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1. INTRODUCTION. 

The ridge regression procedure has been introduced by 

HOERL-KENNARD (1970), initially to avoid the ill effects of quasi-colli­

nearity on ordinary least squares estimators. This method consists in 

adding a symmetric positive matrix (biasing factor) to the design matrix. 

In this paper, we examine some interpretations and theore­

tical properties of the ridge regression estimators. In particular we want 

to discuss the usual justifications of this method, such as : 

- the improvement of the OLS estimator for some values of the parameters 

the possibility to include some a priori information on the parameters 

- the property to avoid 11 wrong signs 11 

- and, finally, the advantage of its use to solve the difficulties 

introduced by quasi-collinearity of the explanatory variables. 

In section 2, we recall the expressions of the ordinary 

and generalized ridge regression estimators (ORR and GRR) ; then we 

examine the connection with the principal component estimators and the 

effect of the biasing factor on the length and on the sign of the esti­

mators. 

The GRR estimator can be interpreted as an OLS estimator 

based on transformed explanatory variables and can be characterized in 

the class of such OLS estimators (section 3). 
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In section 4, we construct a confidence region centered 

at the GRR estimator and we compare it with the OLS'one. 

Section 5 is devoted to the proof that, contrary to the 

usual belief, the OLS estimator gives most frequently the right signs 

of the parameters. The optimisation problem, which has to be solved, 

appears to be the dual problem of that associated with Gauss Markov 

theorem. 

Finally, in section 6, using the· interpretation of the GRR 

estimator as an OLS one, we derive, in the two parameters case, the 

necessary and sufficient condition for the transformed explanatory varia­

bles to be less collinear than the initial ones. This condition is compared 

with the condition for improving the OLS estimator. 

2. RIDGE ESTIMATORS. 

2.a The model. 

Let us consider the classical linear model : Y = Xb + u 

where Y is the (n,1) vector of observations on the endogenous variable, 

X is the (n,G) matrix of observations on G exogenous variables assumed 

of full rank G; b is the vector of unknown. parameters and u is the 

error vector, such that Eu = 0 and Vu = o2 I 

sentation 

The 

X = 

matrix X 
G 

can be expressed using the spectral repre-

I µ. 
. 1 1 l= 

P. Q~ 
1 1 

, where the n-dimensional (resp. G. 



- 3 -

dimensional) vectors Pi (resp. O;) are·mutually orthogonal with unit 

length. Denoting by Q the (G,G) orthogonal rnatrix, whose column vectors 

are the Q. 
l 

; = 1 , ... , G it follows . 

G 
x·x = I µ~ Q. Q! = Q diag(µ 2 )Q 1 = Q diag(\)Q 1 

; = 1 l l l 

where diag(\) is the diagonal matrix, whose diagonal elements \. are 
l 

the eigenvalues of X1 X À· = µ~ > 0 
l l 

i = 1, ••• ,G 

2.b The generalized ridge regression estimator (G.R.R.) 

The GRR estimator, introduced by HOERL-KENNARD (1970a,b), 

is defined by: 

( 1) 

where diag(k)is a diagonal matrix of biasing factors 

cular case of equal k. 
l 

k. = K , i = 1, .•• ,G 
l 

k. 
l 

. In the parti-

the previous estima-

tor is simply the ordinary ridge regression estimator (O.R.R.) : 

(2) t(X,K) = 

Th OLS t . t b = (x·x)-1x•v e . . . es ,ma or is obtained for K = 0 

The G.R.R. estimator is generally biased : 

(3) E ~(X,k) = Q diag(\:k)Q 1 b 

its covariance matrix is given by 



(4) 

- 4 -

V Î5(X,k) = cr 2 Q diag[ " - Jq, 
(\ +k)2J 

Therefore the mean squared error matrix of 15(X,k) is 

(5) Rtl>(X,k)J = E[Î5(X,k) - b] [15(X,k) - b] 1 

2.c Linear transformation on the parameters. 

