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SUMMARY

The rational expectation model :

Yy =2 E (yt+1 / Ups Up_q ea) + Uy

has an infinity of stationary solutions. In this paper, we are concerned
with the bounded memory model

Vg = @B Wpyq /U Uy ooe Upgn) *+ U

of which the previous model is a 1imit case. We prove that for any a, this
model has a unique stationary solution and that this solution can only tend
to the forward or the backward solution, when K tends to infinity.

Moreover this formulation allows studying the stability properties of

these solutions.

RESUME

Le modéle & anticipations rationnelles :

Ve = @B (ypyg /Ups Up g -n) Fug

admet une infinité de solutions stationnaires. Dans cet article, on

considére les modéles a mémoire bornée :

Ye = @B (Ygpq /Ups g oo Up ) Uy

dont le modéle précédent est un cas limite. Nous montrons gque ce modéle
a une unique solution stationnaire pour tout a et que, si K tend vers
1'infini, cette solution ne peut converger que vers les solutions avant
ou arriére du modéle classique. De plus cette formalisation permet
d'étudier la stabilité de ces solutions.



1. INTRODUCTION

The properties of the set of the solutions of R-E models have
been recently studied by several authors [SHILLER (1978), GOURIEROUX -
LAFFONT - MONFORT (1982), PESARAN (1981), BROZE-JANSSEN-SZAFARZ (1982)7.
The main characteristics of such a set can be presented from the classical
model introduced by SARGENT-WALLACE (1973). Its reduced form gives the en-
dogenous variable at time t : Yi» @S @ Tinear function of an exogenous

. 3Y .
process u, and of the expectation tYte1 of Yesl made at time t :

ny
(1.1) Ye =8 Va1 * Yy

Moreover the expectation is assumed to be rational, i.e. equal to the condi-

tional mean of Yis1 given the information set It available at time t :

A% .
(1'2) tyt+1 = E (yt+1 / It)
and It is assumed to be equal to :
(1.3) It = {ut, Up_ 15 --ee- }
Thus the reduced form is :
(1.4) Yy = @ E [yt+1 / Ugs Up g ----1 + Uy

In-the sequel, model (1.4) is called "model with infinite memory".
The solutions of this model have been given in GOURIEROUX-LAFFONT-MONFORT (1982).

For convenience, we consider the case in which the process u is stationary and



has an ARMA(p.q) representation :

(1.5) o(B) ug = o(B) et

where B s the lag operator, e is an independent white noise, o(B)

and o(B) are lag polynomials with respective degrees p and q

o(B)
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These polynomials have their roots outside the unit circle and have no

common roots.

If |al] <1 , the model (1.4) (1.5) has a unique stationary solution,
“the "forward" solution :

o(a) )
¢{a

1 » o(B
Yoo = B-a [P %) m‘rl“t

If |a] > 1 , there exists an infinity of stationary solutions :

JE— __—B-——" . «
Ye T A Yor t (1-2) Yig A€ R , where y,, = g—7u; fIs the

"backward" solution.

For any a , the other solutions can be obtained by adding to a statio-

;L-M , where M, is a martingale
at t t

(with respect to It ) . Thus the set of all solutions, stationary or not,

nary solution a process of the form



has a great number of elements. In particular if we consider a solution

y there exists an infinity of other solutions y* such that the variables
y% and Y are equal for a given date t0

o o

In this paper we examine the set of solutions for a model with "bounded
memory” : It = {ut s ut—1""’“t-K+1} with given K | At each increase
of t a new observation of u appears in the information set and the ear-
Tiest one disappears ; there is some moving of the information set I

t
The associated model is :

"y
(1.6) Yo T BV Uy T e B Dg/upug ]y

What is the value of studying such a model ? In general a model with infinite
memory is introduced as a limit case. It can be considered as the limit of
model given by (1.6) when K tends to infinity and it is interesting to
examine whether the properties of the 1imit model are or are not related
to the properties of the bounded memory models. As it will be seen in the
next section, the undesirable properties of the set of solutions of (1.5)
disappear if the memory is bounded. For instance in subsection 2.1, it is
shown that for any a , the model (1.6) has a unique stationary solu-
tion. If K tends to infinity (subsection 2.2), this solution can only
converge to the forward solution or to the backward solution depending

on the value of a . This property can be seen as a way of selecting a
solution in the model with infinite memory. In subsection 2.3 it is shown
that a solution is characterized when it is known at a given date.

