¢§( o) <1 < 0,(6,) this condition

means that the trajectory of the critical pointe; begins by an
oscillation around the stationary equilibrium 6 = 1 . It can be shown

that under this condition, then if the map @, has a nondegenerate

1
cycle it must have a period at most equal to 2

2. When 2 = 1 , the map @, satisfies for instance the as-

sumptions of Proposition 4.4, so that the trajectory of the critical

*

point 0 fulfills

2 % 3, * * *
©3(89) < 0(09) < 0y < 0y(e,)

and there exists a cycle of period 3.

Bl R R R R L ] - - -

- :
For details, see Collet and Eckmann (1980), especially Lemma 11,2.12,
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The following result gives some insight about the fashion in
which stable cycles emerge when the index ) of a continuous full family of
economies moves from 0 to 1, First, supenstable cycles of all periods
k > 2 do occur for some values of the parameter A . Of course, given a
value of A for which a superstable cycle obtains, a stable cycle of the
same period should still exist by continuity when the characteristics
of the economy are changed only a little. Second, stable periods that
are equal to a power of 2 appear first and in a consecutive manner, in
conformity to the ordering (4.11) of the integers. So if the family is
hice", one should observe a neat pattern of "period doubling" bifurca-
~tions, a cycle of period Zj giving rise to a cycle of period 2‘].+1 , and
so on. Such a monotonic pattern is not general however (think of a non-
monotonic reparametrization of the family) and the sequence of stable
periods Zj may be "visited" consecutively but in a -nonmonotonic fashion

as the index A increases.

Nevertheless, the general scheme is that the sequence of
*
J
increases and converges to some value A: < 1 . Thus period doubling

values A; for which a superstable cycle of period 2j appears 4L,
bifurcations intervene more and more rapidly as x» moves closer to A: .
The nice point is that if for each A the map @, (or one of its
topological conjugates) has a negative Schwarzian derivative as in Theo-
rem 4;5, then there exists a unique weakly stable cycle — the

period of which is a power of 2 — for every 3 < A: . In that case
weakly stable cycles with a period that differs from a power of 2

must obtain only in the interval (27,11, In fact a lot of phenomena

‘may occur in that region, In particular there is an uncountable sét
bf‘vaIues of X in (A:,l] for which the map @, has no weakly stable

periodic orbit, .



-72 -

Formally, we have

THEOREM 4.7, Consdder a 4ull continuous family o4 economies.

1) Given an arbitrany integer k z 2 , the set of parameters
A fon which the map ©, has a superstable cycle of period k 48 closed
and nonempty. Given such a A , there 48 an open interval around  such

that @, has a stable cycle of period k for all A' in the interval,

2) Let A; be the finst value of the parameter K for which d
superstable cycle of period 2j obtains forn j z 1 : . Then the gequence
A; Ancreases with j and converges to some value A: <1 as j tends to +w,
For each A 4n [O,A:), all cycles of the map 0, have a period that is a
power of 2 on are gixed podints. The ernitical point e: of @, 48 atthacted

Lo one o4 these.

3) 14 superstable cycles ¢f periods 23 and 29 with J' s g+l
occurn nespectively fon the values A and A' in [O,A:) , then a super~
stable cycle of peniod~21 with j' > 9 > j must appear for some value

An the open interval determined by A and A' .

4) Assume that each ©, (on one of Lts topological conjugatgé)
satisgies (4.c') and has a negative Schwarzian derivative. Then fon

everny A An [O,AZ) N has a (unique) weakly stable periodic onbit,

5) Undern the assumptions of 4) , there exists an uncountable

set of values of r An (x:,1] such that ®, has no weakly stable cycle.

O n D e A e e . - A

reported in Collet and Eckmann (1980) is given in the Appendix. There
are a lot of other nice results on the regularities of the bifurcations
of a unimodal map ¢ which are beyond the scope of this paper, For more
information, see Collet and Eckmann.

2 .
That is Ag = Min{x | ¥y has a superstable cycle of period 29},
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The foregoing result suggest that one should observe first
regular period doubling bifurcations in a onedimensional full continuous
family of economies on some interval, and then that chaotic behayviour
as well as stable cycles with a period that differ from a power of 2
should obtain later, perhaps in a mixed way. This is in fact the pattern
that is always observed in computer simulations of onedimensional dyna-

mical systems (see May (1976), or Collet and Eckmann (1980, p. 26)).

The following diagram (Fig. 6) shows the result of a similar
computer experiment : implemented in our context in the case of a constant
relative degree of risk aversion — i.e. VT(aT) = ail'ar)/(l-aT) and
RT(aT) = o > 0 — in which the parameter indexing the family has been
takén to be the old traders' relative risk aversion ap . Then we know from
Lemma 4;6 that if o s 1 and ay 2 2 , Theorem 4.5 applies. In that

case, it suffices to iterate the critical point o* sufficiently long to

discover the unique weakly stable cycle whenever it exists.

This procedure was applied in fact to the map X that describes
the backward perfect foresight dynamics of equilibrium real balances.

The parameter o, Was made to vary between 2 and 16 by steps of 0.05.

TR NS om0 wm e GR e P e T T e S e e g T A -

- : - .
The computer experiment has been in fact run by Rose-Anne Dana and
Dominique Lévy, whose help is gratefully acknowledged. Earlier computer
simulations by Alain Morineau were also very valuable,



- 74 -

For each such yalue of a, on the horizontal axis, the corresponding map
X was iterated 300 times, the initial point being the critical point of
the map, which is in that case n* = Z;/(az'l) . On the vertical axis

above a, were plotted all the values of the iterated equilibrium real

balances My from t = 200 to t = 300 . With this procedure, one may hope
the figure to show clearly the weakly stable cycles that do no have too
long a period and that are attractive enough. TheAexperiment cannot of
course discriminate between stable cycles that have a long period, and

erratic behaviour.

The result of the experiment is shown below in Fig. 6, under
the specification ay = 0.5, ZI = 2 and ZE = 0.5, It shows indeed the
usual period doubling bifurcation pattern. One may note moreover that
cycles do emerge for values of the relative degrees of risk aversion
that do not seem implausible. Indeed, the limit value of the period
doubling bifurcations (the analogue of k: in Theorem 4.7) is about 8 ,
while recent estimates of the Arrow-Pratt measure of risk aversion —

1
which are averages over a whole population — range about 6.

e m e A S e W o G D T G T WS T W e o B

! See I. Friend and J. Hasbrouck (1981), I wish to thank Albert Ando,
to whom I owe this reference,
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5. OUTPUT AND ANTICIPATED (OR UNANTICIPATED) REAL INTEREST RATES.

We were concerned in the previous Sections with the existence
and stability of periodic competitive equilibria. We wish now to study
the following issue. Since there are movements of output (or equivalently
of the rate of participation of the labour force) and of prices along
a sequence of competitive equilibria, is there any systematic relation-
ship between the equilibrium levels of output and of the real rate of
interest ? It will be shown that such a relation exists indeed in the
present model, both in the short run and in the long run (i.e. along
periodic equilibria). Of course, since no interest is paid on money in
the model, this implies a relation between equilibrium output and in-
flation that goes simply in the opposite direction. It will be seen
moreover that high levels of output are associated to low real interest
rates (i.e. to high levels of inflation) whenever old traders have a
higher marginal propensity to consume leisure than young ccnsumers,
Qutput and inflation are then "procyclical". Furthermore, it will be shown
that such an association holds for anticipated as well as unanticipated

movements of the real interest rate (or the rate of inflation).

We first begin with long run, i.e. periodic, equilibria. Let
us assume that the economy satisfies assumptions (7.a) , (71.b) ,
(T.c) , and consider a periodic competitive equilibrium (pt) with period
k . We know from Proposition 2.3 that under assumption (2.g), the sequence

verifies for all t

(5.1) zl(et) + zz(et_l) =0
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(5.2) ’ M/py = z5(84 1)

in which 6, = p,/p,,; - Moreover one has 6 < 8, < 5 = zél(li) for all t .