If the initial model is reparametrized Y= zs + u 

where Z = XD and s = o-1b , the OLS estimator of s is deduced from 

the OLS estimator of b by : s = D- 1 b . This property is no longer 

valid for GRR estimator. z•z = D1 X1 XD = D1 Q diag(\) Q'D can be written 

* * * * 
as Z'Z = Q diag(\ ) Q 1 ,where Q is an orthogonal matrix and 

* "i , i = 1, ... ,G ,are the eigenvalues of Z1 Z . Therefore the GRR esti-

mator of s is : 

s(Z,k) = [Z 1 Z + q* diag(k)Q'J - 1 Z'Y 

1 1 * * 1 1 - 1 
= D- [X 1 X + o·- Q diag(k) Q D- J X'Y 

and is equal to o- 1 i(x,k) iff : 

o·-1 q*ctiag(k)q*• 0- 1 = Q diag(k) Q1 

These two matrices are in general distinct, for instance when the linear 

transformation corresponds to a change of units D = diag (a) , where 

a,.> 0 
1 

. However, if D is an orthogonal matrix, D'Q 

\* = \ and s(Z,k) = D- 1 15(Z,k) 

is also ortho­

In particular gonal, 

for D = Q 

variables 

we have : s = Q'b , Z'Z = diag(\) ; the explanatory 

Zi are .mutually orthogonal and the GRR estimator is obtained 
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from the O.L.S. estimator by a diagonal matrix 

'\, 

Si(Z,k) = 
À· 

1 

À·+ k. 
1 1 

S · 1 
i=l, ... ,G. 

À· 
If k. > 0 the term À· 1 

· may be interpreted as a shrinkage 
1 + k. 

1 1 
fraction (VINOD (1977)) .. 

2.d G.R.R. estimator and principal component estimator. 

Let us·assume that the eigenvalues are indexed such that 

Àl?. À2 ?. ••••• ?. ÀG . The principal component èstimator of order r 

(r < G) 

~ r = 
r 
l J_Q. p~ y = 

. l µ. 1 1 
1 = 1 

r 
l _l_ Q. p~ y 

i = 1 IÀ i 
1 1 

may be considered as a limit case of G.R.R. estimator. It can be obtained 

by choosing : k.=O i=l, ... ,r 
1 

(MARQUARDT (1970)). 

k. = + 00 
1 

i = r+ 1, ... ,G 

In this section, we are looking for an ORR estimator giving 
'\, 

the best approximation of br . 

The O.R.R. estimator may be decomposed into 

G 5; 
'tS = \ 1 Q p~ y 

i~l À; + K i 1 

The criterium to minimize is the norm e(K) of the difference between 

the linear mappings transforming Y in ~r and ~ respectively. It is 
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with 
r l G fi:: 

A= I tz- Q.P'. - I _,_ Q p• 
i=l d; 1 1 i=l À1 + K i i 

Replacing A by its expression 

e2 (K) (
_5:_i~ - _l_J 2 + 
Ài + K ~ 

r K2 G À· 

= it Ài (Ài + K) 2 + i=i+l (Ài +
1 

The first order condition is 

Since de2 (o) 
dK 

de2 ( K) 
dK 

= 
r 
I 

i=l (Ài + K)3 

2K 

G 
=-2 I ~<o 

i=r+l À· 
1 

- 2 

and 

À· 
1 

G 
I 

i = r+ 1 ( À . + K) 3 
1 

= 0 

de2(K) 2r ;:,: 0 dK '\, 2 
K 

if K tends to infinity, it is easily seen that the previous equation 

always has at least a solution corresponding to a minimum of e2 (K) 

2.e Study of the 11 shrinkage 11 effect. 

We have seen in subsection 2.c that the ridge procedure 

with ki ;:,: 0 implies a shrinkage of the OLS estimator of the principal 

parameters S = Q1 b . Consequently, we have: \\15(X,k)\\2 = \\s(X,k)\1 2 

~ 

::; \ls\\ 2 = \\b\\ 2 • However this shrinkage effect is only a global one 

and it is interesting to examine this effect on each coordinate of the 

estimator. To simplify the study, we consider the case of two exogenous 
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variables G = 2 such that: 

The ORR estimator is given by 

X'X = [! i] 
Kp -1 

~(X,K) = (X 1 X + KI)-l x·x b = . 1 

(l+K)2 - P2 

and the first coordinate of ~(X,K) is : 

~1(X,K) is a function of K E [Ü,oo[ , whose first derivative is 

d '!51(X,K) 
dK 

b 

This derivative has the same signas a polynomial of degree two, whose 

discriminant is : 

Several cases have to be distinguished depending on the values of b1 
and b2 . The graph of ~1(X,K) is given below in each of these cases 

1) 

f> 1 

K 



2) 

3) 

4) 

5) 
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4 

b 1 < 0 ; 1 bl 1 > 1 b2 1 1 p 1 . 