Finally we establish in 2.4 some stability results on the backward and



forward solutions under some change in the exogenous process. Some proofs

are gathered in section 3.

2. THE SET OF SOLUTIONS OF THE BOUNDED MEMORY MODEL.

2.1 - Stationary solutions.

The determination of stationary solutions is meaningful when
the exogenous environment is also stationary. In this subsection, we assume

that the prediction E [u ] is a linear combination of

1/ Yool

Ut -k ° k =1,...,K with coefficients independent of t
K
' 0\
(1.7) E [ut+1/ut"“’ut‘K+1] kz1 Ok Yea-k AK\B; uy
: K k-1
with A (B) = kzl oy B

This assumption is for instance satisfied if u 1is a stationary gaussian
process or if u has an ARMA(p,q) representation with an independent

white noise.

PROPERTY 1 : The bounded memory model has a unique stationary solution
rRUFERIT 1 . K
. L. = T
such that the expectation E Lyy ,/uisc..sup yoq] L Crr Yeat-k
is linear with respect to Ut 1ok @ k=1,...,K . This solu-

tion is given by :

_ 1 f a . )
Ve = p—a B Tmaga U B ABIT



K

Proof : Let us denote by C, (B) the lag polynomial : C,(B) = ) ¢, B
k=1

If we replace in the equation Yi = 2 tyt+1 + Uy the expectation by

k-1

CK(B) up » we obtain :

Yp = 2 CK(B) up + U = (a CK(B) + 1) u
Therefore we have :

et = F D /upee sty
E [(a Ce(B) + 1) up, q/Upsevnstly g y]

&}

. a -
(1 + 2 cq) Elug q/upseeastp g d + g 16(B) - cqpduy

1

a
(1 +a C1K) AK(B) u + g (CK(B) - C1K) Uy

By comparing this expression with the initial expression of the prediction,
we deduce that

Ce(B) = (1+acy)AlB) + -g‘-(cK(B) - ¢y

1K
By replacing B by a , we obtain :

(1 +a C1K) AK(a) - Cig = 0
A(a) . .
= Cig = T_tﬁﬁ_KETET if 1 -a AK(a) =0

A (a)
. - 1 K
Therefore : C,(B) = T=3 A(a) A(B)  + % [FK(B) T T A AR J

B A(B) - a AK(a)

(B-a)I[l-a AK(a)]

There exists a unique stationary solution which is given by :
—_ /
Vi = [a CK\B) + 1] Uy

_ a B [AK(B) - AK(a)] +B -a .
(B -a)l1-a AK(a)]

o1 Ty, 18 A(B) 4 u
B-a [ 1-a AK(ai |t

Q.E.D.



!

In general this unique stationary soluticn does not belong to the set of
the solutions of the infinite memory model. More precisely we have the

following property :

PROPERTY 2 : Let us assume that the exogenous process has an ARMA (p,q)
representation. The solution of property 1 is a solution of
the infinite memory model if and only if q =0 and p<K

In this case this solution coincides with the forward solution.

