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NUMBER AND DEFINITENESS 

OF ECONOMIC EQUILIBRIA 

By Yv~~ BALASKO * 

1. -INI'RODUCTION. 

The main result of this paper is to establish a relationship 

between the number of equilibria and their definiteness (by which we 

mean the accurate knowledge of these equilibria). Loosely speaking, we 

shall prove that under suitable assumptions, especially smoothness of 

preferences, it is almost equivalent to know with accuracy the equili­

bria of every economy or simply to know just the number of equilibria 

of these economies. This result explains why so many properties of 

comparative statics depend so heavily on the number of equilibria. For 

example, competitive equilibria depend discontinuously on the parameters 

defining an economy if and only if multiple equilibria do exist. The 

transfer problem encountered in international trade theory provides ano­

ther sxam~le of a problem of which solution depends on the number of 

equilibria. 

We fix notations and discuss the main assumptions in section 

2. We then state the main result in section 3, result valid for consump­

tion sets equal to the whole commodity space. We follow an intuitive 

direct approach to the two-consumer-two-commodity case in section 4. An 

alternative (dual) approach salves the general case in section 5. Exten-

sions to the case of consumption sets bounded from below are considered 

in section 6. A property of embedded manifolds needed in section 5 is 

* Universit~ Paris I and CEPREMAP. 
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proved in the appendix. 

2. - NCJ.I'ATICNS AND ASSUMPTIONS. 

A. Commod.,l.tiv., and ptuQe.6, We consider pure exchange economies with t 

commodities and m consumers. We choose the t-th cornmodity as numeraire, 

i.e. normalize the price vector by the convention Pt = 1. 

Every price is strictly positive let 

s = {p 

denote the set of strictly positive normalized price vectors. 

t B. Con6umVV.,, We assume that consumption sets are equal to IR and that 

the preference preordering of consumer i can be represented by a utility 

function u. 
l 

IR t -+ IR satisfying the following properties : 

1) u. is smooth, i.e. differentiable at any order 
l 

2) ui is differentiably monotonie, i.e. au. (x) / axj is > o 
l 

for j = 1, 2, ... , t (the notation xj represents the quantity 

xj of commodity j) ; 

-1 
3) ui ([c

1 
+ 00 )) is strictly convex for every c E IR 

-1 
4) ui ([c1 + 00 )) is bounded from below for every c E IR 

-1 5) the Gaussian curvature of the hypersurface u. (c) is every­
l 

where ~ D for every c E IR . 

Assumptions (1), (2), and (3) are standard. Assumption (4) is 

intended to cape with consumption sets which are not bounded from below. 

1} 
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Let p ES and w. E IR be given, the problem of maximizing u. (x.l under the 
l l l 

constraint p.x ~ w. has a unique solution denoted f. (p , w.l representing 
l l l 

consumer i's demand. Walras law p.fi(c , wi) = wi is clearly satisfied. 

Note that assumption (5) is equivalent to the smoothness of the individual de-

mand mapping f. : S x IR -+ JRR, • 
l 

L.et U., denote the set of utili ty 

functions u. 
l 

IR 9., + IR satisfying assumptions ( 1) to ( 5). 

C. Ec.onomie..-6 a.nd e.qU,{UbJua.. An economy wi th m consumers and 9., commodi ties 

is defined by : 

1) m utility functions u. E ·t(, 
l 

2) m vectors x. E IR9., representing consumer i's initial endowments. 
l 

We denote by u 

functions and by x = Cx
1 ' x2 ' ..• ' 

, ... , 
X ) E 

m 

' "' m U J E IJv 
m 

the m-tuple of utility 

(IR 9.,lm the m-tuple of initial 

endowments. The case for resources just reallocated corresponding tofixed 

total resources r = x1 + x
2 

+,, ,+ xm leads us to introduce the space 

X= {x = Cx
1

, x
2 

, ... , xml E (IR9.,lm I x
1 

+ x
2 

+ ... + xm = r}. 