Î> 1 

t 1 

Î> 1 

Î> 1 

K 

K 
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We see from this example that: 

K 

- the absolute value of ~1(X,K) may increase (see 3) and 4)) 

- there may be one and at most one change of sign (see 5) and 6)). This 

result can be also deduced from a property shown by MACDONALD (1980) • 

Finally let us remark that, when there is a change of sign, 

the limit sign of t 1(X,K) is not always equal to the sign of b
1 

. The 

problem of 11 right 11 sign of the estimator of b1 will be studied in greater 

detail in section 5. 

3. THE G.R.R. ESTIMATOR AS AN OLS ESTIMATOR. 

3.a An interpretation of the G.R.R. estimator. 

~(X,k) 

The estimator t(X,k) may be written under the form 
'\, '\, -1 '\, 

= (X 1 X) X1 Y and therefore may be interpreted as an O.L.S. 

estimator. 

PROPERTY 1 t(X,k) = (X 1X)-l x·v 
'\, G À·+k· G k. 

Where X .l 
1 1 p .Q'. X + .l _1 P.Q'. = = 

1 =1 fi:: 1 1 
1=1 fi:: 1 1 

1 1 



Proof: 

(~·x)-1 = Qdiag[/'i:]
2

Q' >..+k 

and 
'v 'v l'v (x·x)- x·v = 

K 1 

( i~l 
Q. Q. 

l l 

= 
K 1-:;:: 

i~l 
l 

À .+k. 
l l 
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À· l 

(>,..+k.)2 
l l 

Q.P: y 
l l 

Therefore (X 1X)-l X1 y = t(X,k) 

'v 

K >,_.+k. pj] 1c~1 J J Q y 
If'; j 

J 

Q.E.D. 

PROPERTY 2 The column vectors of X are linear combinationsof the 

column vectors of X 
'v 

X = XC with C = Q diag (>..:kJ Q1 

Proof : 

XQdiag[À:k] Q' = [Ji IÀ; Pi Qj] [l Àçj Qj Qjl 

= 
G >.. .+k. 
l , , p Q'. 

. l If'; i 1 
l = l 

'v 

= X 

Q.E.D. 

Therefore to estimate b by ridge regression is equivalent to estimating 

b* = C-l b by O.L.S. and to considering that the resulting estimator 

is an estimator of b (and not of b*) . t can be viewed as an error 

on variables estimator, the 11 right11 explanatory variables X being re-
'v 

placed by the erroneous ones X 
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3.b The risk function of the G.R.R. and of the OLS estimators. 

First let us remark that the comparison of the risk matrices 

R[~(X,k)J and R(b) for the usual order relation («) on symmetric 

matrices is equivalent to the comparison of R[s(X,k)J and R(s) 

The condition R[S(X,k)J « R(S) can be written as 

(6) ' (2 1) .ê..ê__ « diag - + -
2 k À 

(J 

The latter condition may be interpreted in several ways 

a) For the ridge regression estimation procedure to be better than the 

OLS one, the ki must be choosen according to condition (6) . This 

condition depends on the unknown parameter ..ê. • It is in particular satis-
o 

fi ed, if : ~ :s; Min ( 2 
+ 

1 ) 
(J • ~ T: 

l l l 

In the case of ORR procedure, this sufficient condition becomes : 

~ < l + J_ ( ;\l is the largest eigenvalue of X'X ). Therefore 
o - K ;\l 

l > lls11 2 _ J_ 
K - ~ ;\l ' 

If K is contrained to be positive, this condition is implied by the 
2o 2 2o2 

THEOBALD's one (THEOBALD (1974)) : K :s; iîslP = ÏfbÎP · 

b) Another approach consists in giving a priori values for the constants 

ki and in determining the values of the parameters, for which the esti­

mation procedure is improved by G.R.R .. 
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Inequality (6) will be sati-sfied for some values of 

if and only if 

k. > 0 
l 

or k. < - 2 À· 
l l 

Vi=l, ... ,G 

s 
0 

In effect the G.R.R. estimator is preferable to the OLS one for some 

values of ! if and only if the matrix diag[f + +J is non negative. 