The above relations describe the evolution of the real interest
rétes Py = et-l over the cycle. It is then straightforward to deduce the
corresponding evo]utibn of equilibrium output. Thé sequence of real equi-
1ibrium money stocks w; = M/p, satisfies 0 < u, < LI for all t . At date
t , the young trader's equilibrium consumption and labour supply are
then obtained by maximizing Ul(cl,zi-zl) under the budget constraint
[c + (£1-£1)1 = 47 - u, - In view of problem (1.7), the outcome is
CI(Z;'“t) and zl(zi-ut) . By the same kind of reasoning, the old tra-
der's equilibrium consumption and Tabour supply are given by c2(£§+ut)

and 22(£§+ut) . Equilibrium output y, at date t is therefore

(5'3) .Yt = tl(q'ut) + 22(’6;"'111;)

°1(£I'“t) + c2(£;+ut)

]

Let us define now for every o in the interval [6,8]
(5.4) f(o) = £9(£1-2,(8)) + £,(£5+2Z5(0))

Then (5.2) and (5.3) imply immediately that there is a systematic rela-
tionship, along a periodic equilibrium with perfect foresight, between
the equilibrium output level Yt and 4.1 = pt-llpt — or equivalently

the rate of inflation p./p,_, . It is indeed described by Yy = f(et_l) .
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One may remark that the function f depends only on the real characteris-
tics of the economy and not on the level of the money stock M . Moreover
the relation between y, and 041 15 independent of the period k of the

1
cycle

The natural question to ask then is whether a Tow real interest
rate (i.e. a high rate of inflation) is associated to a high IeVel of
activity along a periodic competitive equilibrium with perfect. foresight
— or equivalently whether f is decreasing. To this effect, consider an
increase of g, ; . Since the function z, is increasing, the old consu~
mer's "real income" at t , i.e. z; + Zz(et-l) » goes up while the young
consumer's “"real income" zf - zz(et_l) goes down by the same amount, If
we assume the Tabour supply functions KT to be continuously differentia-
ble, the o?era]] consequence of this “redistribution of income" among
the two traders living at t will depend upon the relative magnitudes
of the marginal propensities to supply Tabhour — or to consume leisure —

at both ages. This motivates considering the following assumption

U v G R A R N S e o e g T G R, . R

! As a matter of faCt,‘wé used periodicity only to ensure throﬁgh as-
sumption (Z.g) - that expectations were correct along the cycle. Thus
the relation Vg ® f(et_l) is valid for any (even aperiodic) sequence
of temporary competitive equilibria with perfect foresight,
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(5.4) The functions c (a ) and £ (a_ ) are continuously differentia~
ble. The good and Lelsure are noninferion commodities, that is,
0 < c;(aT) <land -1 < Z;(aT) <0 fon ewerya 20,1 =12,
Furthermone, the marnginal propensity to consume Lelsure £ highen
for an ofd traden Zhan forn a young cne, that &5, |£5(a,)| > lﬂi(al)l
fon all a; , a, » 0 such that a; +a, = £] + &5 . '

[t is then quite easy to see that f is a decreasing function,
If 8y.1 90es up, the old trader Tiying at t , being richer,supplies
less iabour (consumes more leisure) while the young consumer, being
poorer, works more, But assumption (5.{) makes the aggregate labour supply,

and thus output, to go down. Formally, we have by differentiating (5.4)

f'(0) = z5(8) [L5(£5%2,(0)) = £1(£]-2,(8))] < O

To sum up, we have obtained

! One may note that in view of (1.8), one has c;(aT) - K;(aT) =1,
Differentiability of c. and ZT could have been obtained from suitable
differentiability assumptions on UT , provided that "corner" solutions
are avoided in (1.7), as in footnote 2, p. 12. Then the assumptions sta-
ted in (5.4) can be traced back to the appropriate conditions on the
utility functions UT . In particular, consumption and leisure are
noninferior goods whenever the marginal rate of substitution bewteen
consumption and Teisure is an increasing function of leisure and a
decfeasing function of consumption,
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PROPOSITION 5.1. Assume (1.a}) , (1.b) , (1.c), and define for any

o in 8,81 , 4n which § = 2,7 (£]) ,

£(6) = £1(£7-2,(8)) + £,(£5+25(8))

Then under assumption (2.g) , for any sequence of competitive
equilibria (pt) that has period k, equilibrium output y, and
8y = Py.1{Py wre Linked by y, = f(0, 1) for all t . Moreover, under

assumption (5.4), f 45 continuously differentiable, and f'(8) < 0 ,

The relationship that we just established between the equili-
brium output at date t and the real interest rate hetween dates t-1 and
t,de 0,91, is clearly a "Long nun" nelationship, That is, it
obtains only when the economy has converged to a "steady state”, i,e,
to a (stable) periodic equilibrium, and when learning has ceased accor-
dingly. It should be emphasized moreover, that the Long nun relation
Yy = f(o4 1) does not represent a behayioural supply on demand gfunction,

sdnce Lt involves equilibrium varndables overn the cycle,

It is useful to have a brief look at the sort of relationship
that exists between equilibrium output and the real interest rate in the
short run, i.e., during thé adjustment process of the economy toward
1ong run periodic equilibria. This will enab]e’us in particular to
single out the role that "surprises” (forecasting errors) play in the

short run.

Consider accordingly an arbitrary (aperiodic) sequence of
temporary equilibrium prices (pt) . As before equilibrium real balances

are given by ny = M/‘pt , while the sequence of equilibrium output Yt
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is given by (5.3), in which 0 < My < KI . But equilibrium real balances

are not given by (5.2) this time, since we are considering an aperiodic

sequence along which traders are still learning. We must use instead the
temporary equilibrium conditions (2.1), (2.2), or equivalently (2.3). As
~a matter of fact, we may rewrite (2.3) for date t-1 as

Pt P , (pt-l

B 2 )

(5.5) 5
Pt-1 Pt Pt

in which the price pi that is expected for date t by the young trader

living at date t-1 is determined by

e —
(5!6) pt - w(pt,l 99 pt_T_l)

We see then that the equilibrium real balance My at t is a function of
the real interest rate that was expected in equilibrium at the date t-1 ,
or more precisely of ei_l = pt_lfp% , and of the forecasting error ac-

. . . _ e . .
tually made on this variable, i.e. of e, = 84.1/8¢.1 » 1n which
4.1 = pt_l/’pt (one has equivalently ey = pi/pt) ., Indeed, (5.5) can

be rewritten with this notation

(5.7) by = e 2p(05 )

Here again, since the nominal interest rate paid on money is zero in the
model, there is an inverse relationship between the (expected) rate of
inflation and the (expected) real rate of interest. In particular, a
high leyel of "unanticipated inflation” means that the real interest

rate g, _; is much Tower than was expected, that is, it means a
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lTow value of e, . Of course, perfect foresight corresponds to e, = 1 and

e . - n€ =
thus to 6y ; =64 ¢ (or pg = Py) -

Let us define the function F(e%,e) by

(5.8) F(6%,e) = £;(£]-€2,(8%)) + £,(L5tez,(6%))

the domain of definition of F Being the set of pairs (6%,e) such that
6 < 6® < zél(zife) in order to ensure that 0 < ezz(ee) < Ki . Examination
of (5.3), (5.5) and (5.6) shows then immediately that along a sequence
of temporary equilibria, equilibrium output is Tinked to the expected
real interest rate and to the forecasting error made on this variable

by

_ e ": N _
(5.9) Yi = F(et_1 s et_l/et_l) in which 041 = pt_lfpt and
0 . = /9 ( )
t-1 = Pg-1/ViPtog 2eees ProTiy) o
Two important facts are worth to be noticed. First, the func-
tion F depends only on the real characteristics of the economy, and nct
on the level of the money stock M . More importantly, 4t does not depend
on the particulan trafectory that {s consddered non on the Learnding pro-
1

cess ¢ that the trhaderns are using , This relation F would be in
1}Th.e.‘1}*e1at1“c,m ﬁefWeén tﬁe}éqﬁflfﬁrfﬁm output Tevel Yt and equilibrium

current and past prices (pt""’pt—T*l) that is implied by (5.9) de-

pends of course on the traders' Tearning process v . But it does not

depend either on the particular equilibrium trajectery under conside-
ration,
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particular the same if traders employed a more sophistfcated learning
procedure than the one we considered here, for instance if the expec-
tation function (the agent's "model™ of the economy) was revised accor-
ding to a prespecified rule that would take into account the forecasting
errors made in the past (see the Remark at the end of Section 2), Second,
when e = 1 , the "short run” functionF reduces to the "long run" map f ,
since F(8,1) = f(8) . Thus 1f we consider a periodic equilibrium (pt)
with perfect foresight (assumption (2.g)), then there are no forecasting
errors along the sequence (et = 1 and ei‘l = 049 for all t) , and (5,9)
yields the long run relationship y, = f(e,_;) that we established pre-
viously (this finding comes eyidently from the fact that when there is
perfect foresight, the money equilibrium equation (2.3), and thus (5.5),

reduces to (5.2)).

The final step of this investigation is to examine whether a
Tow value of 6F_; (i.e. a high anticipated inflation) and/or a low
value for the error forecast e, (1.e. a large unanticipated inflation)
is associated to a large equilibrium output Y¢ « It is indeed immediate
to verify that unden agsumption (5.4), both anticipated and unanticipated
inglation yleld a Larger Level of output, or equivalently, that F is a
decreasing function of each variable 6% and e , Indeed, by differentia-

tion of (5.8)

-
L]

ez5(6°)0L5 (25 + e2,(6%)) - 2] (4] - ez,(e%))1 < 0

-
o -
[

= 2,(0°)[Lp(L) + ez,(8%)) - £1(£] - ez,(6%))71 < 0
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It may be noted incidentally that the ratio of the elasticities of equi-
1ibrium output with respect to 6 and e » 15 equal to
€r, ' e . . e

(87" )/ (eFg) = ¢ 25(6%)/2,(6%)
that is, to the elasticity of the function z, . It will be greater than
1 if and only if the "demand for real balances” — which is equal, by
virtue of (1.3), to zz(ee)/ee — {s increasing at 6¢ (all what is needed
to establish this property is that F is differentiable, with F = 0 .

