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This paper presents the study of procedure aimed at
improving an indirect tax system . The procedure has the following

features :

A ~ The procedure operates in an idealized economic world analogous
to that described by Diamond-Mirriees in their basic model of [ § ] : all
commodities can be taxed, producers have a competitive behaviour ,
consumers have only a labour income, As it is supposed that there are
no public goods, the tax system performs essentially a redistributive

rather than a financing function,

- The principles of the procedure are borrowed from a preceding
proposition of Guesnerie {' 7] which analyzes in the framework of the
above model, the directions of tax reform with respect to feasibility

and desirability criteria ,

8 - A dynamic process indexed by a continuous variable time
is engendered through the linkage of the desirable infinetesimal
tax changes, This dynamic process is built In such a way that it has the

fol‘lowing characteristics of feasibility and monotonicity

. feasibility : On all trajectory (if any)} if one stops at any time t,
the corresponding state of the economy is a feasible
state (i, e an equilibrium with respect to taxes preveailing

atl this time)

. monotonicity: The welfare of all househclds in the economy ~as
measured by some utility level- is an increasing

function of the variable time on all trajectory,

C - The gpecific purpose of the study of the dvynamic process ~.once it
has been defined—~concerns the standard questions raised by aynamic
systems which are existence and stability.ltis worth noting that the aiffe-
rential system considered by its nature, has a multivalued right hand
side and that the recent mathematical! and develorments in the stuay

of such systems provide us natural and appropriate tools ,

{see Castaing { 2 | Champsaur Dreze Henry [ 3 1)



The reader will have noted that the preoccupations underlying
this study have a narrow resemblance with those leading to the study
of planning procedures concerning either the implementation of efficient
aliocation in the production sector, cf, r8] or the choice of efficient
output levels for public goods fﬁ] etc, .. This resemblance reljes
both on the definition of similar requirements for the dynamic processes-
feasibility, monoctonicity as defined by Malinvaud [113 and, on the

simitarity of the questions raised:existence, stability, -

The imerpr‘e‘tation of the system as a t8tonnement procedure
aimed at allowing the center to implement efficient plans through an
exchange of information with decentralized units- i, e in the implicit
framework of an economic theory of sacialism {(cf, Heal [8] would
suppose that the information gathered at any step by the center,
concerns the individual consumption of households, elasticities of

demopnd and elasticities of supply,

However a more natursl interpretation of the procedure- and our
assumptions are generally implicitly related to this view - consists
in considering that the dynamic process describes the working of an
algorithm used by the Government of a non centrally planned economy,
for revising its indirect tax system. Such ban algorithm which assumes
the knowledge of demand and supply functions which may be provided by
econometric estimates, would operate at some aggregate level {agyregation

of commodities and households in classes),



MODEL AND NOTATION

1. A - The agents and the assumptions

The model we are considering was first explicitely introduced in
the literature by Diamond-Mirriees [ 8 ]who,in their seminal article,
focused the attention on the derivation of optimality conditions for the~
tax system,

There are n commodities in the economy indexedby k=1,,,,, n,

Two categories of commodities are considered, Commodities

t to n, can only be consumed in negative quantities { or supplirsd) and

1
commodities nl + 1 to n can only be consumed in positive auantities
{or demanded), this being true for all consumers, An appropriate choice
of consumption sets allows taking into account this assumption of

specialized commodities,

" Let the consumers be indexedby h=1,,. H, and let ﬂ'h be th~

consumpticn set of agent h . The foilowing assumptionon {2 h is made
A ‘ H1 j, IS closed convex, bounded from below and included in
n -1
RO xR+ T (%)
Each consumer h has preferences defined on C'h and repre-

sented by a utitity function uh which satisfies :

(¢JUnless explicit contrary statement, the following conventions will
hold thoughout the paper :

. consumption or production plans are column vectors

. price systems are line vectors

. -5'(, >2, r ><,' Fr,X ,designate respectively the closure, the interior,

the relative interior, and the frontier of the set X,

. tA dernotes the transposed of matrix A



H 2 Uy is positive, strictlyguasi-concave, and continuously
' ~ -0y,
gifferentiable o ril hiwith - >0 Yh, VK
o X

. .
Faced with the price system 0 {1 in P = (Rr_;} , consumer h

determines his demand by solving the program :

'Maxfuhth} / thQh,I‘E:.thO}

The reader will notice that,through this formulation,. the consum~r

is supposed to have no other income than his labour income,

From H 1, H 2, this program has a unique sclution ><h {11} such

that I, ><h (Y =0 -

><h is the demand function of consumer h.

