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This paper presents the study of procecture aimed at 

improving an in1jirect tax system. The procedure has tt1e fo!lowing 

features : 

A - The procedL1re operates in an idealized economic world analogous 

to that described by Diamond-Mirrlees in tt1eir basic moctel of [ 5 ] : ail 

commodities can be taxed, producers have a competitive behaviour 1 

consumers have only a labour income. As it is supposed that there are 

no public goocts 1 the tax system performs essentially a redistributive 

rather than a financing function. 

- The principles of the procedure are borrowed from a preceding 

proposition of Guesnerie [ 7 J which analyzes in the framework of the 

a.bove moctel, the directions of tax reform with respect to feasibility 

and desirability criteria. 

B - A dynamic process indexect by a continuous variable time 

is engencterect through the linkage of the desirable infinetesimal 

tax changes. This ctynamic process is built in such a way that it J1as the 

fol iowing characteristics of feasibi l ity and monotonkity : 

• feasibi!ity: On ail trajectory {if any} if one stops at any tîme t, 

the corresponding state of the economy i s a feasib le 

state (i.e an equilibrium with respect to taxes preveilir-,g 

at this time) 

• monotonîcity: The welfare of all l1ouse.holcts in the economy -as 

measured by some utility level- is an increasing 

function of the variable tirne on all traJectory. 

C -· Tlîe ~pecific purpose of the study of the dynamic process -.once it 

has been cle-fined-concerns tfïe standard questions Paised by dynamic 

systems w!1!ch are existeiïce and stability.Itir, worth noting tf1at the oiffe

rentia! system considered,by its nature, has a multivalued rigM !,and 

side and P1at _the recent matî1ematica! 2nd dev~lo;.:ments in the stt.K1y 

of such systems provic!e us natural and appropr·iate tools • 

{see Castaing [ 2 J, Ct1a:r1psaur Dreze Henry [ 3 J) 



The reader will have noted that the preoccupations underlying 

this study have a narrow resemblance with mose leading to the study 

of planning procedures concerning ei tt1er the implementatîon of efficient 

allocatlon in the production sr::ctor 11 cf. [8] or the choice of efficient 

output !evels for public goods [6] etc .... This resembrance relies 

bott-1 on the definition of similar requirements for the ctynamic processes

feasibîlity, monotonîcity as defined by Malinvaud [ 11] and, on the 

similarity of the questions raised:existence, stability. 

The interpretation of the system as a tâtonnement procedure 

aimed at al lowing the center to impl ement efficient plans through an 
exchange of information with decentralized units- i.e in tJ1e implicit 

framework of an economîc theory of socialism (cf. Heal (8] would 

suppose that the information gatl1ered at any step by the center. 
concerns the individuaf consumption of households, elasticities of 

demana and elasticities of supply. 

However a more natural interpretation of the procedure- and our 

assumptions are generalfy impllcitly related to this view - consists 

in considering that the dynamic process describes the working of an 

algorithm used by the Government of a non centrally planned economy, 

for revising its indirect tax system. Such an a!gorithm which assumes 

the' knowledge of demand and supply functions which may be provided by 

econometric estirnates, would operate at some aggregate lever (aggregation 

of commodities and households in classes). 

• 
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1 MODEL AND NOTAT10N 

t. A - The agents ana .th~ assumptions 

The mode! we are consictering was first explicitely introduced in 

the literature by Diamond-Mirr!ees [ 5] who,in their seminaf articl~, 

focused the attention on the derivation of optimality conditions for thr-

tax systr-m. · 

There. are n commodities in the economy indexed by k = 1 ••••• n • 

Two cat ego ri es of commodi ti es are considered. Commodi ti es 

1 to n
1 

can only be con.sumed in negative quantities ( orsupplird) and 

commoctities n
1 

+ 1 to n can only be consumed in positive auantities 

(or demandect), this being true for all consumers. An appropria te choice 

of consumption sets al lows taking into account this assumption of 

speci a I i zed commodi ti eso 

Let the consumers be indexecr by h = 1 ••• H , and I et ('l't be th~ 
. . r) 

consumption set of agent h ., The following assumption on Oh is made 

.1 H 11 0 h is closed convex, bouncted from below and included in 

Each constJmer h has preferences defined on O.h and repre

sented by a utility function uh which satisfies 

-===--~==-==-==--=====-==~====~==~=~=============================== 
(*)Unless exp li ci t contrary statement, the fol lowing conventions wi 11 

hold thoughout the paper ; 

• consumption or production plans are co!umn vectors 

• price systems are line vectors 

- 0 • X, X, ri X, Fr. X , ctesignate respectively the c!osure, the interior, 

the relative interlor, and the frontier of the set X. 

t • A denotes the transposed of matrix A 
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( 

uh is positive, strictfyquasi-concave, and continuously 
- . ou 

Cfifferenti;:,1b!emri{Oh)vvith .. h >O 

è xk 

Faced wi th the price system TI ( TI in P 
on 

= R+) , consumer h 

determi nes hi s demand by sofving the program : 

/ 

The reader will notice that,through this formulation,. the consum~r 

is supposed to have no other incarne than his labour incarne. 

From H 1, H 2, this program. has a unique solution Xh {I!) such 

tha t n • xh (n ) = o 

Xh is the demand function of consumer h. 

X= r, Xh is th~ aggregate demand function .. 
h 

We will also consider in the fo!lowing the indirect utllity function 

Vh {Il}= uh (Xh(n))., Production possibilities are descrlbed through a 

production function G {which defines th;--· production 

set Y = { y / G (y } :::; 0 \ ) such that : 

(H 3 al Gis strictly quas( convex, and monotonie 

y > y t:::;, G (y ) > G {y i ) ; G {O ) == 0 

The asymptotic cane of Y , A Y ls on 
fr>: ....... 

Faced with thr: production price system p (ln P} the pi~ocrucer 

determines hi s suppiy by so!v! n<J the fol lovvi ng program : 

Max f P .. y I G (y ) :::; O 
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lt resu!ts from H 3 o:., H 3 ~ that ..,_, p E P, this orogram has a. 

uni que solution T) {p } such tha t G ('Tl (p } ) = O 

'11 : P ~ iRn is the su,:p!y function (*) 

The supply' and demand functions wif l be supposed to fuTfi Il 

the following requirements 

xh is c
1 on P 

ts c 1 on P 

===::== =====================s::::::::.:::=== ======::::.::===::::======::==== :.:::========.:::::==:::== ·.::: ~:: ::; .. 

n * If Gis strictly auasi concave, and A Y = 1R , it follows 

from Artzner Neuefeind, r 1 1 that B Y = { P / ri (p) i s definectl 

** The assumption that !R: is the asymptotic cone of Y 

ctoes not play a decislve role in the fol\owing 

ln fact, il would be enough to consider throughout this paper 

that 11 which i s from l·-l 2u, and Artzner Neuefeind r 1 1 defined 

on the interior of the pdar of AY, ïs·ctifferentiable in this set. 