There was no need of assumption (5.4))

Finally, we should emphasize here again that the short run
relationship (5.9) between output and anticipated as well as unantici-
pated real interest rates represents in no way any behavioural demand
or supply function, as it inyolves equilibrium magnitudes. In the Tan-
guage of econometrics, the short run or long run relations between
equilibrium output and expected or unexpected real interest rates are

reduced forms, not structural forms,

To sum up, we haye obtained

—-,.——p.———-———————!-..____ -,

The fact that F has all those nice simple properties should not obscure
the fact that the short run relation between equilibrium cutput Yi and

current and past equilibrium prices (Pt""’pt-T-l) that is implied by

(5.9), i.e. when taking into account the traders' Tearning process, may
be quite complicated,
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" PROPOSITION 5.2. Assume (1.a) , (1.b) , (7.c) and degine for any

ositive (6%,e) satisfying 8 < 0 < 2, (L5/e) ,
p U
F(e,e) = Kl(z’i-ezz(ee)) + zz(z;+ez2(ee))

Then §on any sequence of femporary competitive equilibrium prices (pt) ,
equilibrium output y, &8 Linked to anticipated and unanticipated real

: ‘ o, _ /a® e . . _

dnterest nates by y, = F(04 4 » 64.1/8¢_1)> 1 which 6, 1 = Py_1/Py and
ei_l = pt-l/w(pt-l""’pt—T—l) , fon all t . Moreover, unden assumption

(5.4), F 48 continuousty differentiable, and F' <0 , Fo <0,
8

Remasks .

1. It has been shown incidentally in this Section that equilibrium
real balances M along a sequence of temporary competitive equilibria are
positively related to the expected real interest rate ei_l and to the
forecasting error on this variable ey = et_l/ei_1 , see (5.7)., The long
run version of this relation (along periodic equilibria with perfect
foresight) is (5.2). The validity of the result does not hinge on (5.4).
In fact, it would hold in an exchange economy (without production) in
which traders are endowed with the quantities KI ; KZ of the good in
each period of their lifes,

2. The fact that equilibrium real balances at t depend only on

e
t

as in (5.7), rests upon the specific structure of the model that we have

671 and on e, = et_l/ei_1 along a sequence of temporary equilibria,
considered. If traders lived n periods, equilibrium real balances at t
would depend upon the expectations and on the forecasting errors that

the agents living at t made .n all the previous periods of their Tifes.
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There would be then a lag between equilibrium real balances (or output)
and expectations as well as forecasting errors, which would be equal to

the length n of the traders' lifetimes.

3. The long run and short run relationships f and F may of course
be expressed in equivalent ways, by implementing a consistent change of
variables, Let us transform the output variable y into ; by } = h(y) ,
in which h is continuously differentiable and increasing (h' > 0). Let

us define 9 = h(a) , 3¢ = h(6%) . The new forecasting error variable

€ = h(e) is then related to ¥ and 3% by

€ = h(e) = h(e/6®) = n(h™1(8)/n1(3%))

We may then write

RCF(h™

= F(8%,¢)

and it is easily seen that the partial derivatives of F with respect to
8¢ and © have the same sign as the partial derivatives of F with respect
to 6% and e . With the new variables, perfect foresight means e = h(1l)

— and thus 8 =% — and the long run relationship becomes

y = F(8) = F(6,h(1))

1

One has in fact f = hofoh™ , and thus the derivatives of f and f have

the same sign.

The same sort of exercise may be done for the relation between
real balances and expected or unexpected real interest rates. The reader

may go through this change of variables when h is the logarithmic function.
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In that case, the result resembles — if one excepts the fact that our
model is highly nonlinear — quite a few log-linear macroeconomic models
that have been so popular recently in the socalled "New Classical” macro-
economic literature. The other important differences are first that (the
Togarithm of) equilibrium output and real balances — or their deviations
from their "permanent" values, which may be viewed as those that correspond
to the Golden rule stationary state & = 1 — depend not only on (the loga-
rithm of) the "surprise" ey = et_1/e§_1 = pi/pt but also on the expected
real interest rate ei_1 = pt_1/pt ; and second that these relation-
ships cannot be interpreted as supply or demand functions as they often

are, apparentiy mistakenly, since they involve equilibrium magnitudes.
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6. STABILIZING PERIODIC EQUILIBRIA.

The business cycles that were described in the preceding Sections
are purely endogenous, that is, they are not attributable to any hypotheti-
cal exogenous "shocks" such as variations of the consumers' tastes,of their
endowments or of productivity, nor to changes of the Government's policy -
~— there are none. They are not due either to a lack of information of the
traders since learning has been completed along periodic equilibria with
perfect foresight. We wish to show now that the Government is in fact
able to stabilize completely business cycles by choosing an appropriate

countercyclical policy.

There are many ways through which the Government may hope to
influence economic activity : money transfers that are proportional to
the agents' money balances (interest payments), lTump sum transfers (taxes
or subsidies), income taxes, purchases of goods, open market operations,
and so on. The subject matter is obviously too vast to be dealt with in
depth within the limited scope of the present paper. We shall focus at-
tention accordingly on the simple and popular case in which the Government
pays a (publicly announced) nominal rate of interest at each date on the
money balances that old consumers hold. We shall then find the analogue
in our framework of a standard result : if the monetary authority pegs
the nominal rate of interest (or equivalently the rate of growth of the
nominal money supply) at some arbitrary predetermined level, this policy
will have no real effect on the set of corresponding long run (periodic)
equilibria — nor on the long run "trade off" between equilibrium output
(or real balances) and real interest rates that we established in the

preceding Section. Moreover, if the traders believe in the neutrality
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of such a policy, it will have no real effect either on the trajectories
that the economy follows during the adjustment process toward long run
equilibria. It will not change then in particular the stability or the
unstability of a particular periodic equilibrium, In this sense, perma-
nent changes of the rate of growth of the money supply that are imple-

mented through a predetermined nominal interest payment are superneutral

The analysis will thus confirm the analogue in this context of
the "monetarist" claim, namely that any given cycle of the model is in
fact compatible with an arbitrary (average) rate of inflation. Although
this conclusion is correct, the fact that the foregoing policy of pegging
the nominal interest rate at some predetermined level has no real effects
is entirely due to the feature that such a policy is purely passive. We
shall show that the monetary éuthority can in fact influence real events
by adopting an active policy, e.g. a feedback rule that Tinks the real
rate of growth of the money supply at some date to previously observed
economic variables. Note that such an active policy leaves in any case
the set of "potential" long run periodic equilibria with perfect fore-
sight invariant (in real terms). It is indeed the same as under faissex

2
faine, i.e. it is described by the set of all cycles of the map © .

R O G A . e e S . SN S e e e

It must be emphasized that this superneutrality result non longer holds
if the rate of growth of the money supply is changed by other means, e.g.
through Lump sum money transfers, or Government's purchases of the good.
See Remark 1 at the end of the Section.

The fact that monetary policy cannot create new cycles in real terms
is specific to nominal interest payments. If changes of the money sup-
ply are brought about by Tump sum transfers or Government's purchases,
then policy can create new cycles or stabilize them. See Remark 1 at
the end of the Section.
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What such an active policy can at best achieve is thus to "select" one
particular cycle that would not have been reached under Laisser faire,
We shall see indeed that there 1is a simple, moderately countercyclical
("leaning against the wind") policy of that sort that enables the moneta-
ry authority to stabilize completely the economy (to peg the real rate of
interest permanently at a Tevel equal to 0), and to control at the same
time the nominal rate of growth of the money supply (or equivalently, the
rate of inflation) at some predetermined level r* . Of course any change
of r* alone will be here again superneutral ' . The analysis will thus
bring into the forefront a phenomenon that appears general, namely that
a change of the average growth rate of the money supply yields consequences
that may be very different from those that result from the "transitory"
part of the policy, i.e. from the active countercyclical (or procyclical)
feedback rule that is implemented by the monetary authority. It should
be noted also that a successful stabilization policy 1ike the above af-
fects not only the variances of real equilibrium magnitudes but also their
means (their average over a cycle) since the model is nonlinear, in con-

trast to traditional macroeconomic models that use the "natural rate" hypothesis.

Before going into the details of the study, we must look at an
agent's behaviour when interest is paid on money. Let us consider accor-
dignly a young trader at a time in which the price of the good is p and let

x%-1 be the price of the good and the transfer (nominal interest

pe and r°
rate) he anticipates for the next date.The agent's problem is then to maximize his

! Here again this superneutrality result non longer holds if the rate of
growth of the money supply is changed by other means, e.g. through Lump
sum money transfers, or Government's purchases of the good. See Remark
1 at the end of the Section.
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intertemporal utility function Ul(cl,ﬂi—ﬁl) + U2(c2,£;-£2) subject to

the current and expected budget constraints

p(cl-zl) +m=20

pe(c2—£2) = mx®

It is then clear that under assumptions (7.a) , (71.b) his cur-
rent and future excess demands for the good are given by zl(e) and 22(6)
respectively, in which ¢ = pxe/pe (again 6-1 is the expected real interest

rate), while his demand for money is md(p,pe/xe)

We proceed now to the determination of the dynamical system
that governs the evolution of equilibrium prices and interest rates.
First note that if x, = (1+Pt) describes the transfer actually made at date t

and if Mt-1 is the pretransfer money stock at that date, then the money supply

at t is My = x; My_; . The equilibrium conditions at date t for good and

money are then described by
e e _
(6°1) Zl(pt xt+1/pt+l) + (Mt/pt) =0

d
(6.2) m(Py sPy/Xay) = My

in which pe and x5, stand for the price and the transfer that the
t+1 t+1

yound trader living at t anticipates for the next date. By Walras's

Law, the two equations are equivalent and may be written in the follo-

wing form

e e e e -
(6.3) (Per1/Xp41) Z2(Py Xg41/Peyg) = My
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These three equations are the analogues of (2.1), (2.2) and (2.3) for the

no interest payment case.