We recall that p ES is an equilibrium price vector associated 

with the economy (u , xl E 'lLrn x X if and only if the equality 

l f,(p, p.x.) = l X, 
. l l . l 
l l 

is satisfied. We denote by W(u , xl the set of equilibria associated with 

(u , x) and by N(u , xl # W(u , xl the number, possibly infinite, of 

equilibria. Therefore, we have defined : 1) a correspondence W :1lm x X-+ S 

2 l a mapping ~J : U,m x X + m u {co} • 
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3. - THE RIGIDITY THIDREM. 

Let u E U/1 and u' E u.m be two m-tuples of utili ty functions. 

The rigidity property relates the correspondencffiW(u, .) and W(u' , .) 

from X into S to the mappings N(u , . ) and N(u' , . ) from X into ]\J u { 00 } 

respectively. 

RIGIVITY THEOREM. If the equality N(u , .) = N(u' , .) holds and if there 

exists an x EX such that N(u , x) ~ 1 , then the correspondences W(u, .) 

and W(u' , .) are equal. 

It is obvious that the rigidity theorem is not true for arbitrary 

correspondences; its validity is specific of the economic definition of 

the correspondences W(u , .) and W(u' , .). We can also reformulate the 

rigidity property by saying that the number of equilibria, i.e. the mapping 

N(u , . ) : X + ]\J U {oo} , characterizes the equilibrium set correspondence 

(provided there exists an economy having several equilibria). The characte­

rization through the rigidity theorem, however, is non-constructive in the 

sense that it tells nothing on how to deduce W(u , .) from N(u, .). Are­

finement of the proof of the rigidity theorem (see appendix) will enable us 

to give an explicit construction of W(u , .) knowing N(u , .). 

In the case N(u, .) = 1 , i.e. if equilibrium is unique then the 

equilibrium prices are constant, property which replaces the rigidity pro­

perty: 

PROPOSITION 1. Assume N(u , . ) = 1 ; then W(u , . ) is a constant mapping, 

i.e. there exists p ES such that W(u , x) = {p} for every x EX. 
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In other words, the proposition says that if W(u , .J is a mapping, 

then it is constant. Given any price vector p ES, one can readily find 

m-tuples of utility functions u E u.m such that W(u , . J = {p}. Therefore, 

no restriction exists on the values W(u , .) in the set of price vectors. 

4. - DIRECT APPROACH TO THE CASE (t , m) = (2 , 2) . 

Let us see what the above properties really mean in the Edgeworth 

box, i.e. the case Q, = 2 and m ~ 2. The set X of initial endowments is a 

plane. Associating with every Pareto optimum the tangent to the two indif-

ference curves passing through the given Pareto optimum generates a one­

parameter family f of lines in the plane. It is equivalent to determine the 

equilibria associated with the vector of initial endowments x EX or to 

find the lines belonging to f and passing through the point x EX. Studying 

W(u , . J is therefore equivalent to studying the family /. 

Consider now the mapping N(u , .J. Let l be the subset of X 

consisting of the points where N(u , .J is not locally constant, i.e. 

l = {x EX I N(u , .J restricted to any neighborhood of xis not constant}. 

It results from Debreu's (1870) theorem on the constancy of the number of 

equilibria in small neighborhoods of regular economies that lis contained 

in the set of singular economies. Vice versa, it is straightforward, either 

from the envelope viewpoint or from the dual geometric viewpoint (Balasko 

1878 , 1979) that the number of equilibria is not constant in any neigh­

borhood of a singular economy. Therefore, l coincides with the set of 

singular economies. Furthermore, lis the envelope of the one-parameter 

family of lines f . 



- 6 -

These considerations enable us ta give intuitive proofs of bath 

the ridigity and the constancy properties. 