X=X

h is the agygregate demand function ,
h

We will also consider in the following the indirect utility function
Vh (n}= v (Xh{ﬂ} V. Production possibilities are described through a
production function G {which defihes th= production

set Y=1{y /G {y}=0 ]} such that:

H 3a; G is strictly quasi convex, and monoctonic :
y>y'=2Gly) > clyr); clo)l=o0

-

H 28] The asymptotic cone of ¥, AY is

]
L.

Faced with the production price system p {in P } the producer

determines his supply by solving the following program :

Max fp, v, Gly } =¢ |



It results from H 3q, H3B that¥p €P, this program has a
unique‘solution n {p ) such that G (n {p Yy=0
n:P - R is the sumdy function (%)

The supply and demand functions will be supposed to fulfill

the following requirasments

_—:__.._‘..a—.‘..._...._..-._._.‘.._--_..-.-_...ﬂ‘..._.“._..._.,__-....._--..-_........_.._....._.._.—-.._,_.,4_____....._....___”..—_‘,_,_.._.._.‘,.‘,. ...........
_-..—--...-._..._.._......-...._..,......_.—---.--..-....,......“,__...-..——.—-....._..-..-..._......._--—...—._.._..-—-...._._..y..-—..._‘.._._.—-—._......,_ .........

% [f G is strictly auasi concave, and A Y = IR? , it follows

¢ i
from Artzner Neuefeing ,[ 1 1 that 8 Y ={p/n(p)is defined} =R |
¥% The assumption that !‘R? is the asymptotic cone of Y

does not play a decisive role in the following

{n fact, il would be enough to consider throughout this paper
that vy which is from H3q and Artzner Neueteind [ 1 | defined

on the interior of the pdar-of AY, is differentiable in this set,



Given H4 et H 5 , one will denote 5X (1) the n x n matrix

K

—— \ g

sx (M) = ef ... 0% m...
bﬂk

and 37 (p) the n x n - matrix :

K

_ K

on (p) = ¢ LA -3 I
28

It is well known that @ p > nip) =0. So that snip) is at most of

rank n-1 . We shall assume precisely that

lH 6i b?(p} is of rank n-1) , Y p €P
2

E‘ " There does not exist {p, 1 ) £ P x P such that :

x()=np ., p.oX@)=0

This is a kind of regularity assumption anzalogous to the

regularity conditien of Kuhn~Tucker type .



This property does not look very restrictive and it is argued
in the footnote {%) that it is likely to be ‘'lgeneric!! in the sense

of differential topology.
H7¢ . is more restrictive

H 7! There does not exist {p, I} € P x P such that

X{nisnlp) , p.oX(n) =0

"M pu=0}

H

Letnow VI(p)={uéER

H5 - H 6 being given and acccrdtng to lemma 1 in Ggesnerie [7 ]
37 (p} defines a one to one correspondence from vip) onto V {p), This corr -

[ . . o~y
pordence will be denoted 2 n{p) and its inverse o1 {p}

et us bﬁieﬂy discuss the restriction in the range of production
possibility sets implied by H 3g-H3B-H5- HSE One may first
remark that given H 3o and 8, H 5 and H & are mainly technical and
it is likely that it could be proved that they are ""generic! propertiss ,
H 33 supposes some substituability between inputs and outputs and
that marginal returns tend o vanish when the scale of produ'ction tends
to infinity, On the one hand, it is not un reasorable at the aggregate level
we are considering? on the other hand, this assumption is not necessary

for the argument and is only intended {0 simplify the presentation,

(% ) 1fone considers the set of equations X {11} = 1 {p}

p. 0 X {I} = 0, one sees that we have 2n -1 equations for 2n -2 variables,
Hence, this suggests that they can only be satisfied for exceptionnal

data , a point which could be confirmed by a more formal approach,



"'*.6 -

H 3, even if it is not unusual in the literature, is perhaps less satisiac-
tory sin_ce it rules out production sets where inputs and outputs can be

completely distinguished. Actually H3q could be relaxed for allowing

such production sets, but condition {A ) below should then be reinforced (X

in such a way that H3x seemed an acceptable compromise between realism
and simplicity .
Finally, a last assumption will be made which concerns demand

behaviour

Assumption {A ) :
a) X, Eri@Q) vTER |
B) 1f a sequence (ﬂn) of vectors in P is such that :