To be complete, the system must involve the specification of
the dynamical policy that is implemented by the monetary authority, i.e.
of the way in which the transfer at date t+1 , or Xte1 = 1+rt+1 , depends
on the price at that date Pes1 and of the economic data that were obser-
ved by the monetary authority at the previous dates. The system must

specify in addition the traders' forecasts about prices and interest

e
t+1

and past prices and rates of interest. One may note that the resulting

rates — 1in fact about the ratio p§+1/x — as a function of current
expectation function will depend in a crucial way on whatever information
the traders have concerning the particular policy that has been chosen by

the monetary authority.

We shall consider exclusively in the sequel policies that aim
at pegging in the long run the nominal interest rate at some predetermined
level r* , and may be some additional "real" variables. It is then useful
as a first step to characterize the set of all long run periodic equilibria
with perfect foresight that may arise in the economy when the interest rate
is r” , and this independently of any further specification of the govern-
ment's policy or of the learning processes that the consumers employ. As
we are going to see, this set coincides — as far as real equilibrium
magnitudes are concerned — with the set of periodic equilibria with per-
fect foresight that arises in the no interest payment case, i.e. under
Laissen faine. The only difference is that prices grow now "on average”

at the rate r” along the cycles.
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The argument is indeed trivial. If the interest rate is pegged

at the level P , one has Mt = x" M for all t , in which X* = l+r" .

t-1
Consider now a sequence of prices (pt) that has (primitive) period k and

that grows on average at the rate r* , i.e, such that Pesk = (x*)k

Pt for
all t.l . Then by definition, the sequence (pt) L8 a perdodic equilibrium
with penfect foresight conresponding Io_r* Af and only L4 At satisfies
(6.1) , (6.2) or (6.3) for all t , in which pg ; = Py,q and X{,q = X'
By reproducing the argument that we used to prove Proposition 2.3, :one

obtains

PROPOSITION 6.1. Assume (1.a), (1.c) . Let x* = 14r" and M, be

gixed. Considern a sequence (pt) such that Pipk = (x*)k Pt in which k

48 the (pruimitive) period of the sequence. Then (pt) 48 a perfodic equilibrium
with perfect foresight comnesponding to v if and onby if it satisgies for all t

(6.4) zl(et) + 22(et—1) =0
(6.5) | My = Py ZZ(Gt-l)
in which 6 = py x*/pt+1 >8 .
The system (6.4), (6.5) is in fact identical to (2.6), (2.7)

which characterized periodic equilibria with perfect foresight in the no

interest payment case, the only difference being that money grows now at

o 10 e S . SR e s TS W e W o W G 0T R e R G S e W T e - -

' The assertion that the "average" growth rate of prices is r along the
cycle is justified by the following consideration. One has indeed

Log(ptﬁj/pt+j_1) = k Log(1+r™)

ff D~

Jj=1
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the raté r* — and prices also, at least on average — instead of being
constant. Real equilibrium magnitudes are the same in the two casés. The
real part of the set of periodic equilibria with perfect foresight is
thus not affected by a change of the level of the money stock M0 or of
the target growth rate r* of the money supply. Put it in another way, any
given pbusiness cycle appears to be "compatible" with any (average) rate

of inflation

This analysis has an important qualitative implication. The
foregoing character{zation was achieved by making no reference to the
specific features of the Government's policy beyond the fact that it
aimed at pegging the long run rate of growth of the money supply at
the predetermined level r *. Thus the consequence of Proposition 6.1 is
that monetary policy through nominal interest payments cannot create
new cycles (4in neal teams) by comparison to those which already exist
undern Laissen gaine, Of course, the Government may try to do so by peg-
ging real variables in a way that is not compatible with Laisser faire
periodic equilibria, But the consequence will be that the economy will
never be able to settle down to a Tong run (i.e. periodic) monetary equi-

lTibrium. Either its trajectory will be chaotic (aperiodic) or it will

P e e e e el e e Ll ke R e b e et R ]

It is clear that the long run equilibrium "trade off" between output
(or real balances) and real interest rates is also unaffected by a
change of the target growth rate r* . It is indeed still described by
Yi = f(et_l) (or Hy = 22(et—1)) in which f is defined as in (5.4). The
reader will verify easily on the other hand that the short run "trade
offs" y, = F(oF_j.e,) and u, = e, Z,(65_;) defined in (5.7) and (5.8)

do not depend at all on the policy implemented by the monetary authority.
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collapse to the nonmonetary (no trade) equilibrium ¢ = 6 . The conclusion
is clear. The only goal that the Government may pursue consistently — at
least if it wishes to avoid chaos and to preserve the monetary character
of the economy — is to design a policy that forces the economy to settle
down at a particular long run Laissen faire periodic equilibrium that is diffe-

rent from the ones that would have been naturally selected in the absence of

any Government's intervention.
We shall show later on that there exists indeed a very simple

countercyclical monetary policy that enables the monetary authority to
force the economy back to the unique monetary steady state 8 = 1 , and to
control at the same time the growth rate of the money supply. But we wish
to show first that in order to have any real effect, the policy must be
active, that is, it must try to influence some real variable in the sys-
tem. More precisely, we wish to show that the monetary authority will be
unable to have any real influence even on the dynamics of the economy
during the adjustment process toward long run equilibria if it imple-
ments a passive poficy, i.e. if it pegs permently the nominal interest
rate at the predetermined level r* without attempting to control a real
variable in the system — at least when traders believe that such a pas-
sive policy is indeed neutral. The consequence of this finding is clear.
Proposition 6.1 says that with a passive policy of this sort, the set of
corresponding periodic equilibria is the same (in real terms) as under
Laissen gaine. What we just said implies that if consumers think that
a passive policy is neutral, then such a passive policy is unable to af-
fect the dynamic stability or unstability of Tong run periodic competi-
tive equilibria. In this sense, a (passive) manipulation of the rate of

growth of the money supply through interest payments is superneutral,
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To see more precisely the point, let us assume that the economy
has evolved under fLaisser faire until the date t = 0 , and that the Govern-
ment steps in at that date and announces that it will pay the interest r*
on money balances from t = 1 onward. The corresponding evolution of the
money stock is then Mt = (1+r*)t M for all t > 0 . Assume next that
traders believe that this policy has no real effects even out of 1ong
run (periodic) equilibria. They think accordingly that the only conse-
quence of making the transfer x* = 1+r* at date t , by comparison to the
no transfer case (xt =0) , is simply to muitiply equilibrium prices at
that date and at all future dates by the factor x* ., Or in other words
that equilibrium prices are not affected by the transfers provided that
they are properly discounted back to t = 0 . Formally, if we introduce
the discount factors By = 1/(1+r*)t for al1 t > 0 , the traders' expec-

tations will be given by

e -—
Bead Pra1 = V(By Ppseees By Pey)

for all t (with the additional convention that By = 1 whenever t < 0) ,
in which ¢y is the expectation function that the traders would use in the

absence of any Government's intervention, as in Section 2,

The dynamic evolution of the economy under these assumptions is
then obtained by replacing pi by its expression and x§+1 by (1+r*) in the

temporary equilibrium equation (6.1). This yields
21(By Pe/W(By Py s-ees Bip Pp_p)) + (M/By py) = O

We see therefore that the sequence (pt) is a sequence of temporary
equilibrium prices when the interest rate is pegged at the level r

if and only if the sequence of discounted prices (Bt pt) is a sequence
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of equilibrium prices under fLaisser faire. Real equilibrium magnitudes
are in fact the same along the two trajectories (think of the old trader
whose equilibrium excess demand is Mt/pt = M/stpt) » which establishes

our claim .

It is intuitively clear that the same sort of superneutrality results
holds, by applying the same reasoning, if the transfers Xy = (1+rt)
may vary over time, but are predetermined at each date t , i.e. if Xy
depends on previously observed variables but not on current observa-
bles such as the current price Py The point is that if the transfer
X is not tied in some way to Py > the monetary authority can have no
hope to influence real interest rates. The formal details are left to

the reader.

The discussion shows that if we wish to study whether the Govern-
ment is able to influence real matters by means of interest payments, we
must admit the possibility that the transfer Xy is linked in some way to
the current price Py — and to past prices — so as to influence real
interest rates. And we may add that this is only fair. For we are p]aying
an abstract and somewhat unrealistic game in which individual traders and
market prices adjust infinitely fast and costlessly at each date, and we
much allow the monetary authority to react as fast and on the basis of
the same information as the private sector (the issue of diagnosing whe-
ther or not monetary authorities can in practice react as fast as the

market being an important but entirely distinct matter).