This condition is equivalent to k.(2\.+k.)? 0 V i = 1, ... ,G , which 
l l l 

gives the result. 

Q. E. O. 

In spite of the usual pratice, the OLS procedure can be 

improved for some values of the parameters by choosing the constants k. 
l 

sufficiently negative (ki < - 2 \;). ~Jhen the ki 's are fixed according 

to the conditions of property 3, the domain of parameters where the GRR 

estimator is better than the OLS one is given by : 

G ( Si) 2 

z:__G_~l 
i=l I + J_ 

k. À. 
l l 

The domain is simply an ellipsoïd. This ellipsoïd has to be transformed 

by an orthogonal mapping to be expressed in the parameter of interest b 

b'Q diag (2~~kJ Q'b ~ 0
2 

3.c Least squares on modified exogenous variables. 

From property 2, the GRR estimator is an OLS one computed 

from the explanatory variables : X = XQ diag[À:J Q' 
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Therefore it seems natural to introduce the set of OLS estimators defined 

by: b* = (x*•x*)-l x*•y , where x* = xc* and c* is regular. 

Then b* = c*-1(X'X)~1X1 Y = c*-l b and the risk func-
~ 

tian of b* is : 

~ 

This estimator b* is better than the OLS one in a neighbourhood of 

b 
= 0 , i ff 

a 

(7) (X'X)-l - c*- 1(X'X)-l c*-l' is non negative 

There exist some estimators of the previous form which improve the OLS 

procédure and which are not G.R.R. estimators. 

If we only consider the admissible estimators, we know from RAO(l978) that 

they can be written as BAYES estimators : 

V 
W[I + (X'X)WJ-l X'Y b = , where w is the a priori 

expectation of bb' 
? 

Assuming w to be positive definite, b* is a BAYES esti-

mator if 
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We obtain 

(8) 

The associated estimator satisfies (7) , 

or, equivalently 

(9) 

4 

(X'X)l/Z b If we denote by d = the OLS estimator of 

d = (X'X)l/Z b and by d * = (X'X)l/Z b* = (X'X)l/2 [X'X + w-lJ-l (X'X)l/Z d 
the estimator corresponding to b* , condition (9) can be written as 

(10) 

Therefore the choice of such a BAYES estimator implies a shrinkage on d 

PROPERTY 4 

Finally we have the following property 

In the class of estimators 
4* *-1 4 
b = C b which are 

admissible (c* = I + (X'X)-l w- 1) , the GRR estimators 

are characterized by the symmetry of c* 
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Proof: 

c* is a symmetric matrix if and only if X'X W = W X'X , (since X'X 

and W are both symmetric). Therefore W and X'X have the same 

eigenvectors and W can be written : 

W = Q diag{;w)' Q' , where the - wi 's are the eigenwalues of W . We 

obtain the standard form of GRR estimator by setting ki = 1 
wi 

i = 1, ... ,G 

Q.E.D. 

Let us remark that in this case the ki's are positive. 

In particular the G.R.R. estimators obtained with some values of ki 

negative are not admissible ; however it can be better than the OLS 

estimator on a neighbourhood of zero. 