/ 

- 4 -

Given H 4 et H 5 , one wil I denote bX (!1) the n x n matrix 

and à f\ (p} the n x n - matrix 

bî\ (p) = 

k 

l e 
b'll 

(TI) • ·) 

(p ) ••• ) 

lt is well known that : p b 11 {p) = o. so that oTÎ(p} is at most of 

rani< n-1 • We sha!l assume precisely that 

1 H 61 èY)(p) is of rank (n-0, V p E P 

§1 There does not exist ( p, TI } E Px P such t'hat : 

>< (TI ) = 11 (p} p. ox<n}= o 

This is a kind of regular•ity assumption analogous to the 

rcgularity condition of Kuhn-Tucker type • 
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This property does not look very restrictive and it is argued 

in the footnote {*) that it 1s likely to be ngenerict, in the sense 

of di'fferential topology. 

H 71 is more restrictive 

l H 7 11 There does not exi st {p, TI} E P x P such that 

xcn)s'Jl(p) p. èX{n)= 0 

Let now V (p) = f u E IR n\ ·· p .. u = 0 l 

H 5 - H 6 bei ng gi ven and accordi ng to I emma 1 in Guesneri e [ 7 ] 

b ii (p) defines a one to one correspondence from V(p) onto V (p). This corr 

por,crence wi 11 be denoted br] {p} and i ts inverse bn- 1 (p} 

Let us briefly discuss the restriction in the range of production 

possibility sets implied by H 3o:-H 3p - H 5 - H 6 • One may first 

remark that given H 3 a and ~ , H 5 and H 6 are mainly technical and 

lt is likely that it could be proved that they are 11 generic 11 propertii?s. 

H 3 ~ supposes some substitt.ability between inputs and outputs and 

that marginal returns tend to vanish when the scate of production tPnds 

to infinity. On the one hancf, it ïs not unreasonable at the aggregate level 

we are considering: on the othE>r hand, this assumption is not necessary 

for the argument and is only intended to simplify the presentation. 

-~ -----------.. ---.. ----=-===-===::=:==:::::::::========t::::========================~=:::-; __ 

{*) If one considers the set of equat1ons X (n) = ri (p} 

p. è X {n} = O, one sees that we have 2n -1 equati ons for 2ri -2 varîab !es. 

Hence, this suggests that they can only be satisfied for exceptionnai 

data, a point whlch cou!d be confirmed by a more formai approach. 



H 3a., ev.en if it is not unusual in the literature, is perha~s less satisfac_> 

tory since it rul es out production sets where inputs and outputs can be 

compl et<"ly di stingui shed. Ac tua l ly H3cx, coul d be relaxed for al I owi ng 

such production sets, but condition (A) below should then be reinforced 

in such a way that Hl:l seemed an acceptable compromise between realism 

and simplicity. 

Finatly, a last assumption wiII be made which concerns demand 

behaviour 

Assumption (A } 

cd xh Crd E r i (Oh) v n tf P 

~) tf a sequence (nn} of vectors in Pis such that 

• llnnll = lln 0 Il V n, lln 0 ll r O {**) 

---:> n E P/P 
n->+ CO 

Then, 

a) ei thr,r Il X ( TI ) Il '"" + oo 
n 

b} or V v > 0 , 3 h E (t • e. H} and N such that n >N ~ uh (Xh (TI
0

) )< 

--==--===---=-==. ===---::::----=--=------=-==----::=--.::::------=---------- --. -- . 

(*} lt shoul d assure that : 

1) If the price of one output tends to zero its suppty tends to zero 

2) Ali commoditfes are 11 essential 11 in the sense of p. 7 

With H 3a. the things are simplei:- since the supply of one output 

tends to - co when its price tends to zero. 

(* *) Il x li is the euclidean norm of x 
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The idea uncterlying assumption(A)is that when a commodity price 

tends to zero, either it ls a consumption good and its demandtendstoinfinity(a} 

or it is a type of laba..r and then the utility 11."vel of some household 

tends to zero (b) . 

Relatively to H 1 - H 6, (A) introduces additionnai restrictions 

on the preferences which are considered. For example, the reader 

will check that (A) will hold if ail consumption commodities are supposed 

essential (xi h = 0 ~ uh (xh) = 0 ·i = 1 ••• n
1

, h = 1 ••• H ) and if 

each consumer is specialized (he can supply one and only one type of labour) 

This brlef analysis of assumption (A) suggests that it can be 

considered rather strong if one reasons at the disaggregate Jr,vel. 

Howev'"r', at a more aggregate level, which is an appropriate tevel for prac-. 

tical use of the algorithm proposed in the note, the assumption does 

not lool< unreasonable 

l. B - Equilibria and the principles of an algorithm for tax reform 

Let us give several definitions 

Oefi ni ti on 1 : 

An egui libriu.w of the system consists in a couple ( rr, p ) of consump

tion price system and production price system such that : 

Oefinition 2 : 

H 
L 

h==1 

-H 

The equi librium is said to be lli1b.!. if z Xh (n) = 'Tl {p). If th"' 
h=1 

latter equality does not hold, the equilibrium ls non tight or inefficient 
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Definition 1desœibes an equilibrium with taxes: the di sconnection 

between production and consumption pd ce systems is supposed to 

be i mp lemented through taxation. The formulation also supposes that 

the profit of the fi rms i s compi etely taxed by the government. (For 

a comprehensive discussion of these assumptions see Diamorîd Mirrlees [5] 

Definition 2 expreSS(,s a tight ness condition which is the equivalent for 

our mode! of the effidercy property of Di amonct-Mi rrl ees. If thi s 

condition is not satisfied, the total demand could be satisfied with an 

ineffici ent production plan, i.e a production plan in the interior of thP 

total production set • 

tn this note1 onewïi,l partic...ilarly be interested in special typ0s 

of equi libri a, the Pareto equi I ibri a, defined as fol i ows: 

Definition 3: .A local Pareto equilibrium consists in a couple (n, p) 

such that : 

a,) (n, p) defines a tight equilibrium 

H 
~) - p. 6x Cn > = t À h xh (n > 

h=i 
with X h ~ o 

Conditions (S} are necessary conditions for second best Pareto 

optimality (see Diamond-Mirr!ees 1 ]) and thfs fact motivates the 

vocabulary of local Pardo equilibrla$ 

Actually, a local P23rcto equflibrium may have different features:' 

• Jt may be a .9!obal second be~t_-~~în the sense that 

there does not exist, in th<-, set of all equilibria, one Pareto super:or 

equflibrium,. Moreover, under the conct1tions we consider ail Pareto 

optima be long to the set of local Pareto equi li brî a. 
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• tt may be a loçal Pareto ogtimum in thP sense that there does not 

exista rag,oour Pareto superior equil ibri um • 

• lt may be neither a local nor a global second best Pareto optimum. 

ln this last category fall the saddle type Pareto equilibria on which 

we wi 11 corne back la ter. 