We show now that there exists a very simple active countercy-
clical ("leaning against the wind") policy that enables the Government

to force the economy back to the unique monetary stationary state 6 = 1 ,
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and at the same time to peg the nominal interest rate, Let us assume
that the economy has evolved under faisser faire before t = 0 and that
it has settlied down for instance to a stable periodic equilibrium with
period k > 2 . At the date t = 0 , the Government steps in and announces
at that date that it will pay interest on money from t = 1 onward accor-
ding to the following policy. Its goal is to peg the nominal interest
rate at the predetermined level r* , as well as the real interest rate
at 8 = 1 . This means that Government wants the evolution of the money
supply and of equilibrium prices to be(see (6.2))

- *, t * gk
(6.6) M, = (14r" )" M and Py = Mt/zz(l)

*
t
Of course, all this presupposes that 8 < 1 (assumption (7.4)) .

One possible way to achieve this goal is to adopt the following simple

feedback rule

(6.7) Xea1 = Breay = (Py/Py) 9(pe/Py)

for t > 0 . In other words, this rule ties the real interest rate between
ptxt+1

Pt+1
price Py frpm the target price p; for the date t . Note that et-l may

) to the deviation of the

dates t and t+l1 (or the value of 0y =

be interpreted equivalently as the real nate of growth o4 the money
supply between dates t and t+l , since 6, = (Mt+1/pt+1)/(Mt/pt) . Of
course, one should have g(1) = 1 for the rule to be consistent with the
objectives of the Government. The policy is thus characterized by r
and the function g , which maps (0,+) into itself, satisfying (6.6),
(6.7) and g(1l) = 1 . We shall assume for simplicity that g is diffe-

rentiable. The policy will be said to be countercyclical if a large
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deviation p /p* is associated to a Tow real growth rate of the money
t' "t

sypply, that is if g' < 0 .

Suppose now that the Government's policy (r*,g) is public know-
Tedge at all dates t > O . This information will therefore influence the
way in which the traders' anticipations are formed. In fact, one must

have
Per1/%a1 = Pi/9¢(Py/P})

at all dates. The temporary equilibrium equation (6.1) or (6.2) becomes

then, for all t > 0

(6.8) z1(9(py/Py)) + (My/py) = 0
Therefore, under the policy (r*,g) , the evolution of temporary equili-
brium prices for t = 0,1,..., is governed by (6.8), in which of course

(6.9) M M forallt>0 , and M =M

t+1 T e+l Mt 0

The next result states that the unique solution of that dyna-
mical systeh is Py = p; and Mt = M: for all t > 0 , i.e. that this
stabilization policy is successful, provided that zi(l) > 0 , and that
the policy is only "moderately" countercyclical, in the sense that the

range of variation of g is small

T EA R G e T S e W = e am am e ma

! one may note that under assumption (7.e) , the condition

zi(l) > 0 is necessary for the existence of a cycle of period k > 2 .

See Lemma 4.2.
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PROPOSITION 6.2. Assume (1.a), (1.c), (1.d) , and that the Govern-
ment adopts the (publicly known) policy (r*,g) from t = O omward, 4in which
r* and g satisfy (6.6), (6.7) and g(1) =1 . Assume moreover that the
gunction g 45 difgerentiable, that g'(v) < 0 and that there exists
e > 0 duch that |g(v) - 1] <e forall v>0.

Then L4 zi(l) > 0 and i € {8 small enough, the sequence
o4 temporarny equilibrium pnééeé (pt) and of equilibrium money stocks Mt

cornesponding to this policy 48 unique and 48 given by
t
My = M = (1+r")" M and Py = Py = Mi/z,(1)

gor all t > 0 . Moreover the temporary equilibrium is stable at each
date in any Walrasian tatonnement process in which prices nespond posi-

tively to excess demand.

As the preceding statement makes clear, what matters really
is the "countercyclical" part of the policy that is described by the
function g . On the other hand, an arbitrary variation of the target growth
rate r* of the money supply, the function g being fixed, is superneutral :
it induces only an offsetting variation of the rate of inflation, so
that the stabilized real interest rate remains equal to 0 . We see here
an instance of a phenomenon that seems rather general, i.e. the fact
that a permanent change of the trend value of the growth rate of the
money supply (here r*) may have an impact that is very different from
the consequences of the "transitory" (countercyclical) part of the
policy (here the map g). As a final remark, it is worthwhile to note
that a successful stabilization policy Like the above has not only an
Ampact on the variances of real equilibrium magnitudes such as output
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orn neal balances, but also ingluences generally their means (i.e. the
averages overn a cyele of the values that they take) since the model

1
A8 highly nonlinear

We end this Section by the proof of Proposition 6.2. It is
very simple and proceeds by induction on t . Consider first what happens
at the initial date t = 0 . The good market equilibrium equation (6.8)

for that period reads
2(9(py/pg)) + (M/p,) = 0

Since zl(l) + 22(1) = 0 , this equation admits obviously the solution
Po = pz = M/zz(l) . In order to show that this solution is unique and
stable in an arbitrary Walrasian tatonnement, it suffices to show that
the Teft hand side of the equation is decreasing. Since zi(l) >0,
then by continuity, there exists ¢ > 0 such that zi(e) >0 if |e-1| <e .

Thus if |g(v) - 1}

A

e and if g'(v) < 0 for all v > 0 , then the deri-
vative of zl(g(v)) is negative for all v , which proves the claim, We
remark finally that if the equilibrium solution at t = 0 is Po = p; R
then we know from (6.7) and (6.9) that the transfer Xq will vary with
the price Py prevailing at t = 1 so as to keep the real money stock

Ml/p1 equal to 22(1) .

' An interesting issue that has not been investigated in the present
work is to find conditions such that reducing for instance the va-
riance of equilibrium output raises at the same time its mean value
in contrast for instance to Sargent and Wallace (1975), This is a
topic for further research.
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‘We proceed now by induction and suppose that (6.8) admits the
unique solution pj = p§ for j = 0,..., t -1 . By the same argument that

we just employed, we know then that the transfer x,_ at the date t will

t
be adapted by the monetary authority to the price Py prevailing at that

date so as to keep the real money stock Mt/pt equal to 22(1) . The good

market equilibrium equation (6.8) for date t can then be written as

21(9(py/py)) + 25(1) = 0

Again, Py = p: is a solution. To show that it is unique and stable in
an arbitrary Walrasian fatonnement, it suffices here again to show that
the left hand side of the equation is a decreasing function of Py - By
the same reasoning as for t = 0 , this is true when zi(l) >0,

lg(v) - 1| <eand g'(v) <0 for all v > 0 , in which the parameter ¢

1
is the same as for t = 0 . This completes the proof of the Proposition

*

The structure of the foregoing argument shows that Py = p; and Mt = Mt

is always a solution of (6.8) without any restriction on the policy g
other than g(1) = 1 . The restrictions zi(l) >0, g'(v) <0

lg'(v) - 1] < e with e small enough are there to guarantee the unicity
of this solution and its stability at each date under a Walrasian
Latonnement, In the absence of such restrictions, two phenomena could
occur. First, there might be another solution that would correspond to
a cycle of the economy under Laisser faire, with a period k > 2 (this
could occur if the range of variation of g is "large"). Second even in
the case in which 0, = 1 would be the unique solution, the level of
money prices might be indeterminate (think of the case in which

g(v) =1 for all v) .
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Remanks,

1. It should be emphasized that the various “superneutrality"
results that were reached in this Section, e.g. the invariance in real
terms of the set of periodic equilibria, or of the long run "trade off"
between equilibrium output and real interest rates with respect to a
change of the target growth rate r* , or the superneutrality of "predeter-
mined" interest payments no longer hold if money
is injected in the economy by other means such as lump sum transfers or
Government's purchases of goods, The basic reason is simple : a change
of the rate of growth of the money supply through Tump sum transfers or
Government's purchases is bound to alter, for some time or permanently,
the real rate of interest on money through a variation of the rate of
inflation, whether or not the change of the growth rate of the money
supply is temporary or permanent, predetermined

or not, anticipated or not. Such policies can therefore
create new cycles as well as stabilize the economy. A1l this should be

the subject of further research.

The distinction between the effects of a variation of the
rate of growth of the money supply through nominal interest payments
and through lump sum transfers has a lTong history in economics. It is
in particular at the heart of Friedman's theory of the Optimum Quantity
of money (1969, Ch. 1). See also Grandmont and Younés (1973) and the
discussion in Grandmont (1983a,Ch, 1, Section 7). This distinction has
been used again recently in the perspective of stabilization policy in
an overlapping generation model by Azariadis and Balasko (1983),

Stiglitz (1983).
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The effects of a variation of the money supply through the Govern-
ment's purchases has been studied recently in a (log-linear) version of

the overlapping generation model by S. Fisher (1979).