4. CONFIDENCE REGION BASED ON G.R.R. ESTIMATOR. 

In the context of ridge regression which leads to biased 

estimators 6' , we shall construct biased confidence regions centered 

at 6' 

'\, 

We consider confidence regions W(a,B) defined by 
'u 

W(a,B) = {b/(6'-b)'~(6'-b) ~ h} 
'\, ,;\, ,;\, 

and Pb [W 3 bJ = Pb [(6-b)'~(5-b) ~ hJ ~ 1 - a V b E B 

where 1 - ais the confidence level and B is a given set of values 

of b . ~ is a definite positive matrix, which will be chosen later. 



have 

Linder the normality 

B'(X,k) ~ N[Q 1 diag(À~k)Q~ 

- lb -

assumption of the disturbances, we 

0 2 Q1 diagl À · JQJ 
[(À+k)2 

Therefore : ~ (b - b)' Q1 diag [P;k)·
2
JQ (~ - b) has a chi-square dis­

tribution x2 (G,o) with G degrees of freedom and a non centrality 

parameter o = J.2. b I QI di ag (k:J Q b 

Choosing ~ = 
0

1: Q1 diag~H:)
2

] Q we see that 

where 

i s gi ven by 

( 11) 

(~ - b)' ~(~ - b) ~ x2 (G,o) 

Finally a confidence region available for any b E Ba 

1 
b' Q diag ~JQ

1

b · } 
b/-- <a 

a2 

l 

where h is the 1 - a quantile of x2 (G,a) 

This region can only be used if a2 is known. 

If a 2 is unknown, this parameter can be estimated as usual by s2 , the 

sum of squares of OLS residuals divided by n - G . This quantity is 

independent from b and also from ~ = c-lb . Therefore the confidence 

region is deduced from the previous one by replacing a2 by s2 and 

xf_a(G,a) by :r1_a(G,n-G,a) 

It remains to compare the confidence region (11) with that 
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W corresponding to the OLS estimator 

. 
W(a) = {b / -:1- (b-b)'Q'diag(À)Q(b-b) a 

'\, 

The region W is smaller than ·W if: 

Q' diag((À~k)2JQ 

0 2 x1_a(G,a) 

» 

2 
X1-a (G,a) ::;; 2 

X1-a 

» Q' diag(À)Q 

a2 x1_a(G) 

diag().J 

x1_a(G) 

h.+k.) 2 

(G) l l 

À~ , 

(À.+k.) 2 

x1_a(G,a) x1_a(G) Min 
, , 

::;; 
À~ i , 

= 1, •.• ,G 

(À.+k.) 2 

There exists a> 0 satisfying this condition, if 1 À· 1 > 1 , 
V i = 1, ... ,G . These inequalities are the same as the inequalities 

obtained in the comparison of the risk functions(property 3). When they 
'\, are satisfied,the maximal neighbourhood for which W is more precise 

than W is: {b / 
0

~ b' Q diag(\
2

)Q 1 b::;; a
0
}, where a

0 
is such that 
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5. ESTIMATION OF THE SIGNS OF THE COEFFICIENT. 

It has often been suggested (VINOD (1978), HOERL-KENNARD 

(1970 )) that ridge regression procedure was "a new hope for avoiding 

wrong signs". 

We have already seen in subsection 2.e , that t 1(X,K) 

could have the same signas b1 for any K . Therefore, in such a case, 

there is no reason to use ridge regression for obtaining a better sign. 

In some other cases (2.e : 5), 6)), ~1 could have the 

opposite sign for some K . As noted by MAC DONALD (1980), "a sign change 

in t 1 

between 

occurs if b1 

Y and X 11 

1 

differs in sign from the correlation coefficient 

; however the sign of this correlation coefficient 

is not in general the same as the sign of the coefficient b1 

In this section, a property is established, about the 

linear estimators giving "most frequently" the right sign. For instance 

let us consider the parameter b1 associated with the first explanatory 

variable x1 . The other coefficients and the corresponding variables 

* * 
are denoted by b and X A linear estimator of b1 is of the 

form : b1 = a'Y with a E IRn and we are looking for a such that 

"61 is a solution of the problem : 

Max Min pb1 ,b*[b1 > 0 J if b1 > 0 
a b* 

(P) 

Max Min pb1 ,bib1 < 0 l if b1 < 0 
a b* 
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PROPERTY 5 Under the normality of the disturbances, the solutions 

of ( P) are 

o1 = v 1 b1 where v 1 > 0 

and b1 is the OLS estimator of b1 

Proof: 

Let us consider the case b1 > 0 

* Pb 1 'b * Œ 1 > 0 J = p b 1 'b* [Ci,• ( X 1 b 1 + X 
* [CJ.

