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Abstract 

-This paper studies the strategic consistency of various onymous voting 

systems. The first result is the following extension of the Gibbard-
neutral 

Satterthwaite theorem: all stable, non-imposedlsocial choice (set) functions 

are collegial polities. The converse of this result is not true, even if 

stability is replaced by exact and strong consistency in the sense of Peleg. 

The relationship between consistency and the distribution of voting power 

is examined. Finally, it is shown that the sincere outcome of a collegial 

polity is in the core. 



I. Introduction 

In practically all economic_ systems, certain economic decisions are 

made by voting. Modern interest in this question has enjoyed a great revival 

since the famous result of Arrow (1963): if a preference aggregation procedure 

has a universal domain and satisfies independence of irrelevant alternatives, 

Pareto optimality, and transitivity, then it is dictatorial. More recently, 

Brown (1975) has provided a major extension of Arrow's result: if a preference 

aggregation procedure satisfies the Arrow conditions, with transitivity replaced 

by acyclicity, then the procedure is a collegial polity. The difference between 

dictatorship and collegial polity consists in the fact that a dictator is 

decisive by himself, while in a collegial polity there is a set of voters (the 

collegium) which is part of every decisive coalition, but is not decisive by 

itself. Example of collegial polities are given by the Roman republic and the 

United Nations Security Council (pre-1965), with the collegium consisting of 

the tribunes in the former, the Great Powers in the latter. 

A related literature now exists on the question of the extent to which 

the outcomes of voting depends upon strategic considerations. For example, 

let there be three individuals jl, 2, 3\ and four outcomes being voted upon 

{x, y, z, w\. The voting method being used is Borda's rule: four points for 

first place, three points for second place, two points for third place, one 

point for fourth place, the alternative with the most points winning. Suppose 

the individual preferences are xzwy, yxzw, yxzw respectively. 1 Then if all 

vote honestly the winner is x, with ten points, while y is second.with nine 

points. However, individuals 2 and 3 can guarantee that y wins, by voting 

yzwx,yxwz instead. Thus, it is in the best interests of individuals 2 and 3 

2 to manipulate the election by misrepresenting their preferences. 
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There exists a remarkable relationship between the existence of dictators 

and itmnunity of voting systems _to manipulation. It has been independently 

shown by Gibbard (1973) and Satterthwaite (1975) that if a voting system is 

not imposed and not manipulable by individuals acting alone, it is dictatorial. 3 

In particular, Gibbard arrives at this result as consequence of Arrow's theorem; 

by first showing that a non-imposed norunanipulable voting system must generate 

an Arrow social welfare function, An important feature of the Gibbard­

Satterthwaite Theorem is that the voting system make unique choices--no ties 

are allowed. Kelly (1977) has shown that if this feature is relaxed, there do 

exist non-dictatorial voting systems which are non-manipulable also. The next 

section of this paper specifies the class of voting systems so generated. If 
neutral, 

a voting system is/not imposed, allows ties, and cannot be manipulated by any 

coalition, it is a collegial polity. Just as Gibbard's result uses Arrow's 

theorem, this result relies on Brown's theorem. 

Arrow's theorem has always been di.sturbing because of its distributional 

implications--the dictator has all the voting power. Anonymous voting systems, 

on the other hand, imply an even distribution of voting power. 4 Peleg (1978a) 

has shown that for anonymous voting systems which do not allow ties, the sincere 

outcome does not correspond to a strong equilibrium in the associated voting 

game, unless an (m - 1)/m majority is required to defeat an alternative. In 

the third section of this paper, a similar condition is found for collegial 

polities. Moreover, there exists a direct connection between the distribution 

of power and the possibility of manipulation. It is also shown in this section 

that if one adopts the notion of consistency as belonging to the core, then the 

sincere outcome of a collegial polity is again consistent. The implications of 

these results for further work are addressed in the conclusion. 
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II. Stability and Collegial Polity 

Let X be thè set of social _states, with typical members x, y, z. Let 

N • {l, 2, ... , n\ be the set of voters. Ris the space of complete, 

reflexive, and transitive orderings of X; P cR is the subspace of linear 
orderings. A social choice function is a mapping F, from Rn ta x such that 

F(a) -fr/), F(a) c X for any situation a= (R1, R2, ... ,Rn). 