1. - Assume first L = •, assumption clearly equivalent ta 

N(u , .) = constant. For x Pareto optimum, N(u, x) is equal ta 1 ; there­

fore, we have N(u , .) = 1. Conversely, note that N(u , .) 1 implies 

L = • . It results from N(u, .J = 1 that the lines of the family ( are 

all parallel (otherwise, let x be an intersection point of two distinct 

lines, then one would have N(u, x) ~ 2, a contradiction). Therefore, 

the price vector perpendicular ta the set of parallel lines (( is the unique 

and constant equilibrium price vector· associated with every x EX. 

2. - Assume L = L' ~ • (where L' denotes the set of points 

where N(u' , .) is not locally constant). The families f and f, being the 

sets of tangents ta land L' respectively, it results from the equality 

l = L' that the sets f and f', are equal to the set of tangents ta the 

set I = r· . We get from t =(,the final equality W(u , .) = W(u' , .). 

The lack of rigor of this intuitive proof consists in the iden­

tification between f (resp. f ') and the set of tangents ta l (resp. l'), 

All this amounts ta knowing what is a tangent ta a curve with singularities 

like l or L'· It is also implicit in this intuitive proof that it is equi­

valent for l to be the envelope of the family f and for f ta be the set of 

tangents ta l· These properties are often taken as granted in old geometry 

textbooks (for example in relationship with the tangential equation of a 

curve). They need, however, proofs satisfying modern standards of rigor, 
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This can be achieved without too much effort for planar curves exhibiting 

sufficient regularity like algebraic curves or curves with normal crossings, 

i.e. curves of which singularities are not too much degenerated. It is not 

ubvious whether such results can be Extended to I and I' , curves of which 

singularities may be very much degenerated. 

5. - THE ALTERNATIVE DUAL APPROACH. 

The difficulties encountered in the previous section on the rigo­

rous foundations underlying the relationships between f and I (resp. (, 

and I"l make highly desirable an alternative approach that could avoid 

such considerations. The alternative approach we are going to follow is 

based on the observation that it is equivalent to study the equilibrium 

set correspondence W(u, .) or to study the intersection of a smooth mani­

fold embedded in some Euclidean space with a family of affine spaces 

(Balasko (1979)). More precisely, if x e X represents the initial endowments, 

then W(u , x) is the set of solutions p e S of the vector equation 

I f.cp, p.x.1 
. l l 
l 

IX. 
l 

i 
r . 

The equation (*) is equivalent to the equation (**) where the unknowns are 

now p e Sand the real numbers w1 

W. 
l 

i 

w') , ••• , w ,._ m 

1, 2, ... , m. 
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Let X be the affine space defined by the equation p.r = w1+w2+ ... +wm 

where ris fixed. Let P be the subset of X defined by the equation 

I fi(p, wi) = r and a(x) by the equations p.xi = wi where i = 1,2, ... ,m. 

The equation (**) can be geometrically interpreted as representing the 

intersection of the set P with a(x), 

We associate with u' (u' , ... , u') E 'llm the manifold P' defined 1 m 

by the equation I f'.(p, w.) = r where f! is the demand function associated 
i i i i 

with the utility function u:. 
i 

Given u E. t(,m and u' E U,m , assL!me N(u , x) = N(u' , x) for 

every x EX and N(u, x) ~ 2 for some x EX. When x varies in X, the 

affine space a(x) describes the set é'ltconsisting of the dimension t-1 

affine subspaces of X not perpendicular to S (X being identified to 

m-1 S x lR through the parametrization (p , w
1 

, , , . , wm_
1
)), 

Let us show that P and P' are not contained in a dimension m-1 

affine subspace of X perpendicular to S : such spaces are necessarily 

m-1 m-1 equal to {p} x lR where p c: S ; assume P c {p} x lR , then any 

affine space a(x) E -;twill intersect Pin at most one point, which con­

tradicts the assumption N(u • x) ~ 2 for some x .EX. 