Proof : The stationary solutions of the infinite memory model are :

"yt = >\y0t + (1 ">\) ‘y1t

B o(a) o(B) - ra o(a) o(B)

(B - a) 2(a) o(B) u

t

A necessary condition for the solution of property 1 to be also a solution
of the infinite memory model 1is that :

B o(a) o(B) - ra o(a) &(B)
(B - a) ¢(a) o(B)

is a lag polynomial of degree smaller or equal to K-1

Thus a , which is a root of the denominator, must be a root of the nume-

rator. This implies A =1 and the solution can only be equal to the for-

ward solution. Moreover, since & and © have no commonh roots,

B #(a) o(B) - a o(a) o(B) and o{(B) have no common roots. Therefore

it is necessary that g =0 , i.e o(B

The solution Vi = .§_§«5 [B - a T_;_E——;KET'] Uy is equal to the forward

solution y, = o (5 - a 2(8) } u, if and only if : 1 - B A(B) = o(B) or
a | o(a) | "t K

equivalently 1if and only if K=p
Q.E.D.



When the exogenous process is autoregressive of order p , the solution,
which depends on K , becomes fixed for K > p . In particular obviously
this solution converges to the forward solution if K tends to infinity.
Therefore for an autoregressive exogenous process, the forward solution

is the only solution of the infinite memory model which may be considered

as a limit case.

2.2 - Convergence of the stationafy solution when K increases.

Although the solution does not belong in general to the set
of solutions of the infinite memory model, it converges to this set. The
Timit depends on the value of a and can be the forward solution or the

backward solution.

PROPERTY 3 : Let us assume that u has an ARMA (p,q) representation with
qg>1 and let us denote by lg£] the minimum absolute value
of the roots of o
i) If la] < |g| , the solution converges in quadratic mean
to the forward solution

ii) If Jal > |g|] , the solution can only converge in quadra-

tic mean to the backward solution.

Proof : Let us consider the prediction on the infinite sample :

A,(B) uy with A (B) = ] o, B
fee) ool k:1 oC

k-1

~1 8

E [ut+1/ut,ut_1,...] i O ut+1—k

I

.
This asymptotic Tag polynomial is equal to : Aw(B) = % [1 --g%;%J .



Moreover since an ARMA process is a regular process (DOOB (1953)),

A, (B) u, converges in quadratic mean to A_(B) u, when K tends to

K
infinity.

Therefore to study the asymptotic behaviour of the solution
i a oo e
75 (8- T3 A (a) [1 - B A(B)I) u , it is sufficient to know
the asymptotic behaviour of the sequence AK(a)
It is proved in section 3 that :

i) if la] < |g| AK(a) converges to A (a) . Thus the solution

converges to :

(8- T‘“a_aA:(éT [1-8A(B)]) u,
1 [? _, ofa) o(8) ] "
B - a #{a) ©o(B) t
that is to the forward solution.
i) if [a| > |gl . the sequence A.(a) is unbounded.
There exists a subsequence K. such that lAKn(a)l tends to infinity
and for this subsequence the solution converges in quadratic mean to :
E—Emg Up i.e the backward solution.
The possibility of a convergence for the whole sequence depends on the
presence or absence of complex roots of © with modulus smaller than

lal

Q.E.D.

2.3 - Determination of the solution by an initial condition.

We now consider all the solutions,stationary or not, and their

characterization by their knowledge at a given date tO



PROPERTY 4 : Let us assume that the exogenous process is a gaussian process,

such that :
K
DB Qug /U estpq g d = Logl) U gy
with o, (t) =0 ¥t and
T1) V QU q/Upseeesly g ] = 0 =0

Then a solution y of the bounded memory model is determined

by the knowledge of the random variable Yy
"0

Proof : Let us first remark that the exogenous process is in general non

stationary since the coefficients S and the conditional variances may

depend on t

i) The knowledge of Yy for t < to is a direct consequence of the
equation :

— i
Yi = a E Lyt+1/ut,“,.,ut+1_K] * Uy

ii) Let us now examine the knowiedge of future values : Y o t > to

A solution y,_ 1is an integrable function of u_,...,u
t t t+1-K

M ERRE e

The functions ht satisfy :

1] = akElh

hy TugsUy gseeeslp gy pag (Upyqoeeslpyp g /Upse e sy g gd + Uy

= a JIR hipqlusUpseeug o b flu/upseni,ug o) du sy
where . (u/ug,...,u 4 ) s the conditional density function of

Up,q given ug,...,up . o . Since U s a gaussian process fy s
given by :

f, lu/u u 1 = 1 exp - —— (u - 5 (t) u )?