Let us now introduce some additional notation 

K (n) = { a E IR n l a. xh (n) < o , h = 1 ••• H } 

Q (n', p ) = { a E IR n I P. bX ( TI ) • t a :5 o l 

Fr Q { TI, p} = { a E IR n \ 
- t 

P. à X (n} • a = o 1 

We are interested in designing an 11algorithrn of tax reform 11 ; i.e 

a procedure for modifying th0 tax system leading to an improvement 

of ail consumers 1 welfare . 

It has been argued in Guesnerie f 7] that: 

.such an algorithm can be implemented through the linkage of 

tnfinit esimal changes of taxes and prices, which,starting from ·a glven 

equilibrium (n, p),meet the following requirements 

0 

5!Jl E K (n)n Fr jo(n,p}\ ( a } 

dt 

t.Q..E.. = b'r) -1 ( p } • b X ( TI ) • t cf TI ( b ) 

dt cf t 

An intuitive unœrstanding of thP above system can be got through 

the following remarks : 

• The change in consumpti on prie es i s fi rst astrained to be in Fr Q (p, TI} 
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t 

i.e to induce a change in demand bX ( n) d. n whose value expressed 

dt 

with production prices is zero : 
= t 

( P. o X (TI) .E:..11_ = O ) 

dt 

• The change in demand induced by the change in consumption prices 

just consictered can then be matched by a change of production prices 

defined by formula (b) 

• ln order to be Pareto improving the change in consumption prices 

must be such that the value of all consumption bundles decreases, a 

condition which is expressed in formalized Vrms as 
ctn 
dt 

0 

E= K (n) 

More prccisely, the interest of system 1, lies in the following 

precise property (which is Corollary 111 in Guesnerie [7] ) 

_proeosition 1 

lfthereexists a solution of system (1 )(TI(t }, p(t ))ctefinedon 

[ O, ·T 1 and starting from{'TI(O ), P (o ))such that 'rJ(p(O)) = X (n(o)), ther; 

( xh (n(t) }),, (p (t)rn(t ), p{t Hctefine a tight equilibrlumV t E [o,TJ 

Vh (n (t) ) ls a strictly lncreaslng function of t 

The rest of the paper i s devoted to a comprehensîve study of 

dynamical processes governed by system 1 or by slmi lar systems. 

This study raïses the types of questions that are usually consicJered 

in the literature on planning procedures (H""al [ 8 J, Mallnvaud [ 11!) 

and which are twofold:. 

(1) Do there exist solutions of the system of differential equations 

which make lt meaningful ? 

(2) Given a solution path of the system ,ctoes i t converge and to which 

points'? 

• 
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These two probl ems -exi stP:nce problems and convergr>nce probl Pms ·

will be examined for a system derlved from system l ln section tl. lt 

will be shown that some limit points of paths have undesirable properties. 

A more complicated system whlch excludes such undeslrable limit points 

wîll then be consldered ln section iH .. Ali proofs are !n the appendlx 

Il~· A FIRST DYNAM!CAL PROCESS 

System 1 wi 11 be slightly modified in order to be defined for al 1 

(n,p) E Px P • For that,one will assume that prices remain constant 

as soon as the second member of equation (a)becomes empty • This gives 

system { li ) 

( l') 

0 

~E 
dt 

l< (TI) n Fr o. (n, p} 

= 0 otherwise 

t 
9J2. = :>.. rvT\ - 1 (p 1 
dt V • . / • 

t d TI 
>, ,X 'Il\ --v \ •. èlt 

l 1-A Existence prob I ems 

0 

if K (TI}('\ Fr Q (np) /çb 

Has system (1 !))which is a syst;;;m of rnu!tlva!ued differential equationr: . 

a solution ? 

The answer to this question rests on mathematical results sometime:,: 

directly initiated by problems in economic theory {cf. Cl. Henry [ 10 J ). 

A view of these results is given in Champsaur Dr-eze Henry [ 3 J. 

Here, a way of approaching existence is to consider an auxiliary 

system obtaincd by buildl ng an upper hemi -continuous convex compact 

0 

valued correspondence M which is extracted from !< (n) lÎ Fr Q (n,p) wh1:11 

i t i s non emp t y. 
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To this end let us consider : 

n; ~ t t 
cp ( TI, p } = { a E IR p o X (TI) • a = O , n. a = O , Il a Il :S 1 } 

f (n, p } = Max { Min ( - a. Xh (n) ) / a Ecp (TI, p ) } 
h 

0 

Let us notice that f (n 1 p ) = 0 if and only if K {nj Îl Fr Q{ TI,PJ = </J 

M (TI, p ) = { a E cp ( n, p) / f (TI, p) = Min ( -a. ~ (TI) ) } 
h 

(2) i s : 

(2) 

<!...IL E M CTI , P ) 
d t 

t~ 
dt 

From an econon1ic point of view, system (2 ) has the following characteristîcs : 

• the speed of change of consumptlon prices is bounded: !la Il :S 1 

• the norm of the consumption price system remains constant along 

any solution path (as ctoes tha norm of p ) • 

• the change in prlces are designed in order to maximize the 

smallest SP:::ed of decrease in the value of agents! consumption bundles. 