The rest of the proof is a straightforward application of the theo­

rem in the appendix : if P and P' were distinct, there would exist 

a(x) E i/t' (hence x EX) such that the number of intersection points 

# (P n a(x)) and# (P' n a(x)) would be unequal, leading to a contradic-

tion with the equality N(u, x) = N(u' , x). Q.E.D. 
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PJtooo Oo :the, C.On6ta.nc.y pltopeJt:ty_.· 

Assume N(u , x) = 1 for every x EX, Since dim P m-1 is larger 

than or equal to 1, we can find two distinct points band b' in P. Any 

affine subspace of X containing the lirs bb' intersects Pin at least these 

two points. It results from N(u , x) = 1 that the space a(x) intersects P 

in only one point when a(x) describes fit. Therefore, the line bb' cannot 

be a subset of any affine space belonging to ft. This implies that any 

affine subspace of X having dimension 1-1 and containing the line bb' is 

perpendicular to S. Therefore, the line bb' itself is perpendicular to S. 

Taking b E P fixed, let b' vary in P \ {b}. The line bb' is always perpen­

dicular to S so that Pis necessarily contained in the dimension (m-1) 

affine subspace of X perpendicular to S passing through b = (p,w1 ,w2, ... ,wm). 

Therefore, we have W(u, x) ~ {p} for every x EX. Q.E.D. 

6. - CONSUMPTION SEI'S ~ :m1 . 

We restrict this discussion to consumption sets bounded from 

below and, for the sake of simplicity, we assume they are equal to the 

positive orthant m 1 
We also assume that preferences satisfy assumptions + 

(1), (2), (3), (5) of section 2, and that the indifference hypersurfaces 

do not intersect any coordinats hyperplans. Denote by 6,. such a preference 
l 

preordering on JR !l 
+ 0 

Let now I. be an indifference hypersurface and take 
l 

y
1
. E ~ where Conv(I.) is the convex hull of I .• Clearly, y. belongs 

l l l l 

to the interior of Conv(I.) if and only if y. is strictly preferred to any 
l l 

commodity bundle of the indifference hypersurface I .. Extend '6. restricted . . l l 

to Conv(I.) by considering on m 1 the following family of hypersurfaces : 
l 
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in Conv(I.), the indifference hypersurfaces of 1'. ; in IRt, Conv(I.), 
l l l 

the hypersurfaces resulting from I. by dilatations having center y .• 
l l 

Clearly, 

function 

the extended preordering ~- can be represented by a utility 
l 

- t u. : IR -+ IR satisfying the assumptions (1) to (5) of section 
l 

2. Note that ui = Üi I Conv(Ii) represents the preordering ~ on Conv(Ii), 

Let (u , x) define an economy where u = Cu 1 , ..• , um). Denote 

by Cu , x) the extended economy. 

Pnopo-0-i.tion 2. There exists a neighborhood V of x EX, an extension 

I • • • I 

restricted to V are equal. 

u) such that W(u, .) and W(u, ,) 
m· 

Let x = (x
1 

, ..• , x ) EX be such that x. 
m 1 

0 t 
E IR . Let I . be 

o+ l 

any indifference hypersurface in IRt such that x. 
+ l 

. .......---... 
E Conv(I.) and let V. 

l l 

be an open neighborhood of xi in Conv(Ii). Define V= v1 x ... x Vm n X, 

-
Let us fix some x EV and construct u. with i = 1, 2 , ... , m associated 

l 

with x as above. Then, it is sufficient. to prove that W(u , .) and W(Ü, ,) 

restricted to V are equal. 

Associate with every Pareto optimum y= (y1 , ... , ym) EX the 

affine subspace of X defined by the equations p.yi = wi where i = 1,2, ... , m, 

the price vector p being the unique one supporting the Pareto optimum y. 