A oy vZi P T (g KK Teet -k
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Therefore for any values of UgseneoU , we have :

t+1-K

_ 1
h(ugsuy gsenist g ) = a JIR he g (Ustpsesuy o) o 7
1 K
exp =gz (Um Lo (8 Uy )T du ey

K
. 1
&= I (ug,enug @) - ud exp - A (kz1 o (B) ug g ) )?

1 [ u2
= a h_ ,lusu,,...,u V= exp | - —
J]R t+1 t t+2"K Gt v p L Zczt]
u K |
exp ( E%Vk21 o (t) ut+1—kJ du
Let us denote : v Upprok °
.ok %
9(v) = I (et oV) = gl P - | Tt U o) V) and
t RK=
K 1
v - 1 u
Gpoq(u) = @ hy g (Ustpsosuy o ) o 7o P J ‘%’k=1 gt ut+1—k}
We have for any v
aKK(t) 1
(v) g, . (u) ex I uv | du
% Jﬂz 941 P LTS ]
Since aKK(t) = 0 , the function g, can be interpreted as a Laplace

transform of the function §t+1 . Therefore by inversicn of the Laplace
transform, we deduce that Et+1 is uniquely determined from 9y and also

that ht+1 is uniquely determined from ht . This gives by forward recursion
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the knowledge of Yi oo t>t

o ° from that of yto

Q.E.D.

It is easily seen that the form of the function ht has no importance in
0

the previous proof. Thus a solution corresponds to any initial condition
Yo = hoo (ug ,u. _seeauy o)
t t to t -1 t0+1 K

0 (0} 0

2.4 - Effect on the solutions of a structural change in the exogenous

process.

In this subsection, we consider an exogenous process such that :

E [ t) u A,,(B) and we are inte-

Up g /Upseeestie g i () Uy kt

i e~1R

k=1

rested in the solutions y such that E[yt+1/ut""’ut+1-K]

K

- kZ1CkK(t) Uparok = Cxe(B) Uy

Such a formulation (PRIESTLEY (1981)) has the advantage to preserve the
linear aspect of the model and, as it will be seen, it allows to study

the influence on the (Tinear) solutions of some change in the exogenous

process.

PROPERTY 5 : i) If for any t aKK(t) z 0 , the (linear) solutions vy
are such that the successive lag polynomials CKt(B)

satisfy :
1 : CKK(t)

Fach solution is characterized by the knowledge of Yy
0
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ii) If for a date to t ) =0 , there exists an

ek (o
infinity of (linear): solutions compatible with a given Yy
0

Proof : i) Since E [yt+1/ut""’ut+1-K] = CKt(B) ug o, we obtain by
replacing in the mcdel :

yg = [+acy ( )1 ug
and

[1+aC

Y K st BIT Ui

Cy e4+1(B) = a cqles)
B

+ u

[1 + a c1K(t+1)] u

t+1 t

Therefore @ Ely, 4 /Upseeosty g ] = {[1 +a ¢y t+)] A (B)

a CK,t+1(B) - a c1K(t+1) }
B

Yt
By comparing with the initial expression of the prediction, we deduce

that :
C et (B) = @ cyplte)

CKt(B) = [1 +a C1K(t+1)] AKt(B) + 5

The equality of the terms of degree K-1 implies :

CKK(t) = [1 +a C1K(t+1)] uKK((%) T
. 1 1
ands if O('KK(t) 0 C1K(t+1) = '5 [: KK"('.—t‘)- -1 ‘J

By replacing in the difference equation giving CK R have :