The following theorem holds: 

Theorem l 

_Cor:,9! lary 1 

Under assumptions Hl - H7 and (A),for all (TI 0
, p 0 )EP x P 

such that 'fl (p 0
) ::::X{TI 0

), there exists a solution {n(t),p(t}} 

of system (2}, defined on (0, +cc [ and starti ng from (I1°, p O t 

The same statement i s true for system (1' ) 

ln other V\U'CS with vo<.:;abulary on general dynamlcal procesè, 

there exi sts a traJectory for systems 1 1 et 2 • Let us recal I th3t accordi 

proposition 11 a!ong this traJectory utillties încrease and equillbrl a r~ern2,, 

tight • 

• 
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A solution TI ( t ) , p ( t) on [ o, +co [ of system 2, if any, al lows to 

define a solution TI (t ), p {t) of system 1' on [ o, +co [ in the fol lowing way 

From t = O untit the first time T where f (TI {T) , p (T ) ) == o, TI {t) = Il (t) 

p (t ) = p (t ) , t E [ O, T] ; for t > T TI {t) = TI (T ) , p {t) = p (T) { *) 

This allows to prove Corollary 

li B - ~as! - Stabi lity 

Let us recatl first some ctefinitions relative to a general dynamical 

process (P) governed by the system of multivalued differential equations : 

~ E F (x) (S) 
d t 

x is an ~guilibrium of {P) if o E F (x}. 

A traJectory of (P} is a solution of {S) defined on [ o, +oo [. 

We will say that xis a l_i_rnit point of a traJectory x{t) if there 

exists a sequence tn---. + 00 

1{ 
n 1 + oo 

such that : x {tn} ---+ x 

nf +co 

Process (P) is quasi stable iff any limit-point of a traJectory is 

an equilibrium • 

For the systems. we consider,the fo!lowing propositions which are 

proved in the appenctix hold : 

Propositior1..~ : 

System 2 is quasi-stable 

========================================:..:===========================t,:. . -. ,. 

{*) ln system 2, we obtained the upper hemi-continuity of M when it passe:·, 

through O, to the cost of lntroducing vectors ~ which were not 

allowed by system 11. 
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For any trajectory of system 1 t such that : Y h (1 ••• H } 

Vt?.:0, - ~ .. Xh(n(tj) ?.:k f{n(t}, p (l) ),where !< is 

dt 

a strictly positive number (sma! Ier than one ), every I imit 

point îs an equil ibrium .. 

An obvious requirement for. a limit point of a traJectory to be an 

equilibrium for systems like {11) and (2) ls that the speed of change of prlces 

do not tend to zero 11 too fast 11 on the traJectory. 

This requirement is automatical ly sat isfl ed on a traJectory of 

system {2) - which then can be proved quasi-stable - but not on any traJec

toryof system 11. So, the condition given in theorem2 is intended to assure 

that the speed of change of pr i ces does not become too sma 11. 

Let us now consider a traJectory of system (if} where the speed meets 

the requirement -*1"· Xh(n{t)) 2'.:k { f (n (t}, p(t) ) - such a traJectory exlsts 

from theorem 1 0 Let rf» p be a I imit point of thîs traJectory .. According to 

theorem 2, n, p is an equîlibrium of system Cl!) i.e : 

0 .. - ........ 

K {n ) n Fr Q(TI , P) = (/J 

What can be said about su.ch an equilibrlum ? 

An answer is provided by proposltion3, which can be seen as a 

corollary of proposition 4 in Gt,jesnerle f 7] 

Proposition 3 : 

If n, p is a limit polnt of system (1 t } 

- Either it is a local Pareto equilîbrium 

0 ,...... - - J 

- or K ( TI ) n Q (TI : P ) f (/J 

• 
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Thus, we are faced with four types of possible l imit points 

ex. - fri , p ) is a global second best optimum 

j3 - (n , p ) is a local Pareto optimum 

y - (TI , p) is a saddle type Pareto equilibrium. lt is such that ther•e exist 

Pareto superîor points in any neighbourhood of Œ, p) but however the 

necessary conditions of second best Pareto optîmà!ity are satisfiect. 

Our algorithm stops in th0se points because it does not allow, even 

temporarily, a nul! speed of increase of one agentls utility • 

ô -
o- -- --

If K (n) n Q (n, p) "f 0 , ( n, p ) is not a local Pareto equi librium 

in the sense of definition 3 • And generat ly there exist Pareto superior 

equif ibria in any neighbourhood of {p 'n }, but they are (or may be ) 

non tight so that the process associated to system (1 t ), which is 

constrained to remain in the set of tight equi l'ibria,stops. With the vocabul. 

cl Guesnerie [ 7 Jin which this phenomenon -which may look strange -

has been studied, thereexist. strictly Pareto improving directions of 

picema193s but they lead (or at least tend to lead) to non tight equilibria. 

ln other v.rr-ds a time path of price. changes inducing a monotonie increase 

of ail utilities can be extenaed only if temporary (*) inefficiencies are 

al lowed1 which is not the case for systems 1, 11 and 2. 

Limit points corresponding to ô are particularly unsatisfactory 

We wou!d try te rule the.m out, ?Y consldering in section !Il a more 

complicated system which wii! allow ternporary inefficiencies. 

_____________ ., _____ .. _______ :::::;::; ... --=-======·-·=--.. -==-=--=----===--===;:.;=======!;".:::::..·- .:::,-

(*) lnefficiencies are only temporary • in the sense that the attainment of n 

global second best optimum wou!d remove them • 
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Ill - A dynamic process with temporary inefficiencies 

Def!ning Q ( îl, p, À ) = { a E Rn / p. èX (n}. ta~ 1,, ll p\\} 

where À is a parameter belonging to R, we wi Il be interested in {his 

section by the fol lowing system (3 } 

~ ~ E K. (n) nQ ( n, p, A) if this set is not empty • 

S!..IL = 0 otherwi se 
d t 
t . t 

~ ~ = o rr- 1 
(p) [ o x en) • . ~~ + 

f!1 
dt = -

p. nx1n G ,_ p 

p. t n' 

J •. E.1L 
dt 

Il ~ ~ \l ~ 1 

Solutions of this system {if any}, have the monotonicîty property that 

we expect and possibly ctisplay temporary inefficlencîes, as stated în 

fi'oposition Lt (* ) 

lf there exists TI {t), p(t), À (t) , a solution of system (3) starting 

from n (O }, p (O), A (0) and defined on [o, T J with À (0) t n (O) =r)(p(O})-X(n .1, 

and À (0) ::2::. O then : 

• À (t) .::2::. 0 V t E [ O, T ] 

• X (n (t) ) + À (t)1n (t} = '(1 (p(t)),; V t E [o, T] 