Let f be the family of these affine spaces. Finding the p E W(u , x) is 

equivalent to finding the elements off containing x (this remark underlies 

the envelope theoretic viewpoint in section 4 and in Balasko, 1978) . 
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Actually, it is sufficient to consider the elements of; associated with 

those Pareto optima which are Pareto superior to x = (x
1 

, ... , xm). Define 

similarly the family <f' associated with Ü = (u
1 

, ... , uml. The Pareto 

optima associated with u which are Pareto superior to x belong to 

Conv(I
1 J x ... x Conv(Iml n X; therefore, they are also Pareto optima for 

J ••• ' u ). Conversely, every Pareto optimum associated with m 

, ... ., u l in Conv(I
1

J x ... x Conv(I l n Xis obviously a Pareto m m 

optimum associated with Ü = Cu
1 

, •.• , Üm). This proves the identity bet­

ween the elements off and the elements off'. containing any x E V. 

Therefore, we have proven that W(u, .) and W(u , .) restricted to V 

are equal. Q.E.D. 

Proposition 2 shows that in order to study the equilibrium set 

correspondence J.ocally, i.e. in some open subset of X, we may consider 

consumption sets equal to the whoJ.e commodity space. Note, however, that 

the process of extending an economy to having consumption sets equal to 

JR 2 is not unique. Therefore, we could obtain distinct equilibrium set 

- -correspondences W(u , .) and distinct mappings N(u, .) though these map-

pings (resp. correspondencesl coincide on the open subset V of X. 

Without using proposition 2, one can also ask whether the resuJ.ts of 

2 section 3 remain true in the case of consumption sets -1 JR • Once more, 

let us consider the simple (2,ml = (2,2) case. 

Assume I = I• / f. The intuitive approach of section 4 still 

holds and therefore the family fcresp. <f •J contains the tangents to 

L (resp. I'J. Therefore, W(u,xl and W(u',xl have some elements in common, 

namely the lines passing through x and tangent to I (resp. I'J. The fami­

ly (f (resp./•J, however, contains lines which are not tangent any more to 

I ( resp. I') ( these lin es wou ld correspond to tangents to I ( resp. l' l 
outside of the Edgeworth box taken stricto sensu) since some elements 
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of 1 (resp. /•) can pass through x without being tangent to I (resp. I'l. 
In conclusion, some equilibria may coincide though in general the sets 

of equilibria will be distinct. 

* Remark : Note also that if one allows initial endowments which do 

t not belong necessarily to the consumption sets (i JR ), then the 

results of section 3 are also true. 

* 1 owe this remark to K. Vind. 



A P P E N D I X 

s+t ,1;,+-In the Euclidean space JR , let uu~ be the family of dimen-

sion t affine subspaces of JR s+t. One can identi fy df:t wi th a Grassmann 

manifold naturally equipped with a mAasure : Santal6 (1876, p. 188). Let 

;JI: be the open dense subset of ;/tt consisting of these dimension t sub­

spaces of JR s x JR t not perpendicular to JR s x (0). 

s+t Ali Let now M be a dimensions submanifold of JR ; let vUv be 

the submanifold of Mx ;k consisting of pairs (x,A) E Mx ;t such that 

x E A. We denote by TI : Jll., + :ft the restriction of the natural projec­

tion (x,A) 1-+ A to the submanifold Jû1, of M x ;/Î;'. 

s+t Ve6in,i;üon. The manifold Mis properly embedded in JR . relatively to 

~ if the mapping TI : ,/Ill, + /( is pr:oper. 

A mapping is proper if the inverse image of every compact set 

is compact. The following lemma provides an example of a properly embed­

ded manifold which eventually leads to a proof of theorem 1. 

LEMMA. The manifold P(section 5) is properly embedded in x (identified 
m-1 .A.I to S x IR ) relatively to the set v~ of dimension t-1 affine subspaces 

of X not perpendicular to S. 

Proof : This is the corollary to theorem 5 by Balasko, 1878 . This 

lemma is equivalent to the properness of the Oebreu mapping which 

associates with equilibrium (p,x) ES x X its natural projection x EX 

(see Balasko, 1978). The Debreu mapping corresponds in the current 

context to TI: 
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Let now M and M'be two dimensions manifolds properly embedded 

in IR s+t relatively to Ir; . We also assume that nei ther M nor M' are 

embedded in a dimension affine space not belonging to Jt'. Then, we 

have : 

THEDREM. If for every A E ft:, the number of intersection points# (Mn A) 

and# (M' n A) are equal, then M = M'. 