-] 1
Ceest(B) = 3 BC  (B) - 11 + 2 T (6] [1-BA.L(B)]
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If Ye is known, the Tag polynomial CKt (B) 1is also known and, by
0 0

applying the previous difference equation, we see that CK t(B) and

2

Yt t> to are perfectly determined.

ii) 1f aKK(tO) =0 and if y 1is a solution, it is necessary that

CKK(tO) =0 . The relation :

at (B) - a cyp(t+1)
CKt(B) = [1 +a c1K(t+1)] AKt(B) N K,t+1 : 1K

leads to a system of linear equations in ckK(t+1) k = 1,...,K which is
not of full rank. Therefore there exists an infinity of solutions compatible
with a given possible CKt'(B)

(0]

Q.E.D.

Let us now examine the case in which the process u coincides with a

stationary process after the date to - K+ 1

il

The lag polynomial AKt is independent of t for t > to : AKt AKt

¥ t> to , and the relation between CKt+1 and CKt becomes :

1 et
CotefB) = F[BC(B) - 11 + 7 (T [1-8B AKtG(B)] ¥t>t
Let us introduce the vector : CKt = [C1K(t),...,cKK(t)]' ; we have :
_ 1 ‘
CK’,t+/| - [- E ,O.--O] + th CKt t > to
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o
‘ “KK(f;7

-—
»

1 . ) 0‘K1(to)
N . “KK{to:

where r =

=
—+
QU |~
’
d

. .o e

_ SR
Ormeeee et 0 1 eI

The sofution of this Tinear difference equation can be written as :

C. = ¢ + rttoc -k
Kt K ke, ke, T Gk

*
where CK is a constant solution of the equation. Such a particular solu-

*
tion is easily obtained by taking the vector CK associated with the sta-

tionary solution of the model : y, = a Elyg  /viseeosvy 0] + vy

where the process v is stationary such that :

Elv ] = A B) v ¥Vt

g1/ oo Vean oK keolB) Vi

There remains to examine the Timit properties of the sequence CKt and for

this purpose to study the position of the eigenvalues of th with
)

respect to 1

PROPERTY 6 : The eigenvalues Ay of Ty are such that
0

ai; is arootof 1-z AKt (z)

Proof : We have :
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-ax 0

1 -a A
det [a FKto -axIl = det 0 1

0 0

By developping with respect to the elements of the last column, we obtain :

(-1)K
det [a Tyg — @A I1 = = £ (1
0 “kK' o

follows.

*

PROPERTY 7 : C,, converges to C

-a A AKt (arx)] and the result
o

Q.E.D.

» when t tends to infinity if and

PROPERTLY 70+ Byt K
only if : |al > |n] , where |n| is the maximum absolute
value of the roots of 1 - z AKt (z)
0

Proof : This is a direct consequence of the previous property.

Q.E.D.

Let us now consider an exogenous process u obtained by disturbing an

ARMA(p,q) process v such that : E [
¥ t . For instance, we may assume that up =

for t >t0 - K+1 with KO> K

Vet Vo

. If before t_ - K
0 0

A, (B) v
kto'o) Vi

for t< tO - KO and

the evolution of

*
the endogenous process was associated with the stationary solution CK ,




between to - KO and to - K+1 ,the CKt satisfy the non stationary

difference equation of property 5. Thus CKt is usually different
from C; °

However, since after to - K+1 , the process u coincides with v
again,the solution converges to the stationary one depending on the posi-
tion of |{a| with respect to |nl| (property 7).