2. The simple result that monetary policy is able to "lock"
Ammediately the economy into the stationary state seems to be due to
the specificity of the model. If traders Tived for more than two periods,
for instance, matters would be less simple, since when the Government
steps in at t = 0 , the initial distribution of money holdings among
traders will be typically different from the one that characterizes a
stationary state, and this may have lasting effects on the trajectory
of the economy no matter which policy is implemented by the monetary

authority.
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7. CONCLUSION,

The model that we haye analyzed in this paper is obyiously
too rudimentary to enable us to draw very general conclusions, Yet, the
study of this particular example is suggestive and shows that it is
possible to construct plausible models in which endogenous and signi-
ficant fluctuations obtain that are not caused by exogenous shocks nor
by policy. Furthermore a properly designed countercyclical policy can
stabilize these autonomous business cycles, Such results are manifestly
at variance with the conclusions that yield usually currently fashionable
Classical "loglinear" macroeconomic models. It remains to be seen whether
or not these results carry over to more general and more realistic struc-
tures. They suggest at any rate that economic theorists should perhaps
Took more closely at the sort of mechanisms that may be responsible for
significant nonlinearities in the economic system if they wish to have

a proper foundation upon which to build a sound business cycle theory.

Among the issues that appear worthwhile to investigate, one

may mention the following

1. One important feature of the model that has been studied
is the fact — that seems Tikely to.obtain as We11 within more sophis-
ticated frameworks — that cycles of different periods typically coexist,
This raises, as we have seen,the question of thé stability of a given
cycle, and our analysis showed that any answer to that question depends
crucially on the properties of the traders' learning processes, We have
in fact touched upon this problem only incidentally in Section 3, when
establishing a relationship between stability with learning and stabi-

1ity under the perfect foresight backward dynamics. A deeper examination
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of the stability of a cycle, for instance by adapting and simplifying the

methods of Fuchs and Laroque (1976), would be useful,

2. Although we have deliberately ignored exogenous shocks in
the present analysis in order to focus attention on autonomous business
cycles, it is clear that (random or deterministic) shocks that result
from the economy's environment and/or from the Government's policy, as
well as incomplete and asymmetric information, play some role in the
generation of modern economic fluctuations —~ although their importance‘
may not be as great as some "New Classical macroeconomists" would like
to believe. The integration of such exogenous shocks, for instance along
the lines of Lucas's model (1972), would be interesting as it would
allow making precise how they interact with the endogenous mechanisms

in the generation of economic fluctuations.

3. A related issue concerns the fact already mentioned in
Section 6 that deterministic economic policies through Tump sum money
transfers, income taxes, Government purchases of goods, open market
operations are able to generate economic fluctuations as well as to
stabilize them. It would be important to proceed to a systematic study
of the existence and the properties of the cycles that may emerge in
the present model when the Government is implementing a given policy

through these alternative channels,

4. As we have said, the central mechanism through which endo-
genous business cycles emerge in the present model is the conflict
between the intertemporal substitution effect and the wealth effect

that are associated to a variation of the real rate of interest.
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An interesting study would be to extend the analysis to a more general
framework, in which for instance traders would live ah arbitrary (finite
or infinite) number of periods. Another topic of particular interest is
to discover other mechanisms — for instance associated to particular
features of the production technology — that yields nonlinearities

sufficient to generate endogenous business cycles.

5. The whole analysis has been carried out under the ad hod
assumption that market clear at every moment in the Walrasian sense. An
important topic for future research would be to relax this somewhat un-
realistic assumption, for instance by introducing imperfect competition
in the model, and to Took for the kind of mechanisms that may give rise
to endogenous economic fluctuations. In a Walrasian framework, one may
get economic fluctuations only through a variation of relative prices,
that is (in a macroeconomic context involving only one good as in the
present model) only through a variation of the real interest rate. By
contrast, once imperfect competition is taken into account, quantity
adjustments, and thus something Tike multiplier or accelerator effects,
have to play a role. One may then hope to get a better foundation upon
which to build a sound Keynesian, or more precisely nonWalrasian, business

cycle theory.



- 108 -

REFERENCES.

ARROW, K.J, (1970), Essays in the Theory of Risk Bearing, London, North Holland.

AZARIADIS, C. (1981), "Self-Fulfilling Prophecies", Journal of Economic
Theory gg, 380-396.

AZARIADIS, C. and Y. BALASKO (1983), "The Pigou Effect and the Phillips
Correspondence", University of Pennsylvania, Mimeo.

AZARIADIS, C. and R. GUESNERIE (1983), "The persistence of Self-Fulfilling
Theories", forthcoming.

BARRO, R.J. (1981), "The Equilibrium Approach to Business Cycles",
Ch. 2 in Money Expectations, and Business Cycles, Academic Press,

New York,

BENHABIB, J. and R.H. DAY (1981), "Rational Choice and Erratic Behaviour",
Review of Economic Studies 48, 459-472,

BENHABIB, J. and R.H. DAY (1982), "A Characterisation of Erratic Dynamics
in the Overlapping Generations Model", Journal of Economic Dynamics
and Control i, 37-55.

BRAY, M. (1982), "Learning, Estimation and the Stability of Rationai
Expectations", Journal of Economic Theory 26, 318-339.

CASS, D. (1980), "Money in Consumption-Loan Type Models : An Addendum“, in
J.H. KAREKEN and N. WALLACE (Eds), Models of Monetary Economies, Fede-
ral Reserve Bank of Minneapolis.

CASS, D. and K. SHELL (1981),"Do SunspotsMatters?" CARESS Working Paper
8009 R, University of Pennsylvania, 1981, Also appearing in French
as "Les taches solaires ont-elles de 1'importance ?" Cahiers du
Séminaire d'Econométrie 24 (1982), 93-127, o




- 109 -

CASS, D. and K. SHELL (1983), "Do Sunspots Matter ?" Journal of Political
Economy 91, forthcoming.

CHAMPSAUR, P, (1983), "On the Stability of Rational Expectations Equilibria”,
CORE Discussion Paper 8324, Université Catholique de Louvain,

COLLET, P. and J.-P. ECKMANN (1980), Iterated Maps on the Interval as
Dynamical Systems, Birkhaliser, Boston.

DANA, R.A. and P. MALGRANGE (1981), "The Dynamics of a Discrete Version
of a Growth Cycle Model", CEPREMAP Working Paper, forthcoming in Analy-
sing the Structure of Econometric Models, J.P. ANCOT (Ed.),
M. Nijhoff, Amsterdam.

DAY, R.H. (1982), "Irregular Growth Cycles", American Economic Review
72, 406-414.

DAY, R.H. (1983), "The Emergehce of Chaos from Classical Economic Growth",
Quarterly Journal of Economics 98, 201-13.

DIAMOND, P. and D. FUDENBERG (1983), "An Example of Rational Expectations
Business Cycles in Search Equilibrium", M.I.T., Mimeo.

FISHER, S. (1979), "Anticipations and the Nonneutrality of Money",
Journal of Political Economy 87, 225-52.

FRIEDMAN, B. (1979), "Optimal Expectations and the ExtremeInformation
Assumptions of 'Rational Expectations' Macromodels", Journal of
Monetary Economics 5, 23-41.

FRIEDMAN, M. (1969), The Optimum Quantity of Money and Other Essays,
Chicago, Aldine.

FRIEND, I. and J. HASBROUCK (1981), "Effects of Inflation on the Pro-
fitability and Valuation of U,S, Corporations", Working Paper
3-81, Rodney White Center for Financial Research, University of
Pennsylvania, Philadelphia.



- 110 -

FUCHS, G. (1976), "Asymptotic Stability of Stationary Temporary Equilibria
and Changes in Expectations", Journal of Economic Theory 12, 201-216.

FUCHS, G. (1977a), "Dynamic Role and Evolution of Expectations", in Systeémes
dynamiques et modéles économiques, Proceedings of a C.N.R.S. Interna-
tional Meeting, Vol. 259, 183.

FUCHS, G. (1977b), "Formation of Expectations. A Model in Temporary General
Equilibrium Theory", Journal of Mathematical Economics 4, 167-188.

FUCHS, G. (1979a), "Dynamics of Expectations in Temporary General Equilibrium
Theory", Journal of Mathematical Economics 6, 229-252.

FUCHS, G. (1979b), "Are Error Learning Behaviours Stabilizing ?", Journal
of Economic Theory 3, 300-317.

FUCHS, G. and G. LAROQUE (1976), "Dynamics of Temporary Equilibria and
Expectations”, Econometrica 44, 1157-1178.

GALE, D. (1973), "Pure Exchange Equilibrium of Dynamic Economic Models",
Journal of Economic Theory 6, 12-36.

GRANDMONT, J.M. (1983a), Money and Value, Econometric Society Series,
Cambridge University Press.

GRANDMONT, J.M. (1983b), "Periodic and Aperiodic Behaviour in Discrete
Onedimensional Dynamical Systems", CEPREMAP D.P. N° 8317. Also avai-
lable as a Technical Report of IMSSS, Economics, Stanford University
and a Technical Report of EHEC, University of Lausanne.

GRANDMONT, J.M. and W. HILDENBRAND (1974), "Stochastic Processes of Tempo-
rary Equilibria", Journal of Mathematical Economics 1, 247-277.

GRANDMONT, J.M. and G. LAROQUE (1973), "Money in the Pure Consumption
Loan Model", Journal of Economic Theory 6, 382-395.

GRANDMONT, J.M. and Y. YOUNES (1973), "On the Efficiency of a Monetary
Equilibrium", Review of Economic Studies 40, 149-165.

HAHN, F.H. (1982), Money and Inflation, Basil Blackwell, Oxford.

JENSEN, R.U. and R. URBAN (1982), "Chaotic Price Behaviour in a Nonlinear
Cobweb Model", Yale University, mimeo.