• Vh(TI (ti) is a stricly increasing function of t
1 

0 

V h = 1 .. 0 H, for ali t wrere Ken {t}) nQ (n (t), p{t), ), (t} ) I 0 

The proof of proposition 4 is giver in the appendîx and rests upon t: ,, 

fact that À(t} ~ 0 would imp!y ( ~ ~}(t} :2: 0 (which împ!îes À (t} cannot becorn, 

negati ve } 

====-==--=====-=========-================================-===========::· .... ·:· 

(*) The reader will fruitfu!ly compare this proposition wîth coroilary 

in Guesnerie [7 J 

.. 
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As i1 sectionfi we introctuce an auxîiiary system. Let be : 

I ' n = t -
q:>(n,p,)J = a ER : Po àX (TI)., a:;; À l\ P Il 

t n a= 0 

f HI, p, )J == max { min (-a. Xh (Il) ), a E i:p ( 1\ P, t,) } 
h 

M{Il, P, À}= { a E cp (Il, P, À) : f {TI, P, ;\)=min {-ao~{n) ) } 
. h 

System (#) is the following: 

(4} 

p 

( {7 E M (n , Pt À ) 

td 1 t_a·n . d.,, t tdTI *~ "° o ri {p)- • [ o x rn }., ct t -r- ctT n + X ~ J o 

dÀ -= 
dt. 

.. E-.9Î {H} + ~ ,. 
Po ' P. 

t c-1 T'\'l 
~ 
dt 

Theorems :;;,milar to U1ose of section li c;m be stated 

Theorem 3 : 

Under assumpt;ons f-11--H6-H71 and A for ail {Ii{O) p(O) ) E Px P 

such that 'l') {p(O)) = X (n (O}) , there exists a solution cefinect 

on [ o, +c.o [ starting from (n {O)J p(O), 0 } for systems (3) and {4) • 

System {4} is quasi-stable 

For any traJect0ry of (3 ) such that : V h (1 ••• H } 

v t.~o. - ~~ >'11 rnn> )'.?. k f(nft}~pft), À (t) )~ 1< E Jo, 1] 

every limit point is an eqciilibrium 0 
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Corollary 2 

1 

Fo~ any trajectory of {3 ) meeting the above speed condition, 

limit point is a local Pareto equilibriumc 

every 

Thus with the vocabu!ary of sectionll., we proved that the limit points of a 

traJectory of(3) meeting the speed requirements are either second best 

Pareto optima (a) or local second best Pareto opt,ima {~) or saddle type 

Pareto equilibria (y L. 

Obviously, one would wish to design process for which limit points fall in 

case' (a.). lt is clear from the basrc non convexity of the set of equilibria 

that such a property cannot be expected for processes which only consider 

local information on the feasîb!e states. 

If limit points of type S cannot be excluded, can one at least rule out 

case (y} which is particularly unsatisfactory, by defining an appropriate 

process? 

ln the state of art, it does not seem clear that such processes can be 

ctesigned without looking at second orcter conditions. This is ~ertainly a 

provisional conclusion, which !et open a door for future research • 



• 
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APPENDIX 

Section 1 

Proof of proposition 1 

(TI {t}·, p{t) ) being a solution of system (1 ), one has : 

td rv-1 } =li! ) t!!TI. 
~ = à Tl (p • b X {n dt 

hence 
tdn 

à 'Il {p). dt - t.m. 
= à X (TI) • dt 

And thus V t E [ O, T J ,11(P (t) } = X (n {t) ) (because of the initial condition) 

i.e the equi libium remains tîght. 

If Vh is the indirect utility function: 

dt 

n 
= i: 

k=1 dt 

and a classical calcuius shows that there exist °'h >0, h=l ••• H such that : 

dt 

n 
= I: 

k=l 

but : V h: 1 ••• H 
t 

xh <n CtJJ • ~ < o • 

and thus Vt
1 

is strictly increasing V h {1 ••• H ) • 

Section li 

Proof of theor~ 

The proof has two steps : in the first step, we prove that there is a 

local sol ut ion ; in the second step, the solution is extended to [ o, + oo [ 
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df! tf!!?. ) System (2} can be written { dt, , dt E F (rr 1 p) 

. . { l"J-1 ) = · ) t ) } } where F (TI,PJ = (a,ori {p • è X {n • a , a E M (TI,P 

To prove local existence, we wi 11 refer to Castaingts theorem stated 

below (see appendix li), which requires that Fbe a compact convex valued 

upper hemi continuous correspondence and adequately bounded. 

Let be T = { {IT, p} E P x P p. è X {TI) = 0 } 

One can prove : 

1 - Fis a compact convex valued upper hemi continuous corresponctence 

on S • We note tt'lat © is continuous {it is upper hemi continuous as inter

section of upper hemî contînuous correspondences, and lower hemi continuous 

by an ad hoc argu:11ent,ç:f.tr1eorem 5 in appendix Il) and that 

lvfr-. {-a. ><~Jn) } is a contlnuous functîon in {TI, p, a}. The maximum theorem 
h Il 

tt1en implies U,at M ls upper hemi contlnuous and compact valued. 

L b . f 1 ~ e· >, ""' -1 f ' ?\ "'x ( l et e 2: dl,P! c .;;;,·t vn ,p}. V' ,TI, 

<I> ! (x,A) E :Rn X:;/!., 

iinear functions from îRn to IRn } 

g and 4> are continuc,us and F = <I> 0 (M, g) implies that Fis upper hemi continuous 

and compact valued. 

The fact that Fis convex valued results fr·om the concavity of the maximized 

functlon iv1in { -a. xh (n}} • 
h 

2- F i s bounded on any compact set K of S, as a consequence of the 

upper hemi contînuîty of F • 

• 
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Hence, from Castaing's theorem one can infer that : 

For ail c~mpact K c S there exists T K > O , such that for ail Cn °, p O
} E K, 

there is a solution {n (t} p{t}) of system (2} starting from (n°, p 0
) and defined 

on [ o, T KJ • {* ) 

(Take an open set containing the compact K and apply the theorem ). 