Since we know from property 3 that the stationary solution converges

to the forward or to the backward solution, the previous result can

be viewed asymptotically as a stability result on the backward or for-
ward solutions. Therefore it is important to study the asymptotic beha-
viour of |n| and in particular to examine if this sequence converges
to the maximum absolute value of the roots of 1 -z A (z) . Unfortu-

nately this result is not valid and this can easily be seen by conside-

ring the case of a MA(1) process v

T 0y

For such a process it can be deduced from property 9 that the lag poly-

nomial AK is given by :

K Ky k-1

1 [ k-1 2K+1 I

Alz) = = oL () 6 Lol
K 1 - 0 K+1 L Ko G B
2"
I - aen T

PROPERTY 8 : If v_=¢_ -0 ¢_, is a MA(1) process :

¥ a>0 2K ¥ K>K

Al el ~osqereal U ol -a, lo] +a]
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Proof : i) Let us consider a root z of the equation : 1 - z AK(Z) = 0
[ (z0)" (ket) 1 - [Zlk 1

s _ 1 . 1 - (z6 2(K+1)_ ) -

= }_ff?;TU??TT L vz e v 0 £ Tz I -0

By reducing to the same denominator, we obtain :

(1 - 62K+2) (1-902) (6-2) = -6z (0 -12) (1 - 0%
+ (1 - oz) (62K+22 _ ZK+1 6K+2)
or equivalently :
(%) K200 KT, K3y g L 2Ky 2K
Therefore :
GO T PIL ST S S TR T P p2Keb 2K g

If asymptotically the absolute value of 2z werenot smaller than c¢ > T%T s

we would have :

I .
-ilm Sup 1IZEK’FZ !9K+1 _ 6K+3i )

K

2K+4, 2K+3
| - |e -

- lz| |1 -0 9]

= i s {122 15T S ) -
K ,

and this is not compatible with the necessary inequality (**). Therefore,

for any o : |7] <-T%T + o for K sufficiently large.

ii) On the other hand, for any given o , 1 - z AK(z) tends uniformly
to 1 -2zA(z) for z€ [0, [6] -al U llo] +0o, T%T-— «] . Since A
has no root on this set, the same is true for AK . Then for K suffi-

ciently large |[n| belongs to [|6] -« , [6] +a] U [T%T._ o "T%T + o]

Q.E.D.
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In this particular case of a MA(1) process, the Tag polynomial 1 - zA_(z)
is equal to '6£27 and thus it is clear that the application which asso-
ciates to K the maximum absolute vaiue of the roots of 1 - z AK(Z) = 0

is not continuous.

If we assume that lal < @] , we know from property 3 that the stationa-
ry solution converges to the forward solution, when K tends to « . The
application of properties 7 and 8 implies the instability of this

forward solution.

1 cy . o ,
If lal > ToT > it is directly seen from the expression of AK(z) that
AK(a) tends to infinity and that, from property 3, the stationary solution
converges to the backward solution. We deduce from properties 7 and 8 the

stability of this backward solution.

3. COEFFICIENTS OF THE PREDICTION GIVEN A FINITE SAMPLE.

To compliete the proof of property 3 , it is necessary to
study precisely the sequence of coefficients Gpg k=1,...,K appea-

ring in the conditicnal expectation

K

Elugg/pee o] =0 Lo Yo

3.1 - Determination of the coefficients.

The problem of the determination of the regression coeffi-
cients SN k =1,...,K has already been considered in the literature

on time series (see for instance WHITTLE (1963), AKAIKE (1973)) ; however
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the resolution method we derive is slightly different from those proposed

earlier.

Let us consider an ARMA (p,q) process u defined by &(B) up = o(B) €t
where B is the lag operator, ¢ and © (of respective degrees p and

q ) have their zeros lying outside the unit circle and have no common
zeros, and e is an independent white noise process. The autocovariance

function of u is denoted by v . It is well known that :

1) Y_k = Yk ¥ ok

ii) the autocovariances satisfy : &(B) v; = 0 for i>q+1
o o® o(z) o)

iii) r(z) = ] v 20 = 1
k=-o o(z) of3)

The regression coefficients Gpp k =1,...,K are the solutions of the
linear system :

K -
(3.1) z Ok Yiek = Yi i=1,...,K

k=1
Since this system is homogenous, it can be assumed that the process ¢

has a unit variance.