- 111 -

KYDLAND, F.E. and E,C, PRESCOTT (1982), "Time to Build and Aggregate
Fluctuations", Econometrica 50, 1345-1370,

LI, T, and J.A. YORKE (1975), “Period Three Implies Chaos", American
Mathematical Monthly 82, 985-992,

LUCAS, R.E. Jr. (1972), "Expectations and the Neutrality of Money",
Journal of Economic Theory 4, 103-124.

LUCAS, R.E., dr. (1975), "An Equilibrium Model of the Business Cycle",
Journal of Political Economy 83, 1113-44,

LUCAS, R.E., Jr. (1977), "Understanding Business Cycles", Journal of
Monetary Economics 3 (Supplement), 7-30.

LUCAS, R.E., Jr. (1980), "Methods and Problems in Business Cycie Theory",
Journal of Money, Credit and Banking 12) 696-715.

LUCAS, R.E., Jdr. (1981), "Tobin and Monetarism : A Review Article",
Journal of Economic Literature 19, 558-567.

McCALLUM, B.T. (1980), “Rational Expectations and Macroeconomic Stabili-
zation Policy", Journal of Money, Credit and Banking 12, 716-746.

MAY, R.B. (1976), "Simple Mathematical Models with Very Complicated
Dynamics", Nature 261, 459-467,

RAND, D. (1978), "Exotic Phenomena in Games and Duopoly Models",
Journal of Mathematical Ecohomics_g, 173-184.

SARGENT, T.J, and N. WALLACE (1975), "Rational Expectations, the Optimal
Monetary Instrument, and the Optimal Money Supply Rule"”, Journal
of Political Economy 83, 241-254,

SHELL, K. (1977), "Monnaie et allocation intertemporelle", CNRS Séminaire
d'Econométrie Roy-Malinvaud, Paris, mimeo.



- 112 -

SINGER, D, (1978), "Stable Orbits and Bifurcations of Maps of the
Interval”, SIAM Journal of Applied Mathematicg 35, 260,

STIGLITZ, J,E, (1983), "On the Relevance or Irrelevance of Public
Financial Policy : Indexation, Price Rigidities and Optimal
Monetary Policy", NBER Working Paper 1106.

TILLMANN, G. (1983), "Stability in a Simple Pure Consumption Loan
Model", Journal of Economic Theory 30, 315-329.

TOBIN, J. (1980), Asset Accumulation and Economic Activity, Yrjo
Jahnsson Lectures, Basil Blackwell, Oxford.

WILKINSON, J.H. (1965), The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford.




- 13 -

APPENDIX

A. STABILITY AND LEARNING.

The purpose of this Section is to prove Proposition 3.1
We assume therefore (1.a), (1.c), (2.4), (2.g) and (3.h) ,
and consider a periodic equilibrium
(pI,...,pE) and the associated cycle (ez,...,ef) of the map . We
wish to show that if (e;,...,ef) is ¢-stable, then (pI,...,pE) is

stable in the sense of (3.1).

As a matter of fact, it will be more convenient not to work
directly with the backward perfect foresight dynamics on equilibrium

real interest rates described by

1

(A.1) et-l = @(et) = Zé (Zz(et)/et)

but rather to use the backward perfect foresight dynamics on equilibrium

prices that is deduced from (A.1l) through the transformation (see (2.7))

(A.2) Py = M/z5(04 1)
This yields
' -1
(A.3) pt = Met/zz(et) = pt+1 22 (M/pt+1))

Note that (A.2) defines a differentiably decreasing function Py = c(et_l)
that maps (6,+~) onto (0,+») . On the other hand, (A.3) defines a func-

tion Py = @(pt+1) that maps the interval (0,+~) into itself, and one has

-1 L. e '
$ = o gotg . Then it is  not difficult to see that
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(pk,...,p1) is a cycle of ¢ , and that the periodic orbit (ek,...,e1)
is @-stable if and only if

* * *

06X (o1 = [o'(p)] ..o Jo' ()] < 1

1 1 k
What we have to show accordingly is that if this condition is satisfied
then all the eigenvalues of the Jacobian matrix DWk(qI) (or equivalently
of DWk(q:)) have a modulus less than 1 , in which (qI,...,qE) is the asso-

ciated periodic orbit of W as in Lemma 2.2, i.e.

* * * * *
q; = (pi”'"pl’pk""’pl"")
for i = 1,...,k .

The advantage of working with the map ¢ instead of the map ¢

is most clearly seen if one remarks that (A.3) may be rewritten as

Pee1 22(Py/Pryp) = M

This is nothing else, of course, than the temporary equilibrium equation
(2.3) in which the expected price w(pt,pt_l,...,pt_T) has been replared
by its "true" value Pigq - Since (2.3) defines implicitly the temporary

Walrasian equilibrium function, we have

(A.4)  W(pg_gs-nnsPyq) = QLU(H(PL_ 1o vsPp 7)sPp s sPe )]

As an incidental remark, we note that we may assume without
any loss of generality, for the purpose of the present proof, that T
is a multiple of k , that is T = mk for some integer m > 1 . Indeed
it is always possible to take into account an arbitrary number of ad-

ditional past prices as fictitious arguments of the expectation functiony .
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Let Wj(q:) be the partial derivative of W with respect to Py_;
for j =1,...,T , evaluated at (pt—l""’pt-T) = q: . By differentiating
(A.4) and by using assumptions (2.g) and (3.h) (or equivalently (3.4)), we

1
get

*

1) =0 forall j=1,...,

(A.5) For every i = 1,...,k , one has Wj(q
T(=mk) , except for those of the form j = nk-1 , for which one
*
has Wj(q:) = @'(p?+2) wj(p:+l,qi) (here the integer n runs from 2
to m+l when k=1 , and from 1 to m when k > 2) . Accordingly, for

all such n , wﬁk—l(q:) has the same sign as @'(p?+2) , and one has

In Mnke1(ad) = 2'(p3,,) -

Our next task is to evaluate the Jacobian matrix DWk(q;) .
We first remark that in view of (2.5), one has for every

q = (ql,...,qT) in the interior ofIRI

(A.6) H(q) = (W(Q),ays--esGp_q)

Thus we get by differentiation of (A.6)

*

. * * N *
We use the convention Prsh = Ph and the notation wj(p1+1,qi) stands

for §X(PiyqsPyse--sP]sPpseee) -



Wi(q) Wé(q) Wé(q) ............. wT_l(q) w+(q)

l 0 0 * * L B 2 * 0 0

0 1 0 e 0 0
DH(q) =

0 0 0 ... veres O 0

0 0 0 i, 1 0

If k =1 (hence T = m) , we are done since it suffices to make q equal
to the stationary vector q* in the above matrix. When k > 2 , one could
compute DWk(qI) with the help of the above matrix by using the fact that
Dﬁk(qz) = DW(q:)...DW(qI) — see (3.1) — and by using the restrictions
stated in (A.5). It turns out that it is more convenient to proceed

directly. To this effect, we may introduce recursively the "iterates"

of Wby W' = Wand for h > 2
h h-1
(A.7) Wi(a) = W T5(a) s e s M(9) 3070 sy pyg)
That is, if we start with q = (pt-l""’pt-T) , then wh(q) is the

temporary equilibrium price at date t+h-1 , for all h > 1 . With this

notation, it is clear that



- 117 -

(A.8) W(q) = 0W"(Q)s .. H(Q) 10y aap_p )

In particular ,Wh(q) = W(Wh-l(q)) .

Let aij be the element of Dﬁk

(q]) that lies in the ith row
and the jth column for i,j = 1,...,T . Of course aij is the partial
derivative of the ith component of Wk(q) with respect to qj , evaluated
at the point qI of the periodic orbit (qI,...,q;) . Then partial diffe-
rentiation of (A.8) with h=k , shows immediately that if i > k+l , then

a.. =11if j = i-k and a, is the partial

1]
derivative of wk"+l

j= 0 if j=zi-k . For l<ick , aij

(q) with respect to a; > evaluated at qI , 1,e.

awk-1‘+1 .
— (ql) . Differentiating (A.7) with h = k-i+l yields for all

i = 1,...,k and J = 13'--3T

oW

f gk * 1 *
(A.9) a,. = Zl Wo(ay_541) . (ql)] Wi (i)

1]

k=1 k-i+1-£
p

J
whenever jsT-k+i . If on the contrary, j>T-k+i , then

k-1 k-i+1-£
W *
a,i= |V Wi(ar i) 2 (q7)
13 [K:l LM k-7+1 b 1

Now if 2 < i ¢ k , then k-i < k-2 , and thus in view of (A.5) ,

wé(qz_i+1) = 0 for all £ < k=i : all the terms of the sum between the

A

brackets in (A.9) vanish. In that case, a;y = 0 forall j=1,...,T,
except for those j that satisfy k-i+j = nk-1 , or equivalently
J = (nk-1) - (k-i) for n = 1,...,m (we recall that T = mk) . For those