Step 2 : 

Let {.n°, p 0
} be such that 11 (p 0

) = X (11°) and let us 

consider a non decreasing sequence of compact setsCk such that 

Let Ck(O) be the smallest compact set of the family containing 

(n°,p 0
). 3 Tk(O) >0 and :J 0 (t) ,p 0 (t} a solution of system (2) startin~ 

from {n°,p 0
) and defined on[·o, Tk(O}] 

Let be 11 0 (T k(O}) = TI Î, p
0 

{T k(O)) = p 1, and let Ck{l) be the 

smallest compact set of tr,e family containlng (n 
1

, p 
1

) ; etc ••• 

Thus we build sequences Ck(n) , T k(n}' nn (t), pn (t) such that 

ck(n} is the smallest compact set containing Cnn_ 1(Tk(n-1)),Pn ... l(Tk{n-1}) ), 

and {rrnh), pn(t)) is a solution path of system (2) defined on [o, Tk(n)J 

. and starting from nn_ 1{Tk(n-1)i, Pn_ 1(Tk(n-l)) • 

. =========--===========================...::===============================================~": ... 

Hd - One must notice that the theorem gives mor-e ttlan a local existence 

statement which alone could be obtalned by more elernentary method 

cf. Guesnerie [ 7J but woulct be insufficient for the following. 
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We have then got a solution on [ 0 1 I; T k(n}J starting from TI O
, p 0 

n 

and such that : l) IIPn(t) 11 ~ il p 0 II, llnn(dll = Il TI 0 ll , 

lt remainstoprove that I: Tk(n) is a divergent series e 

From (nn {T k(n}) 1 pn(T k(n})) one can extract a subsequence (nn' pn) 

converging to (TI , p } . 

We wi Il prove that (ÎÏ , p } r/ s, S • 

- -If pn-+ p E P , it would fol low from H 3 , that llîl {pn}I! -+ + co 

(cf. Artzner Neuefeind [ 1 J theorem 1) But H 1 - H 3 - imply that the 

set of tight equi libria of the mode! is contained in a compact set 

(cf. Debreu [ 4] ) which leads to a contradiction. 

If n -+ TI E P, assumption (A) would imply either that 
n 

IIX {n )Il -? + co • -which is impossible for the reason Just stated-n , . 

or Uh (X
11

(nn} ) -+ O for some h , wt1ich contradicts the strict monotonicity 

of the process in terms of utility. 

If (nn' pn) -4(IT, p} ET, (X (Tin)' T) (pn})-+ (X(n), 'f1{p) ) such that 

X (n} = T\ (p} which contradicts H 7 • 

Hence, there is a compact set Ck containing an infinity of points of 

tresequence (TI (T,,( ,), p (Tk( )) } • n ,, n1 n n 

Let T == Min (T 0
, •• ~ Tk) > 0 which ensures that for an infinity of 

n: T k(n) > T • This tei~minates the proof of this step. 

Proof of Progo_sitio!l 2 and Ti1eorem_2_ L 

Ste,e.1 

Let be E {k
1

, kV r 
1 

i; • ., ,, rH) == {(TI, p)E r-=>x P \! TIi!= k
1

, Jlpl!=k
2

, T){p)-X(n)=O, 

Uh(Xh{n)J~rh, rh>O, V h} • 
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Let us consi der a sequence {n , p ) in E. One can extract a 
n n 

subsequence converging to {ii: p) (because of the boundedness of the norm ). 

An argum~nt simi lar to that of step 2 above shows that (TI, p)E PxP and hence, 

by the continuity of Tl , X, Uh, to E. Hence E is compact. 

Let now n (t), p(t) be a traJectory of system (2), starting from 

(n°,p 0
) E p X P. Let (n*; p°*) be a limit point. 

( * * ) . 'l "b • 'f I 'f TI , p I s an equ 1 1 r I um I and on y , : 

0 E F (n*, p *>~ 0 E M (n~ p*) ~- f (n*, p*) = 0 

For proving the statement, we shall show that f (n*, p *) > 0 is 

impossible • 

§tep 2 

Let f Cn*, p*) = e be strictly positive. An easy argument shows 

that from a time t~ on, there exist rh > O, such that the traJectory lies 

def 
in the compact set E ( Il n°11, llp 0 ll,{rJ) K ' on Which fis uniformly 

continuous. Furthermore (n* 1 p*) E K • 

. The continuity off impl ies : 

3'll > 0 : Ir {TI, p) - (rr*, P *) li< 'rl --+ f (TI , P ) > f . 
Let TI (t ) , p (t ) be a sequence of points of the traJectory converging 

n n 

to (n*, p*) ,. wnen t -. co 
n 

Hence : f (n{t ), p( t ) ) > ~
2 

for n > n 0 n n 

On the ot!,er hand, f being uniformfy continuous on the traJectory 

en (t}, p(t}){for t;?: te,) 

3 ô >0 : V n;?: ne~ Il (n(t), p(t}) - (n{tn), p(tn))!l < 6 =c> f(TI (t), p{t)) >} 

t t 

lin{t)- n {t) Il= 11J <m. ctT Il~ 1 J ll~dî1 li dT\ ~ jt - tn\ 
n t dT t 

n n 
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t . t· 

As?= dn,-
1

{p(t)) o >< {n(t)) ~r and on-1
(p(t)). o X Crr(t)) is continuous 

on K and hence bounded, there exists k such that : 

11 ~ Il s k V T E [ tn' t ] 

~ Il p(t)- p(t ) Il ::;; k I t - t 1 n . n 

lt follows that : l t - tn \ < ..Q.. _= µ implies: 

{1+k2 

Il Cnh), p(t}) - (nCt >, p(t ) ) Il < o n n 

and hence f (n(t), p(t} ) > f 

* Now the function V~(t) = Uh {Xh {n(t)) is continuous non decreasing. 

... V h {1 ••• H) 

tJ! + 00 

a.h (n (t)) is bounded from below, uniformiy in t (* } by ah • 

ctv'*· 
~ dtct)2! ah f c net), p(t) ). 