PROPERTY 9 : If g>1 and 1if K > 2 max(p,q) ., the sequence Qg
k = max(o,p-q)+1,...,K - max(o,p-q) satisfies a Tinear
difference equation of order 2q . The characteristic poly-

nomial associated with this equation is : z% o(z) @(%)
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Proof : a) Let us apply the Tinear operator ¢(F) ¢(B) where F = B!

to (3.1) for i =max (p,gq) + 1,...,K-p . Since o(B) v; =0 for i>qg+l,

we obtain :
~ K
(3.2) kz1 oy o(F) 2(B) Yig = O
i) Since ¢(B) vy = 0 if i>g+l , we have :
o(F) o(B) y;_, = o© for k<i-gq-1

i-k

ii) On the other hand, if k> 1i + g + 1 , we have :

o(B) =0 and, since o(F) #(B) 1is a symmetrical lag

Tk-i
polynomial, o(F) 2(B) Tiog T o(F) o(B) Vs =0

If we delete in (3.2) the terms corresponding to k<i ~qg -1 and
to k> i+ qg+ 1 , we obtain :

Min(K,i+q)
ok o(F) o(B) Yik = O for i = max{p.q) + 1,...,K-p
k=max[1,i-q]

i+
and then : Y o, @(F) @(B) v._
k=f-q KK -k

f1

o for i =max(p,q) + 1,...,K - max(p,q)
This is equivalent to :

k(% % kK o(F) o(B) T =0 for i = max (p,q) + 1,...,K - max(p,q)
:—q 2

Therefore the sequence ayp, , K= max(0,p-q)+1,...,K - max(o,p-q) satifies
the difference equation of order 2q , whose coefficients are given by :

o(F). e(B) v, k=-4,....9
b) The characteristic polynomial associated with this equation is :
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q
29 Y [e(F) o(B) vl ¥

k=-q
Since #(F) o(B) v, = o if k| >q + 1 , this polynomial is equal to :

4o

2% ] [e(F) o(B) v, ] z

k= —co

k

= 24 o(z) @(%) r(z) with r(z)

I
o~
<
~
N

o(z) o(1)
= 29 o(z) o) __f____%_
2 5(z) @(EJ

Q.E.D.

Let us remark that, if q>p , all the coefficients satisfy this
‘equation.

If all the roots E, 5 L= 1s...,9 of © are distinct, the ok
k = max (o,p-q) + 1,...,K - max(o,p-q) are given by :

Do, e oo,
Oy,y = £+ i
kK gop KT oo1 K gk
4
The constants BQK s CQK ¢ =1,...,9 together with the %,k
g = 1,...,max{o,p-q) and DzK T 1,...,max(o,p-q) are

obtained for instance by solving the system of the following 2 max(p,q)

linear equations :
K

(3.3) ) kK Yi-k

k=1

¢ i€ [1,max(p,q)] U [K - max(p,q) +1,K]
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3.2 - Asymptotic behaviour of the coefficients.

The solution Gk studied in the previous subsection depends
on K . The regularity of the process u implies that %y converges

to the component C appearing in the development of the prediction

[ee]

on the infinite samples E [u, ,/ui,u;_45...]1 = kz1 o Yo = ALB) ug
. T o(B) .. .
Since Am(B) = 3 1 - o(B , the coefficients e satisfy a

linear difference equation with characteristic polynomial 24 e(%)

Therefore, assuming for convenience that the roots of o are distinct,

. J 1
o, can be written as o, = 2 ng X
2=1 £
L
Since the sequences gz s 'JE » 2 = 1,...,q9 are linearly independent
€9
the convergence of the oy to s implies the convergence of BQK

to zero and of CQK to C200 . We are now interested in the determina-

tion of the rates of convergence.