The strategic vot~ng model views a social choice function as the outcome 

function of a cooperative game in normal form. Thus, each player i has as 

bis strategy space R, bis true pl"eferences being a point R! in that space. 

In order for a voter to assess the results of different strategies, it is 

necessary to compare different choice sets. The set relation chosen to do 

this is drawn from Feldman (1979): 

Definition. Let A and B be non-empty subsets of X, A/ B, and Ri a preference 
ordering of X. Then A~ B if for all x in A - B, y in An B, and z in B - A, 

xPiyP1z. 

This ordering represents an extensi0n of Kelly's ordering (1977). For 

example a voter pr~ferring x to y to z has the! relation, 

/(x, Y, z\~ 

{x, y\---{y\---{y, z}--- z l 

{x, z l 

the arrows denoting set preference. 

Let~ be a given situation, with F(a) = B. Fis stable at a if there 

exists no coalition S, ~ -f SS N, and situation b ~ a, such that 

for all i in N-S 
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(ii) F(b) ~ F(a) for all i in S. 

If Fis stable at every situation, Fis stable. 

Fis exactly and strongly consistent (Peleg, 1978a) if there exists a 

mapping H: R0 ~ Rn such thpt 

(i) H(a) is stable 

(ii) FoH(a) = F(a) 

for every situation a. Clearly if Fis stable, Fis exactly and strongly 

consistent: simply take H to be the identity mapping. An exactly and strongly 

consistent social choice function need not be stable; but, given the transforma­

tion H, stability is achieved. 

A social choice function Fis not imposed if for every non-empty subset 

of alternatives B S X, there exists a situation a such that F(a) = B. 

Let T : X+ X be a 1-1 transformation of the set of social 

states. Then a social choies function Fis neutral if, at any situation 

a, F(a) = T(F(T )). a 

In addition to social choies functions, it is convenient to 

introduce a social preference relation P, again a binary relation on the 

set of social states. Sorne useful conditions on Pare as follows : 

Pareto optimality: xPiy for all i, then xPy 

Independence of Irrelevant Alternatives. Let a, a' be two situations. 

If xPiy if and only if xP1y and yPix if and only if yPix for all i, then 

xPy if and only if xP'y. 
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One usually thinks of Pus avising from a group preference function 

f, i.e. P • f(a) for any situation a. Then given P, one can define the 

social choies function F such that 

(1) F(a) = {x in X there is no y in X such that yPx} 

which definition is meanlngful as long as Pis acyclic and Xis finite. 

A coalition Sis decisive if, whenever all the members of S prefer 

x ta y, then xPy. Pareto optimality thus means that the grand coalition 

is decisive. A prefilter n is a collection of subsets of N such that : 

Ca) N E: n, (b) <f, ~ i,, (c) s1 E: n, s2 E: n then s1 n s
2 is non-empty, (d) 

s
1 

E: n, s
1 c s

2 , then s2 En, 

A basic result connècting these various ideas is the following 

theorem due to Brown (1975). 

Theorem (Brown). The sets decisive with respect to a group preference 

function satisfying the conditions of acyclicity, Pareto optimality, and 

independence of irrelevant alternatives forma prefilter. 

The non-empty intersection of the sets in a prefilter one can identify 

as the collegium of collegial polity. In this intersection is itself a deci­

sive set, one has an oligarchy. In particular, if the oligarchy consists 

of a single individual, one has dictatorship. 

One can now assert the following result : 
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Theorem 1. Let n ~ 2, m ~ 3. Then all stable, non-imposed social choice 

functions are collegial polities,
5 

Proof. The idea of the proof is to show that a stable, non-imposed social 

choice function generates a social preferenc,, relation satisfying the hypothesis 

of B»own's theorem. The proof itself is modeled after that of Gibbard (1973). 

The proof beg~ns by restricting all situations to Pn. This restriction 

is relaxed at the end, Let Qin Pn be fixed. Then * a (x , y) 

denotes that x and y have been moved to the top of each ordering in situation 

a, preserving the ordering between them if it is strict, while the rest of each 

ordering agrees with Q. Ties between x and y are also broken by Q. 