-----------------------------=---=-==========-========-==--=--====----==------------~ 

àun 
C-x~) a (n) = -. -'-- / nk k (1 ••• n) 

h ex k 

l n bu 
~ [--11. ( X (rr)) 12 

· ÔX h .J 

~ o:h(rr) = v k=1 k " w11ich ls bounded on K 

!ln Il 6 

by ah> 0 (H 2) 
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* J. + oo dVh 
v* = v* (o) + Ct) ct t 

h h O dt 

lt is easy to see that there exists a sequence 

• un is a subsequence of 1 ••• n ••• 

• ul =no 

• V n : tu + µ S t - µ 
n un+i 

u 
n 

such that : 

Hence: 
t + µ u 

aVh t' f n dt- {t) dt + L.., 

n t - µ 
un 

tun +µ 

~ V (t -µ)+ 2: J ah f(n (t}, p(t)) ct t 
h no n t u -µ 

n 

~2µ 
4 

This is impossible which proves proposition 2 

A straigM forward modification of the above argument proves theorem 2. 

eroof of Proposition ~ 

• From Proposition i a limit point {n°:p)of system (ll)satisfies 'l"\(p)==X(ÏÏ) 

~ Furthermore a limit point is such that the linear system 

{ 
:h {ÎÏ) ~ a 

1 

< O 
p à X ln} • a= o 

\lhE[t. •• H] 

îs inconsistent. lt is equivalent to say that the system of inequatîties 

( 

t 
- t 

~ (n}. · a <O 

p b x·(rÎ) t a :s o 

p o X (TI} t a :S 0 

is inconsistent. 
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From Rockafellar [ 12 J theorem 22. 2, there exists 

l:Sh:SH 

\J ~ 0 

such that • at least one of the numbers µ 1 
••• µ H is non zero 

and • t µh Xh (TI ) + ( v - v I} p. à X (TI) = o 
h 

lt is impossible that v - v t == 0 because of H 4 and the 

{H 4} assumption of specialized commodities H l • 

Hence either \> ... v1 >0 and (n, p) is a local Pareto equilibrium. 

Or v - \J 1 < 0 and p.b X (n) ta$ 0 is then a consequence of 

- t Xh en) • a < o \:/ h E [ 1. • • • H J 
0 -w - -

ln other words K (n) n Q (n , p) =f. t/J 

Section li! 

f'roof of orop<?sitîon 4 

. - td dÀ t td 

First we verify that U (p, TI , À) = èX(n) ~ + dt TI + À ~ 

betongs to V( p) so that ? is well defined. 

= . t<!IL t p. ë:>X(n) + À p t<!IL + ., t,Çfil 
p. U(p, n, A) = p. à X(rr) dt - p. I! ----- • ·dt /\ p dt 

t -
p TI 

=O 
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Thus we have : 

è Ti {p(t) ) 
1? = o x (n(t)} t;HL + ~t 0,(t) tn (t) ) 

=> 11 (p(t)) = X (n(t)} + )"{t) tn(t) + C 

where C is a constant which is in fact zero because of the initial conditions 

=> V t E [ o> T] : Tl (p{t)) = X {n{t)) + À.(t} 
1

11 (t) • 

so we have proved the second assertion. 

The third one is simply a consequence of : -~f- E K (Il ( t )) 

ln order to prove the first one, let us suppose that 3 t
1 

: À. (t
1

) < 0 • 

Since À. (0) z O , there exists t
0 

2. O such that À. (t
0

} = O 

and for t E [ t
0

, t 
1 
J À (t} s; O • 

From the definition of Q (11 , p, À.) we have : 

p èX (II) 
t..9.IL 

# dt ï- 11 P li 
tc;!IL 

... À, (\!Pil + P dt ) 

dt t t 
p.. I1 p. TI 

0, [ t
0

}
1 

] we have - À 2. O • We always have p. tn > O 

The Cauchy Schartz inetiuality proves that : 

t 
IIPII + p. :-2. 0 

- J dÀ. } 
Thus on L t

0
,t

1 
: dt ~ 0 whicI1 contradicts À (t

1 
< 0 • 



Proofof theorem 3 

The sketch of the proof is as in theorem t but one has to deal 

with the addîtional variable À. E [ o, + oo [. 

Step 1 

System (4) can be written : 

(dTI ~ dÀ ) } dt 'dt ' dt E G (TI 'P, À • 

where : 

) { "" - 1 ) :::.:- ) t p ofiln)+~ t "'-1 ) t rv-1 ) t G (n, P, À == (a, o 'T'l (p • oX(n • a - t • a. à'!') (p • TI+ Àb11 (p • a , 
p. n 

· R oxfn)+\e t. } 
- t • a ' a E M (TI , P, À) } 

p. TI 

ln order to apply Castaingts theorem we will prove that: 

• for any open, relatively compact set K c Ssuch thatK c S, there exists 

e: such that c,0 ls continuous on K~ 1- €, + oo [, anc: hence M is u. h. con this set • 

• hence, ail compact set in S x [ o, + co[ is contained in an open 

set where G i s uhc and bounded 0 

1 -VI< c S, 3 € >0: V (IT 1 p,11.}E K x ]-€, + oo[ q>(TI,P,À} /=(/). 
it is obvious for À 2 0 • 

w11en À < O : 

V a E Q (n s P, À) !!ail?: l À I ll~lL 
IIP. t>XCn)II 

J.11.Ll!ell 
-= IIP. o xcn}ll 

<~ I ,._i :s; fü~. è><(n)IL 
!!Pli 



- 29 -

but on K the continuous function (n, p) -• !lp. QX(n)!I has a minimum e > O 
Il PII 

And hence, 

ep (TI,P,A) f</J \f (n,p,)...) E K x ]-e ,+ oo [. 

Note now that ep is continuous on K x ]-e,+ oo [ : it is upper hemi 

continuous as intersection of upper nemi continuous correspondences and 

lower hemi continuous {see theorem 6 in appendix Il J • 

The maximum theorem then implies that M is upper hemi continuous 

and compact valued on K x] -€, + oo[, and hence G is uhc , compact 

valued and clearly convex valued. 

2 - For any compact set C in S x [ O, + co[, there exists an open, relati

vely compact neighbourhood K x J-e,c [ of C such that Kc Sand G is 

upper hemi continuous and bounded on K x J -e, C [ 

Hence by Castaing•s theorem, there exists T > 0 such that 
C 

for ail (n°, p 0
, À 0

) E C there is a solution (n(t), p(t), Ht)) of system (4) 

defined on [ O, Tc] and starting from (n °, p O
, X O ) • 

Step 2 

Let be (II O , p O
, À O

) E S x [ O, + oo [ 

As in section Il we consider a sequence of non decreasing compact 

sots Ck SUCh that S X [0, + oo[ = U Ck 
k 



,. 
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We tl1en bui Id sequences Ck(n) , T k(n}' TI n {t), Pn (t), An (t) 

such that : c'<{n) l s the smal lest compact set containing {nn-l (T k(n-l ~) , 

P 
1 

(T, , 1 \), 1, 
1 
(Tk( 

1 
\) ), (TI (t) , p (t), À (t) ) is a solution path n- 1<,n-1, n- n- , n n n 

of system (4) defined on [ O, T k(n)J and starting from rrn-l (T k(n-l )), 

Pn-1{Tk(n-1}J' Àn_/Tk{n-0) • 

Now, we have to prove that the sequence Àn(T k(n)) is bounded. 