1 X1b1+a•x*b*] 
b +u)>OJ=~ crllali 

where ~ is the cumulative function of the standard normal distribution. 

Pb
1 

,b* Œ1 
* The minimal value of > 0 J with respect to b i s : 

* 
H-ooJ = 0 if a'X ~ 0 

["'X1b1 l * 
~ cr jjall 

if a'X = 0 

The maximization wit[~
1
~e~plect to a leads to the optimization problem 

r 
Max ~ 1 1 

a cr Il a Il 

(P,) l s.t. .·x* = a 

Since 

where 

b1 > 0 , the solutions a of (P 1) can be written 
'\, 

v1 > 0 and a is a solution of the problem (P1
) 

Max 
a 

s.t. 

or of the problem 

Max 
a 

s. t. 

a'X 
1 

* a'X = 0 

a'a =-
% 

( p 1 ) . . 
a'X 1 

* a'X = 0 

a I a :s: 1 



Min 
'v a 'v 

(01) 

s.t. 

and is equivalent 
( 

Min 
'v a 

(01) 

s. t. 

a•a 

* a•x = 0 

a•x 
1 

;:: 1 

to . . 
a 1 a 

* a•x = 0 

a 1X = 1 1 
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This problem is exactly that associated with the determination of the 

BLUE of b1 and therefore has the unique solution 

a• = [ 
* * * -1 * 1-1 x1(I-X (X' X ) X' )X 1 

Finally the solution of (P 1) are o1 = v1b1 
• These solutions do 

not depend on b1 
• It is easily seen that the resolution of the 

program 

(P) Max Min Pb b*(o1 < 0) 
a b* 1' 

if b1 < 0 

leads to the same solution. 

Q.E.O. 

Remark 1 : The previous approach can be applied to the other coefficients 

b2, ... ,bG . The linear estimators of b giving most frequently the 
A 

right signs of b1,b2, ... ,bG are o= diag(v) b,with vi > O,i = 1, ... ,G. 

The GRR estimator is not in general of this form. 
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Remark 2 : However, if we consider the principal parameters S1,···,SG 
'\., 

diag(À:kJ~ . À-+k. > 0 i = 1, ... ,G we have S(X,k) = Therefore, if 
l l 

S(X,k) gives most frequently the right signs of S1,···,f3G , but not 

more frequently than f3 . 

Remark 3 Finally if we impose to the GRR estimator to simultaneously 

give the right signs of the si's and to improve the precision, we must 

have 

À . +k. > 0 and { k. > 0 or k
1
. < - 2À .} i = 1, ... ,G 

l l l l 

This implies the usual restrictions ki > 0 ï = 1, ... ,G 

6. RIDGE REGRESSION AND QUASI-COLLINEARITY. 

The sufficient condition, given by THEOBALD (1974) : 

0 < K < i\bjj2 , for the GRR est imator to be be'tter than the OLS one, does 

not depend on the explanatory variables and then does not depend on the 

degree of multicollinearity. 

However the relation with the collinearity problems appears, 

when we consider the exact conditions. For instance, if G = 2 , the 

region of improvement of OLS, derived in 3.b 

+ < 1 } 

increases, when À1 or À2 decreases. 
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The problem of collinearity can be examined precisely in 

the case G = 2 . In this case a measure of the degree of collinearity 

is the angle between x1 and x2 

It can be interesting to see if, as suggested by SWINDEL (1974), the 
1\., 1\., 

variables x1 and x2 associated with the GRR estimator are less 

collinear than x1 and x2 are. 

The orthogonal matrix Q can be written as 

case - sine 

Q = 

sine case J 

and X'X is given by 

X'X = Qdiag(À)Q'= 

where À1 ~ À2 

1\., 1\., 

The transformed variables x1 X2 are such that . 