Define the social preference relations relative to situation a, P(a) and 

I(a) by 

(2) xP(a)y if and only if x / y & jx\ ~ F(a*(x, y)). 

(3) xl(a)y if and only if x / y & jx, Yl = F(a*(x, y)). 

These definitions are meaningful as long as Fis neutral and non-

. d 6 impose . 

Sorne properties of P(a) are now generated by a series of 

lemmas. 
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Lenuna l. . .. ' R') be two situations n 

such that for all i, xP1y if and only if xP1y ànd yPix if and only if yP~x. 

Then xP(a)y if and only if xP(b)y. 

Proof. By construction, a*(x, y)= b*(x, y); hence, F(a*(x, y))= F(b*(x, y)). 

Therefore, by (3) xP(a)y if and only if xP(b)y. 

Lennna 2. Given situation a and alternatives x, y, suppose a' is another 

situation such that 

(i) yPix, then Ri= R1 for all i · 

(ii) xPiy or yPix for all i 

(iH) - xP(a)y. 

Then !xl ~ F(a'). 

Proof. Suppose on the contrary that !x\ = F(a'). It is first shown that 

lx l = F(a'*(x, y)), By construction, at situation a'*(x, y)' xP.z, yP.z for 
l. l. 

all i and all z in X - jx, y l. It follows then that l z l à_ B = F(a'*(x, y)). 

For if jz\ = B, there exists by non-imposition a situation bat which 

F(b) = lx\, and so Fis unstable at a'*(x, y). If jx, z\ = B, then there 

exista a situation bat which F(b) = lx\. Since {x\ E, {x, z\ for all i.ndivid­

uals at a'*(x, y), Fis again unstable there. A similar argument holds for 

B = jy, z\. Finally, if B = jx, y, z\, there exists a situation bat which 

F(b) = lx, y\ and {x, y\~ lx, y, z\ for all individuals at a'*(x, y), making 

F unstable. Therefore, B must be either jx\ or jx, y\ or !Yl· Since a'(x, y) 

agrees with a' on the pair (x, y), Lemma 1 requires that jx\ = B. 

Now consider the situation a*(x, y) = a". By lemma land the argument 

just made, F(a") • jy\ or= jx, y\. By construction, a" and a'*(x, y) have 

Ri= Ri for all i preferring y to x. If F(a") = lY\, then Fis unstable at 

a", since the agents preferring x to y have altered preferences to reach 
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a'(x, y), and for those agents x ! y. Likewise, if F(a") = {x, y\, Fis 

unstable at n", since {xl ! jx, y\ for agents preferring x to y. 

This contradiction proves that {x\ f F(a'). 

Corollary 1. If xP iy for all · i in situation a, then xP(a)y. 

Proof. There exists a situation a' at which F(a') = {xl, For any situation 

a satisfying the hypothesis, conditions (i) and (ii) of lenuna 2 are satisfied, 

but the conclusion is contradicted. Therefore,,.,,""' xP(a)y, that is, xP(a)y. 

Corollary 2. ,.,, xiiy for all i and""' xP(a)y, then lx\~ F(a). 

Proof. Conditions .(ii) and (iii) of lennna 2 are satisfied. Let a' = a. 

Then condition (i) is satisfied. Henc.e, F(a') = F(a) :f. !x}. 

Lemma 3. P(a) is acyclic. 

* It is sufficient to show that for a' = a (x
1 ' x2 ' ••• , 

We show first that F(a') must be either {x} or {x,z}. 

X ) , 
n 

Let S = F(a') be any other subset of {x 1 , x2 , ... , xn} If 

x
1 

~ S, let xi ES be the social state with the least index i. Consider 

* the situation a"• a' (xi_1 , xi). By lemma 1, F(a") = {xi}. Then by 

corollary 2 to lemma 2, x. P(a")x. 1 . But a" agrees with a' on 
l 1-

(x. 
1 , x.) , contradicting the hypothesis. Similarly, if x ~ S, 1- 1 n 

let x. ES be the social state with the greatest index i, and consider 1 

* the situation a" = a' (xi_1., x
1

) as before. Finally, if bath x1 E S 

and x ES ,pick x. ES, for any 1 < i < n and again consider the n 1 

'* ( situation a"= a xi_ 1 , xi). 
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Having thus exhausted all other cases, F(a') is either {x1} or 

* {x
1 

• xn}. Let a"= a' Cx1 • xn), 8y lemma 1, F(a") = F(a'). If 

F(a") = {x
1

}, then x1PCa'}x~~ i~ F(a") = {x1 , xn}, then x1I(a')xn. 