. 1 *
j » one has 335 = wnk-l(qk—i+1) .
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Finally if we specialize (A.9) to the case in which i =1 < k ,

then in view of (A.5), we get.that

] * ] * 1l *
315 = We-1(ag) Wylag) + Weyg1(ay)

ifj<T-k+1,and a5 = w&_l(qi) wj(qi) otherwise. QSing (A.5)

j = 0 for all j , except for those of the form

s - . - . . = ! * *
j = nk-1 with n=1,...,m, in which case a5 wk-l(qk) wnk-l(ql) R

again yields that ay

and for those of the form j = nk withn =1,...,m=1 , in which case
. *
335 = Wna1)k-1 (%) -

To summarize our findings, we see that we may partition, for
every k > 1 , the Jacobian matrix Dﬁk(qi) into m2 submatrices of dimen-

sions (k,k) as follows

B e Ao A 1A
I 0 0 ..u.... 0 0 o0
0 I 0 ....... 0 0 0
Dﬁk(qi) e
0 0 0 ....... 0 0 0
0 0 0 ...... I 0 0
0 0 0 ....... 0o 1 o0 |
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in which I is the (k,k) unit matrix, 0 is a (k,k) matrix of which the

elements are all 0 , and for each n=1,...,m, the matrix An is given by

0 0 0 ...... We ¥t wk,n+1
wk-l,n 0 0 ...... 0 0
0 We-2.n 0 ...... 0 0
An o P
0 0 0 ...... 0 0
] 0 0 0...... Win 0

with Win = w.nk-l(q?) for i =1,...,kand n=1,...,m, and with the
additional convention that Wemel = w|(m+1)k—1 (q;) vanishes when k > 2 .
Indeed, this translates exactly the results we obtained for the case

k >2 . As for the case k = 1 , each matrix An reduces then to its top
right element wl’n+1 , which is equal to WA(q*) with q* being the fixed

point of W under consideration.

Note that with this notation, (A.5) means that given i = 1,...,k,
all Wi have the same sign and Zn Wo = @'(p:+2) (here again n runs from

1 to m when k > 2 and from 2 to m+l when k = 1).
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Our purpose, we recall, is to show that |®'(pz)...¢'(p;)| <1
implies that all eigenvalues of DWk(qI) have a modulus less than 1. These

eigenvalues are the solutions of the characteristic equation

det (D (q]) - AI) = 0

in which I is this time the unit (T,T) matrix, It is known that given
the specific form of the Jacobian matrix Dﬁk(qZ) shown above, this
characteristic equation may be written equivalently det(B(r)) = 0 , in

1
which B(2) is the (k,k) matrix that is equal to

m-n A

-— m -
B(x) =AM 1 ]

n

I~
>

(here I denotes the (k,k) unit matrix). We claim

(A.10) The characternistic equation of Dﬁk(q*) has the foam
1

T .
KT - z T-J =0

B. A
j=1 J

in which alt Bj have the same sign and Zj Bj = D@k(p:) .

1 ., In that case,

]

The claim is in fact immediate when k
m=T and since the characteristic equation reads det(B(r)) = 0 , we have
Lk . . * . . ~ .
Bj = wl,j+1 = wj(q ) » in which q 1is the fixed point of W under consi-
deration. Then, in view of (A.5), all Bj have the same sign and
Zj Bj = @'(p*) » With p* being the associated fixed point of ¢ , i.e.

q* = (p*,p*,...).

1
See Wilkinson (1965, pp. 33-34).
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We turn now to the more complex case in which k 2 2 , By em-

ploying the expressions of the matrices An given above, we obtain

i AM 0 0 wk1b1(x) -ck(x) i
b, () A" 0 everereerrernrnnes O 0
0 D) AT e 0 0
B(A) =
0 0 0 teeeiieeeiaan, AT 0
o 0 0 e b, (3) o

with, for i = 1,...,k
b;(A) = T w. A

and

n

? "
¢, (1) W A
k 21 kyn+l

We may develop det(B(1)) with respect to the elements of its

first column. We get then



—b 0 tiiiiiniineeiaaas Wk1b1

by (M) AT 0
detB()) = A™4b, _(A)det | rriiinnn, e,

0 0 et AT

0 0 i -b1(x)

By pursuing along this Tine, we obtain finally

Wi bl(A) -ck(x)
det(B(2))

i
>
<+
o

=
§
—
——
>
—

...bZ(A) det

-bl(A) A

and thus

det(B(x)) = A" = b,_1{1) ... by(A) (W, A+, (0)

If we recall that Wi = 0 whenever k > 2 , we see that

il
det(B(x)) = A™ - Aby (1) ... b, (1)

or equivalently

(A.11) det(B(x)) = A" - a( ;l . Y (T W, A
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This expression shows clearly that Abl(x)...bk(x) is a poly-
nome in A of degree (m-1)k+l , which is less than T=mk when k > 2 ,
Thus in order to show (A.10), we must show that the coefficients of

the polynome

m m
by(A).-b (A) = (L wy, A" (] m=ny

w A
n1 n=1 kn

have all the same sign, and that their sum is equal to

D@k(p:) =o' (p1).-.2" (py)

km-j

Now the coefficient of A in bl(x)...bk(x) , for j = ky...,km , is the

sum of all products of the form Wi eee W such that
Ny knk
n1+...+nk =J , withm> ny 2 1 for all i =1,...,k . Since

Wip = wﬁk—l(q:) , in view of (A.S) » each such product has the same
sign as D@k(p?) . Thus all coefficients of the polynome bl(k)...bk(x)

have the same sign. Next, their sum is equal to

) j )
e W ce W = () wi ). Wy, )
n1=1 nk=1 1n1 knk n=1 In n=1 kn
= o' (p]) ... o'(p)
k
= Do (p})

This completes the proof of (A.10). The Tast step of the
proof of Proposition is to show that |D¢k(p:)| < 1 implies that all
solutions of the characteristic equation of DWk(qI) have a modulus
less than 1. By virtue of (A.10), the characteristic equation of

DWk(qI) reads
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T .
D S A Lt
j=1

in which all Bj have the same sign and Zj By = D@k(p:) . Let us assume

i
De¥(p})] < 1 . This implies

|Zj le = Zj|3jl <1

Now, suppose that there exists a particular eigenvalue X that has a

modulus [X| greater than or equal to 1 . Since

- T T-j - T-j
X" = IZj Bj A | s ZJIBj|IA|
one gets by dividing by |X|T
1 RIS Ay
< LleylIXIT s 15084l

which yields a contradiction to the assumption |D¢k(p?)| <1, The

proof of Proposition 3.1 is complete.
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B. EXISTENCE, STABILITY AND BIFURCATION OF PERIODIC EQUILIBRIA.

The aim of this Section is to prove some of the claims made
in Section 4, namely Theorems 4.3, 4.5 and 4.7. The arguments will be
direct applications of the results reported in Collet and Eckmann

(1980), as reviewed in Grandmont (1983b).

Proof of Theorem 4.3. Under the assumptions of this Theorem, if

oy = SupRz(aZ) <1, or if an > 1 and e* > 1, then © has a unique monetary
cycle 6 = 1 by Lemma 4.2. If e* <1, then o(g) = @(e*) for all 9 2 ¢ ,
and we may focus attention without any loss of generality to those s

which belong to [é,@(e*)]. But the restriction of ¢ to that interval
satisfies the assumptions of Sarkovskii's Theorem (Collet and Eckmann,

1980, Theorem II.3.10, Grandmont, 1983b, Theorem 1). Q.E.D.

Proof of Theorem 4.5. Under the assumptions of this Theorem, the res-

triction of ¢ (or of one of its topological conjugates Q= ho@oh'1)

to the interval [5,@(9*)] (or to [h(s) , $(h(e*))]) is thrice continuously
differentiable, has a unique maximum at e* with 5 < e* < @(e*) , and
Se(e) < 0 for all ¢ in [6,@(6*)] , 0 % 3 (or the corresponding property
for @). Moreover, w(e) > o for all s in (5,6*) , o(8) = & and

©'(8) > 1 . Thus Theorem 2 in Grandmont (1983b) applies to ¢ or ¢ . The
proof is completed if one remarks that (o) belongs to [é,m(e*)]

whenever 9 =2 § . Q.E.D.
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Proof of Theorem 4.7. Here again, we may focus attention on the interval

A, = [éx’wk(e:)l for each A . The result is then a direct application

of Theorems 7 and 9 in Grandmont (1983b). Indeed it is routine to verify
that if one Tooks at the restrictions of N to AA » one gets a full one-
parameter family of C1-un1moda1 maps that satisfies S1, S2, S3, S4" for
each A , as these conditions are defined in Grandmont (1983b). As for

the condition w;(e:) < 0 it is not difficult to verify that it is a topo-
logical invariant (see the Section on topological conjugacy in Grandmont
1983b), so that it is satisfied if and only if X;(u;) < 0 . Dropping

the index A for simplicity, we get by differentiating twice

vy (x(w)) = Vo(u) and by taking into account x' (1) =0 ,
X (w) = vy /v ()

* *
Since vi(u) >0 for all u, X"(u ) < 0 is equivalent to volu) <0,
*

Now by differentiation of vz(p) = uVé(zz + u) , we obtain

= Vylty + weu)

<
~N -
—
o
~—

|

where

Differentiating again,
* * * *
Volu') = Vo(lotu Jo'(w) <0

*
since p(u ) = 0 and p'(u) < O under assumption (7.e). Q.E.D.