According to proposition 4. we have : 

V t E [ O, Tk( )] : 11 (p {t) = X (TI (t}) + À (t). t TI (t) n n n n n 

and li TI,., ( t) 11 = 11 TI O [I 
J ~ 

t 
=> l!t,n(t). nn(t)ll = llrJ(pn(t) }- X(nn(t)} Il 

=> Àn H) = 1171 {pn {t} ) - X {nn (t) J Il 

llnn {t) i! 

= 1!11{pn{t)) - X {nn{t} )Il 

Il TI O li 

but for 3.11 n/X{rrn (t)}, 1l(P
1
}tH i s a feasible state, hence i s in a compact 

and thus bounded set. 

=> ,. {t) is bounded {uniformly). n 

Hence one can extr;;.ct a convergent subsequence from Àn (T k{n)) 

ar;è tîïe end of n1e proof goes on as in step 2 of theorem 1 • 

Wr1en one has a traJectory for system (4) it is possible to build 

a traJectory for system (3) in the same way as in section Il • 
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Proof of theorem 4 

The proof îs a straigM forward modification of the proof of 

proposition 2 using the uriiform continuity of f {n, p, 11.) on the compact set : 

E{kp1<2, rp ... r"H) = {(n,p,)J E PxP x [O,+oo[: l!TIII =k1,llPi! ==k2 

'l'l{P) = X(n) + À 
1n 

where atl rh are strictly positive • 

"' 



• 
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APPENDlX Il 

The n,eorem on which our proof of traJectoriest existence relies 

is the fol lowing : 

Castaingts Theorer:n [ 2] 

Let be the multivalued olfferentia! equation 

(1} dx 
dt 

E F {t, x) 

we suppose that 

t E [o,a] x E O non empty open set of !Rn 

1° - F {t,x) is a non empty convex compact set oflRn, Vt E [O,a],V xEO. 

2 ° - V t E [ O, a], x . .,. F{t, x) ls upper hemï continuous on 0 

3° - V x E 0, t - F{t, x) ls Lebesgue measurable on O. 

4° - There exlsts a function g întegrable on [o,a] such that : 

I! U l\ :S g(t} 1 

A solution of the differential equatîon {1} is a funct ion X from .[ O, t 0 ] 

{with t O :5 a } to O suctï that K is absolutcly continuous and 

d X { t l E F { t, X ( t)) a. e on [ 0, t o] • 
dt 

Let be M any non empty convex compact set in O., and t 0 E ]o, a] 

rt o 
such that J g(s) d s::; ,:l {M 1 CO ) 

0 

Theorem 

For any s E M, there exists at ieast one solution X of the differential 

equation {1) on [o, t 0 ] such that X (C) =s • The set SI; of ail solutions 

X sucfï that X (0) = S is compact h treBa~h ~ace C (0, t 0 ] • (*) 
!Rn 

-============ =======·=='~-~================================:.:===========================-::=t 
(*) Where C [o, t 0 ] ls the set of ail continuous functîons from [o, t 0 ] to IRn, 

Rn 
enctowed with the topo!ogy of uniform convergence. 
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Furthermore, the correspondence s ~ SS is upper hemi continuous 

on M. 

Here ,
1 

we use only the first part of me theorem. Our function F does not 
. 

depend on t:so that we need not verify 3°), and we can take for g any 

constant such that : 

!lul!Sk,VxE 0 

Theorem 5 

Let cp and 1f be (non empty) correspondences definect by : 

V x En cp {x) = { y E ift' : a(x}. y = b(x) \ 

'11 (x) = { y E !Rn t c(xi. y = d(x} \ 

where n î s a set in IRP 

a and c are continuous functions from O to !Rn 

b and d are continuous functions,from O to IR 

ana a'Cx} and c(x} are independent vectors of !Rn , for all x E 0 

then: cp n '±' îs a iower hemi continuous cor-respondence on O • 

Proof oLtheorem 5 

One has to show that : 

For al! sequence xk in O converging to x E O , for all 

Y E cp (; j () 'V (x ) , there exists a sequence yk E cp (xk) n 'l' (;,,:'<) 

converg i ng to y • 

-y is a solution of the system : 

CS) 
a1(x}.y, + a2 (x ).y2 + ••. +a (x ).y = b(x) 

• 1 , n n 

c 1{x).y 1 +c2 {x). y
2

+ ••• +cn(x}.yn =d(;~). 

Il 

t 

,.. 

• 



• 
• 

.. 
• 

As a(x) and c(x) are îndepenaent there exists a matrix of order 2 

For example, let us suppose that : 

0 

System (S) can then be written : 

i a 1{x).y 1 + a 2 (x) .y2 = b{x) - a 3(x). y3 - .... - an(x).yn 

\_c 1(x).,y 1 + c2(x) .,y2 '"" d(x) - cix). Ys - •• ... -.Cn{x);Yn• 

Let us denote b (x, y
3 
••• y ) = b(x)-a

3
{x). y

3 
- ••• -a {x). y n n n 

b et d are clear'!y continuous. 

And one knows that y , as a solution of system fS}, can be 

written : 

y 
2 

= 

= 
, 

fi' (x, y 
3
,.@., ~; a2(x} . 

êî (x, ;;
3

>-. q 'y ) n c2(x} 

D \'.~} 

' 

1 

a/x} b{x°: Y3• • • yn) 

cl ex} d(x, ~' .• t yn} 

D (x} 

As D (;) ,JO and D îs a continuous function, there exists a 

neighbourhood\;°of x such that : 

k n~ Vx EU k ...1. D(x ) r 0 



= 

k 
al (x. ) 

k 
c

1 
(x. ) 

- 35 ,_ 

k 
D (x.) 

k 
a.,(x ) ... . 

k 
c.., (x ) ,., 

k .... 
D {x ) 

Then yk is a solution of{a(xk). y= b(xk} 

c{xk). y = d{)<) 

Theorem 6 

Let qi and 'f! be (nor:i empty) correspondences defined by : 

V x E O : qi (x) =!y E !Rn : a(x}. y 1= b(x} 1 

Y (x) ={ y E :R11 :c(x). y S d(x) i 

where Oi ai b, c and d are as in theorem 5 * 

Then e,.0 n 'Y is a lower hemi continuous corresponoence. 

Proof of theorem 6 

k -
Let x be a sequence in O converg-l ng to some x E O and 

Y E ep<xJ n 1r ex> 

.. 

• 
• 
• 