In either case,~ inP(a'Jx1; Hence, P(a) is acyclic. 

8y lemrnas 1-3, the group preference function induced by F satisfies 

the hypothesis of 8rown's theorem, and thus the decisive sets with res­

pect to F forma prefilter, 

n Finally, we relax the restriction to situations in P. Here the 

proof follows Gardenfors (1977). 

n Let S be decisive for F restricted ta P. We show that Sis decisive 

on all of Rn i.e,, that for any ~ituation a= CR 1 , R2 •...• Rn), 

F(a) is the set of R5- maximal elements. Given a, let B denote the set 

of R5- maximal eleme.nts, Let b = (P1 , P2 ....• P~) be a situation in 

Pn such that for all alternatives x E 8 and y E X-8. one has xP,y for 
l 

i ES and yP1 for .i E N-S; and furthermore that F(b) = B. If F(a) B, 

we are done, sa suppose that F(a) = B1 ~ B. Now consider B2 = F(PS, RN-S). 

If 82 ~ B, then Fis unstable .at situation b, since by construction 

B2 ~ B for all agents in N-S. Jherefore 82 = 8. But then Fis unstable at 

situation a, since by construction BR B1 for all agents in S. Therefore, 

81 =Band Sis decisive for all of Rn, which completes the proof. 

If one requires in addition that the social choice function in this 

theorem be decisive, one can then show full transitivity of the social 

preference relation, .not just.acyclicity. This case then implies that the 

collegial poli ty is. dictatorship. This is the sen se in which theorem 1 

generalizes the Gibbard-Satterthwaite Theorem, 
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III. Strategic Consistency of Collegial Polities 

This section reverses the ~rgument of the last section and asks to what 

extent, given a collegial polity, one can expect strategic consistency of 

outcomes, in which the sincere outcome corresponds to an equilibrium in the 

associated voting game. Cooperative games in normal form will be considered 

fitst, with the equilibrium concept being strong equilibrium. 

The following parameterizatfon of collegial polities will prove useful. 

Let Cc N be the collegium, with µ(C), the number of members of C, equal to 

c. Let q be the quota required for a coalition to be decisive. Then the 

decisive coalitions of the collegial polity are precisely the collection 

~ • {s: Sc N, Cc S, µ(S) ~ q\, Given n voters, the various possible 

collegial polities are described by the pair (c, q), where 1 ~ c, q ~ n. 

7 

For example, in the Roman republic, there were three hundred senators and ten 

tribunes, with a simple majority of senators and all the tribunes being needed 

for a decisive coalition; hence, n = 310, q = 160, and c = 10. For the United 

Nations Security Council {pre-1965), the corresponding parameter values are 

n = 11, q • 7, and c ""5. In terms of the parameterization, c < q < n means 

strict collegial polity; c ~ q represents oligarchy (in particular, unanimity 

when q = n); and c • q = 1 means dictatorship. These various possibilities are 

depicted in figure 1. 

One can now state the following 

Theorem 2. Let there ben voters choosing among m alternatives, within an 

(c, q) collegial polity. Then the sincere outcome of the collegial polity 

is not necessarily stably if 

(4) c ~ q(m - 1) - n(m - 2). 
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Figure 1. Varieties of Collegial Polity 

UNANIMITY 

q 

STRICT COLLEGIAL 

POLITY 

(1, l),DICTATORSHIP 

OLIGARCHY 

C 

(n, n) 
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Proof. Label the alternatives jx1, x2, ... , xml· Let (C, s1, s2, ... , 

8m-l) be a partition of n with the following 

for all i in C, xm xl x2 ... X 
m-1 

for all i e sl, xl x2 ... X 
m 

for all i e $ X m-1 m-1 xm xl ... X 2· 

Denote this situation~-

Suppose µ(CU s
2 

_U 

alternative x., j i m, 
J 

(5) µ(CU Sk) ~ q implies xmPxj. 

k ~ j 

m-

preferences: 

Suppose (5) holds for all xj, j f m. Let µ(Si)= µ(Sj) =µfor any i, j. 