A related property dealing wi th curves with fini te length was 

first mentioned by Steinhaus (1954) without proof. Steinhaus'idea was to 

define a distance on the set of curves with finite length within the set-

' up of integral geometry; see Santald (1976) for further details. Sulanke 

(1966) gave a rigorous proof of a particular case of the theorem. Sulanke's 

proof deals with planar curves which can be stratified by points and 

convex arcs. This includes the case of smooth curves with normal crossings. 

We shall prove the theorem in the following form : assume M 

and M' distinct; then, we shall show that there exists an open set il 

consisting of affine spaces in at't such that the number of intersection 

points # (A n M) and # (A n M') are distinct .for A E ~ • Taking A 

belonging to the non-empty intersection t n 'U, gives A E ':ft: such that 

# (M n A) / # (M' n A). 

In a first step, let us show that there exists A E dl; trans-

verse to M and M' such that An M ~An M' (Note that we do not claim yet 

that # (An M) ~#(An M')). Since M ~ M' , take x
1 

E M such that x
1 

does not belong to M' ; let U c M be an open neighborhood of x in M 
x1 

such that U n M' = ~ • The set tT of A E iflJ transverse to U is open 
x1 x1 
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it is non-empty since Mis not embedded in a dimension t affine space be­

longing ta ïftt \ [/r;. Therefore, we have An M ~An M' for any A in this 

set. Now, it is a straightforward consequence of Sard's theorem applied 

to the mapping 1T : ~ -+ Jt that the set consisting of A E iJ'l:;' not trans-

verse to M has measure O; it is also closed since Mis properly embedded 

relatively to c1t'. The same reasonni rie; app] ies to the set of A E ~ not 

transverse to M'. Therefore, the set of A E fr: not transverse either to 

Morto M' is closed with measure o. Its complement is therefore open dense, 

its intersection with the open set V' is therefore non-empty. This yields 

A E such that Ais transverse bath to M and M' and x1 E An M while 

x1 iAn M'. Transversality implies that An M (resp. An M') is discrets 

these sets are finite since,M (resp. M') being properly embedded, they 

are compact. Therefore, we have An M = {x1} u {x
2

} u ••. u {xk} ~ 

u {xk}. (Note that we take k = # (An M) = 

/=/(An M') the only case which requires a proof). 

Take now a point xi A; it determines with A a dimension t+1 

s+t -"t+1 affine subspace of JR • Let v~ be the set of the dimension t+1 affine 

subspaces of JR s+t. We now define the mapping p : M \ A n M -+ 3tt+1 in the 

following way : P associates with x ~ x1 , x2 , •.• , xk the affine space 

t+1 ..t,t+1 t+1 (x, A). Clearly A E ~~ is a regular value of pif and only if A 

is transverse ta M. Define sirnilarly p' = M' \ An M' + ef:t+ 1 . Let S(p) 

(resp. S(p')) denote the set of singular values of P (resp, P'Y. The com­

plernent of S(p) u S(p') in at't+
1 being open dense by an easy consequence 

t+1 of Sard's theorem is not empty : take A in this set. It results from 

~Mn At+1 t+1 x1 E An M and x1 i An M' that x1 ~ and x1 i M' n A ; there-

fore, Mn At+ 1 is distinct from M' n At+ 1 . It results from transversality 

t+1 t+1 that Mn A and M' n A are smooth curves embedded in the Euclidean 

t+1 t+1 .1w t+1 space A which can be identi fied to JR • Let (111> 1 A ) consis t of the 