1\., 1\., 

X'X = Q diag(a) Q' 
(À .+k. ) 2 

with 1 1 a. = 
1 À· 1 

1\., 1\., 

The acute angle corresponding to x1 , x2 is greater than the one 

corresponding to x1 , x2 iff: 
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This condition can be simplified in 

This inequality is satisfied iff 

À2 Ù,1 À 1 
À 1 

s s ½ Ù,2 

or, equivalently: 

lÀ1:~1r s [À2::2r and (À1+k1 )2 ~ (Àz+k2)2 

If À1+k2 and À2+k2 are positive, these conditions become 

and 

The first condition is expressed in term of the shrinkage 
À· 

coefficients 1 
À.+k. 

l l 

it means that,smaller is the eigenvalue,greater 

is the shrinkage. This is the condition of 11 declining deltas" given in 

VINOD ( 1978). 

The second condition means that the principal factors 

remain in the same order after transformation. 

These conditions are in particular satisfied for the ORR estimator, with 

K > 0 
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Remark 4 : If is clear that the previous ionditions are not related to 

the conditions to improve the precision of OLS estimator 

k. < - 2À. 
1 1 

7. CONCLUDING REMARKS. 

k. > O or 
1 

Several properties lead to consider ridge regression as 

an alternative to least squares estimation in the multiple linear regres­

sion model. 

The justifications usually given for the use of this procedure are the 

possibilities 

a) to improve the OLS estimator for some values of the parameters 

b) to include some a priori information on the parameters ; 

c) to salve the difficulties introduced by the quasi-collinearity. 

The previous study allows us to discuss these justifications 

a) For some values of the parameters, the ridge estimator is better than 

the OLS one for the risk functions (THEOBALD (1974)) and also for the 

confidence regions. However the improvement may also be obtained with 

negative biasing factors k. 
1 

The ridge estimator can be interpreted as an OLS one based on trans­

formed explanatory variables. Using other variables than the initial 

ones may lead to a better estimator. 

b) If all the parameters are positive, the GRR estimators are interpre­

table as BAYES estimators, associated with a particular a priori 
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distribution of the parameters. This distribution is zero mean 

(LINDLEY - SMITH (1972)). This property shows that ridge regression 

should be used if the parameters are closed to zero; this is an 

important limitation, which is not in general compatible with a 

priori ideas on the parameters. 

An interpretation of the same kind has been presented by various 

authors (HOERL-KENNARD (1970a), KMENTA-LIN (1980), CRAIG-VAN NOSTRAND 

(1980), GALARNEAU-GIBBONS (1981) ... ). According to this interpretation, 

the GRR estimator is a constrained OLS estimator. It is solution of 

the problem: Min !!Y - Xbl!2 

b 

However this interpretation seems to be not correct. The usual proof 

consists in the introduction of a LAGRANGE multiplier \ and in the 

minimization of 

l!Y - Xb\f - \(\ibi12 
- r 2

) 

The first order condition gives 

where the multiplier satisfies 
_2 

Y1 X(X 1 X + \I) X'Y = r 2 

Therefore the biasing factor \ depends on the observations Y 

and is a random variable. The statistical properties of this estima­

tor are different from the GRR estimator's properties. 

c) The opinion that ridge regression leads to estimators giving the 

right sign more frequently than the OLS estimator is not correct. We 

proved that the OLS estimator is optimal for this problem. The ridge 

estimators only appear optimal for the determination of the sign of 
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the principal parameters. Unfortunatly these parameters are often 

difficult to interprete from an economic point of view. 

d) The utilisation of ridge regression for solving the quasi-collinearity 

problems has abondantly been discussed in the literature (see for 

instance SMITH-CAMPBELL (1980)). We have seen, in the two parameters 

case, that choosing k , such that the transformed variables are less 

collinear than the initial ones are, has no connection with the 

improvement of OLS. 

If we impose conditions simultaneously for improving the OLS (for 

some values of b ) for questing the right'sign and for reducing the 

quasi-collinearity, we find 
À.+k. 

1 1 sign, improvement), 
Ài 

of quasi-collinearity). 

the usual constraints : k. > 0 (right 
1 

decreasing, Ài+ki increasing (reduction 

These remarks show the difficulties of using ridge regres­

sion even in the simple case of multiple linear regression. Then it seems 

too early to propose direct generalizations of this procedure to more 

complex situations. 

Finally let us remark that the previous study does not apply 

to the cases where the biasing parameters depend on the observations on 

the endogenous variable. In such a case the statistical properties have 

to be reexamined (see for instance JAMES-STEIN (1961)). 
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