Then (5) implies 

C + (m - 2)µ ~ q, 

At the same time, c + (m - l)µ = n, by the construction of the partition. 

Substituting forµ, one has condition (4). 

Now the sincere outcome of the collegial polity at ais x. We shall 
- m 

show that the collegial polity is not exactly and strongly consistent at ~. 

hence unstable. 

Assume per absurdum that the collegial polity is exactly and strongly 

consistent at a. Then there exista a mapping H: Rn - Rn such that H(a) 

is a strong equilibrium and FoH(a) = jx \. For the social choice. to be m 

jxm\ alone, all the members of C must rank xm first. Now, wherever H maps 

the strategies of s1 U s2 ... US, it must be the case that jx lis chosen. , m m 

US all announce the preferences of S 
1, x 

1 x x
1 

••• m m- m- m 

xm_ 2 . Then the social choice is {xm-l' xml and jxm-l' xm\ ! 1 jxml for all 

i in s
1 

U s
2 

.•. U sm,contradicting the hypothesis of stability. 
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Applying formula (4) to the Roman republic, one has that for all m ~ 3, 

the voting system is open to strategic manipulation on the part of coalitions. 

It is an open question whether this low threshold value of m helps to explain 

the turbulent politics of what republic's last century of existence. The 

corresponding threshold value for the pre-1965 United Nations Security Council 

is m • 5. Denoting this threshold value of m by m*, one has that m* = 

(2n :- c - q)/(n - q). For fiJCed c and n, then, increases in the quota q 

increase m*; the higher the quot~, the higher the threshold for instability. 

An important feature of the proof of Theorem 2 is that ties are allowed. 

Peleg (1978b) has shown that if a collegial polity makes unique choices, then 

there does correspond toit an exactly and strongly consistent social choice 

function. Even without unique choices, one can show that dictatorship, 

oligarchy, and strict collegial polities not satisfying (4) are exactly and 
8 

strongly consistent. 

There is an interesting relationship between formula (4) and the distri­

bution of power in a collegial polity, where .voting power is measured by the 

Shapley-Shubik (19,54) index. This index computes the probability that a 

voter is pivotal in a randomly drawn coalition. A voter is pivotal if the 

coalition is decisive if it i.ncludes him, but not if it excludes him. 

Intuitively, a member of the collegium should have more voting power than an 

outside voter. Denoting the Shapley-Shubik index for voter i by ~(i), this 

intuition is borne out by the following results for the (c, q) collegial 

polities represented in figure 1: 

Dictatorship ~(i) 

Oligarchy ~(i) 

= { ~ if i is dictator 
otherwise 

= { 1/c if i is an oligarchy 
. 0 otherwise 



Strict 
Colleg~al 
Polity 

Unanimity 

~(i) = 

13 

l _ (g - l)!(n - c)! 
c ·n!(q-c-l)!c 

(g - l)!(n - C - 1) ! 
n! (q - C - 1) ! 

~(i) = 1/n for all i. 

if i is in the collegium 

otherwise 

In these expressions, _total voting power is nonnalized to one. Applying these 

measures to the Roman republic, one has a voting power of .09675 for a tribune, 

and .00011 for a senator. Thus, a tribune is about 88 times as powerful as an 

individual senator. The corresponding measures for the pre-1965 United Nations 

Security Council are .19740 for a country with veto power, and .00216 for a 

country without such power. Here, a Great Power is about 91 times as powerful 

as a non-Great Power member of the Security Council. 

For strict collegial polity, with c and n fixed, it is clear that a voter 

outside the collegium becomes more powerful as the quota rises, approaching a 

maximum of 1/n in the case of unanimity. Also, the distribution of power 

becomes unambiguously more even as the quota rises. Figure 2 shows the Lorenz 

curves of the distribution of power for the c = 1, n = 5 collegial polity as 

the quota q varies from 1 to 5, 1 being dictatorship and 5 being unanimity. 