...41 t+1 t+1 t+1 spaces A E uü contained in A • Clearly Mn A and M' n A are pro-

t+1 ~, t+1 t+1 perly embedded in A relatively to d~ A • Furthermore, neither Mn A· 

t+1 t+1 ...4, nor M' n A are embedded in a hyperplans of A not belonging to tJi, , hence 

not belonging to ;t I At+ 1. 
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We are therefore reduced to proving the theorem in the case 

s = 1 for any t , i.e. for curves in a Euclidean space. We shall only 

give a sketch of this part of the proof. Assume M ! M' , and M not 

embedded in a proper affine subspace of 1Rt+ 1 (this assumption is not 

really restrictive but one has then to adapt the subsequent arguments 

t+1 to the subspace instead of IR ). Assume that there exists x E M 

such that the curvature of the curve Matx is ! 0, that the tangent 

T to Matx intersects M only at a finite number of points, i.e. 

# (T n M) < + 00 • Let us show that x belongs to M'. Assume the contrary, 

i.e. xi M'. There exists a (relatively) open set of hyperplanes H 

tangent to Matx and trasverse to M \ {x} (hint : apply Sard's lemma 

to the mapping which associates with every points y E M \ {x} the 

hyperplans determined by y, the tangent T, and suitably chosen points 

y1 , y2 , ... , yt_ 2 in IRt+ 1). Such a hyperplans H admits arbitrarily 

close hyperplanes H' and H" such that the finite number of intersection 

points# (H' n M) and# (H" n M) differs by exactly two units (hint 

use transversality to M \ {x} and the local form of M near x taking 

into account the non-zero curvature assumptio~). Therefore, H being a 

"bifurcation" hyperplans for the mapping H 1-+- # (H n M) = # (H n M'), 

this implies that H cannot be transverse to M'. By having H vary, x and 

T being fixed, we obtain that T must be tangent to M' (hint : use a one­

parameter family of hyperplanes H; then M' must satisfy a differential 

equation whose solution leads to the fact that T is tangent to M' ; 

this is analogue to the fact that a point is the envelope of the pencil 

of lines passing through it). Let x' be the contact point of T with M', 
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We have x I x' since by assumption xi M'. By repeating a previous ar­

gument, there exists a hyperplans H transverse to M \ {x} and to 

M' \ {x'} and containing T = xx'. Let H' be arbitrarily close to H. 

Then, we have# (H'n M \ {x}) = li (H n M \ {x}) < + 00 and respec-

tively # (H' n M' \ {x'}) # (H n M' \ {x'}) < + oo; by conside-

ring the local form of M and of M' at x and x' respectively, one can 

make H vary in a way such that # (H' n Ml = # (H n Ml + 1 and 

# (H' n M') = # (H n M'l - 1; this yields # (H' n M') # (H' n M) -2, 

hence a contradiction. Now, if there does not exist x E M satisfying 

the above assumptions, then we are reduced to considering segments of 

straight lines of M and M' ; in such cases, the final result is obvious. 

Rernark. Beyond the rigidity theorem, it rnay be interesting to construct 

the manifold M knowing the mapping Ai----# CM n Al. A simple adaptation 

of the above proof provides a solution. It is sufficient to construct 

Mn At+ 1 for any dimension t+1 affine subspace of ms+t and make At+ 1 

vary. One is then reduced to considering a family of hyperplanes; ac­

tually, considering the above prao~ Mn At+ 1 is the envelope of the 

family of hyperplanes H such that Hl---+/~ (Mn Hl is not locally 

constant at H. A way to construct Mis therefore to project Mon a 

plane and to consider the hyperplanes parallel to the projection. Then 

one is reduced to consider the classical problem of finding the enve­

lope of a family of lines in a plane. By taking a sufficient number of 

distinct projections, one can reconstruct M knowing its projections. 

Note that this construction can be considerably simplified by conside­

ring nice (generic) intersections Mn At+ 1 and then nice (generic) 

projections. Summarizing, and back to our economic problem, we are 

entitled to say that knowing the function number of equilibria deter­

mines the equilibrium set correspondence. 
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