1 i

PROPERTY 10 : i) B ¢ =1,...,q9 is at most of order : —% _F—?Z
| £y,

2K -
£
where [g]| s the minimum absolute value of the roots of

0

=1,...,Max(0,p-q) is at most of order -—J~K

€]

ii) DQK s, £

Proof : The parameters G DQK 2 =1,...,Max(o,p-q) , BRK ,
CzK ¢ =1,...,9 are obtained from :

K

k£1 ap Yok Y5 i€ [1,Max{p,q)] U [K-Max(p,q) + 1,K]

or equivalently from :
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akK Y.i_k = Y5 i = 1,-~-,M3X(P,q)

1]
o
-

H

K - Max(p,q) + 1,...,K

K
k—Z %k o(B) Yiog = 0 i =K - Max(p,q) + 1,...,K
_'l—q
) 0
— apy ®(B) vy .. = 0 i=1,...,Max(p,q)
k=K-1-q+1 kK K-i-k+1

If K is sufficiently large the o appearing in the previous equa-
tions depend on the parameters through BgK s CQK R DRK . By repla-

cing the ag N terms of BQK s CQK s DQK we obtain :

K- Max(o p-q) ( ? : } ®)
C — | o(B) vy, .
i (B) (p>q)
+ D,_ o(B) vy i = 0 1=1,...,Max(p,q
k=K-MaX%0,p—q)+1 K k+1 ,K K 1 k+1
g ¢ K-Max(o,p-q) | _,
& Byw € g, o(B) v,_
0=1 2K =g K=K-i-q+1 L K-i-k+1
g A 1 K-Max{o,p-q) 1 )
+ v z o(B) v, -
2:1 'Q/K gK k:K_,i_q+4| gk"K K'1"k+1
2 2
Max(o0,p-q) _
+ ¥ D, o(B) Yooi = 0 i=1,...,Max(p,q)
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This system is of the form :

q q Max(o0,p-q)
_K 1 sP=q
B " .+ 2 . T _ .
221 2K 5g Mg 221 CQK gf Hig 2é1 DQK Vig T 0 , i=1,...,Max(p-c
where Nig o My, » vy, are independent of K
It gives BJLK s DQK as function of CQK
? K Hax{g-p-a) % C ! i=1 Max(p,q)
B, &, A + v, = - ) — W, 1=1,...,Max(p,q
g=1 MK TR =1 2K i a=1 K 55 2
Since : - % C X H is at most of order —- the solutions
’ L, 2K K Mg K.~? '
2=1 £ l£]
K 1
BzK 52 and DQK are also at most of order —

2]

. 1 o(a)
PROPERTY 11 : i) If [a| < |g] , Ac(a) tends to A (a) = [1 Ok

i) If lal > lg] AK(a) is unbounded .

Proof : Let us denote r = Max(o,p-q) . We have :

k-1
A (a) = 2 o a
K Ly kK
r k-r K
k-1 : k-1 k-1
= E o a + E o d + y o a
k=1 KK k=r+l KK k=koret KK
A k-1 Ker g k § 1) k-1
= ) k@ ) Bk &0 * Cok % | @
k=1 k=r+1 \‘2=1 2=1 £, J
r
K-2
+ z DJLK a
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K-2r
T k-1 9 1, et (3g) - 1
= E oy, a + 2 B,, — (£ a)
K= kK 421 K a e N
(a K-2r i
= 1
v+l B ] ' 4 -
* g CQK% '(aiJ la + L Dy at
=1 52 £ - 1 =1
[}

. It directly follows

i) Let us first consider the case la] < £

~from property 10 that Ak(a) converges to

r k-1 § 1 (a r+i
) o a + Cow 3 &;J and this quantity is equal

a
g 2
g,Q

to : A (a) = % ak-1

ii) If [al > |g] , the third term contains geometric series with a

rate of modulus greater than one and therefore this term is unbounded.
Q.E.D.

Let us finally remark that the approach developped in section
3 may be applied to other problems of time series, in particular to the
problem of inversion of an autocovariance matrix (see for instance

AKAIKE (1973)).
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