Returning to formula (4), it is now apparent tpat for fixed (c, n, m), 

the larger the quota q the more likely it is that 

q(m - 1) - n(m - 2) > c. 

Thus, the more even the distribution of power, the more likely it is that the 

instability noted in Theorem 2 is avoided. 

It is conunon in economic applications to consider cooperative games, not 

only in normal form, but also in characteristic function form, especially from 
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Figure 2. Lorenz Curves for Voting Power, n = 5, c = 1. 

% Power 

% voters 
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the standpoint of the core. For example, a competitive equilibrium cannot 

be improved upon by any coalit~on, and thus is in the core of the associated 

characteristic function form game. A like phenomenon occurs for collegial 

polities. 

Theorem 3. The sincere outcome of a (c, q) collegial polity is in the core. 

Proof. We distinguish two cases, according to whether or not the collegial 

polity is exactly and strongly consistent. 

Suppose the collegial polity is exactly and strongly consistent. Then, 

as in Peleg (1978b), given situation~, let F(a) = B. If Bis not in the core, 

then there exists a decisive coalition Se~ and B' c X, such that B' R. B 
-i 

for all i in S. Let b • H(a) be a strong equilibrium corresponding to 

situation~, such that F(b) = B. For all i in S, let B' ~ !zl for all z in 

X - B'. Denote this vector of preferences by b5 . Since Sis winning, 

F(bN-S' b5 ) = B', contradicting the fact that b is a s.trong equilibrium 

point. 

A similar argument works in the second case also. 

As an illustration of Theorem 3, consider the situation described in the 

proof of Theorem 2. Here one can show that the core consists of all subsets 

of X containing x. In particular, {x l itself is in the core. m m 

This result on the core can be explained in terms of the difference 

between the power to enforce and the power to block. Coalitions outside the 

collegium, by manipulating, can allow more alternatives into the. sincere 

choice set, but cannot delete alternatives already there. The sincere choice 

set already includes: all the outcomes that can be enforced. Therefore, the 

core is, if anything, more extensive than the sincere choice set. 
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IV. Conclusion 

This paper has considered the extent to which onymous voting systems-­

those in which the distribution of voting power is uneven--are immune to 

strategic manipulation of preferences. All social choice functions which 

are innnune to such manipulation are collegial polities. Moreover, if the 

quota is sufficiently small (the distribution of power sufficiently uneven), 

a strict collegial polity is open to manipulation of preferences by coalitions. 

However, if the voting system generated by a collegial polity is viewed as a 

cooperative game in characteristic function form, that game has a non-empty 

core, including the sincere outcome. 

There are several directions in which these results could stimulate 

further research. So far, no structure has been imposed upon the set of 

alternatives, save that it be finite. It would be interesting to see what 

is true when there are several dimensions of alternatives, as in income 

distr-ibution models, or a vector space of alternatives, as is usually assumed 

in electoral competition models. It is known for example (Aumann and Kurz 

(1976)) that for anonymous voting systems, majority rule leads to a definite 

tax system. It would be nice to know what sort of taxation to expect in 

various onymous voting systems. The author intends to pnrsue this topic in 

the sequel. 
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FOOTNOTES 

1. The individual preference relation, individual i prefers x to y, will be 

When no confusion will result, the P. will be supressed. 
l. 

2. This is not an isolated example, but rather a pervasive phenomenon in 

voting systems like Borda's rule. See Gardner (1977) for details. 

3. For the case of manipulation by coalitions of voters, this result has been 

established by Batteau and Blin (1976~. 

4. Voting power is being measured as in'Shapley-Shubik (1954). 

5. This result does not contradict that of Gibbard (1977), where a much less 

demanding notion of manipulability than ! is used, A similar result can 

be found in Ferejohn-Grether (1979), who, however, deal with a substantially 

different framework. 

6. I àm grateful ta Allan Feldman f~r this observation. 

7. This is not the most general parameter.ization possible. 

8, For the unanimity rule, thus by analogy for any oligarchy, this result is 

alluded to by Kelly (1977) and proved by Feldman (1979). 

9. This formulais due ta Douglas Blair. 
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