ST =l Y el A 0 (%)

Then ,

a) efther X (1 ) [ > + o

b)orVv>0, 3 he{1... H)and N such that n>N:>'uh(><h{ﬂn) Yo

e i . S5 1 ot g B . ST e Sl s et At s o ST D U e
20 e 2 e e e 2% o O e o e I Y DR TR SN SRER IR TN SoESIn IR SR ImAm e s sm e AR e

{¥)} it should assure that : ‘
1} 1f the price of one output tends to zero its supply tends to zero

2} All commodities are "essential!! in the sense of p. 7 '
With H 3q the things are simpler since the supply of one outputi

tends to - © when its price tends to zero,

{* x) Ix ]| is the euclidean norm of %
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The idea underlying assumption{A}is that when a commoditiy price
tends to zero, either itis a consumption good and its demand tends toinfini ty(a?
or it is a type of labas and then the utility level of some household

tends to zero (b).

Relatively to H 1 - H 6, (A) introduces additionnal restrictions
on the preferences which are considered, For examble, the reader
will check that (A) will hold if all consumption commodities are supposed
essential (x, [ =02 uy (x)=0 i=1...n, h=Tl.. H) and if
each consumer is specialized (he can supply one and only one type of labour)
This brief analysis of assumption (A ) suggests that it can be
considered rather strong if one reasons at the disaggregate Irvel,
However, at a more aggregate level, which is an appropriate level for prac-

tical use of the algorithm proposed in the note, the assumption does

not look unreasonable

|8 B - Eauilibria and the principles of an algorithm for tax reform

Let us give several definitions :

Definition | ¢

An equilibrium of the system consists in a couple {11, p } of consump--

tion price system and production price system such that :
H
x X, (1)< nlp)

h=1

Definition 2

T

The equilibrium is said to be tight if Xh () =n{p). If the
h=1

latter equality does not hold, the equilibrium is non tight or inefficient

0




Definition 1desaibes an e quilibrium with taxes : the disconnection
between production and consumption price éyst ems Is supposed to
be Implemented through taxation, The formulation also supposes that
the profit of the firms is. completely taxed by the government, (For

a comprehensive discussion of these assumptions see Diamond Mirrlees [5‘

Definition 2 expresses a tight ness condition which is the equivalent for

our model of the efficiercy property of Diamond-Mirrlees, If this_
condition is not satisfied, the total demand could be satisfied with an
inefficient production plan,i, e a production plan in the interior of the
total production set ,

in this note, onewii! particularly be interested in special types

of equilibria, the Pareto equilibria, defined as follows?

such that :

o) (1, p) defines a tight equitibrium
B -p.oX ()= ¥ Ay X, (1) with &, =0
=1
Conditions (8} are necessary congitions for second best Pareto
optimality (see Diamond-Mirrices [ ) and this fact motivates the

vocabulary of local Pareto equilibria,

Actually, a local Pareto equilibrium may have different features:

. It may be a global second best Pareto optimum in the sense that
there does not exist in the set of all equilibria, one Pareto superior
equilibrium, Moreover, under the conditions we consider all Pareio

optima belong to the set of local Pareto equilibriaa.



. It may be a local Pareto optimum in the sense that there does nNot

exist anddnbour Pareto superior equilibrium,

. It may be neither a local nor a global second best Pareto optimum,

In this last category fall the saddle type Pareto equilibria on which

we will come back later,

L et us now introduce some additional notation

©
Kin) =fa €rR"| a X (n)<0, h=1...H !

ali,p)=1acrR™ p. 3% (M. ‘a <0 }

P ]
—_—

Fralgpl={acR™ p > (m).ta=0)}

We are interested in designing an Malgorithm of tax reform' ; i, e
a procedure for modifying the tax system leading to an improvement
of all consumers! welfare .

It has been argued in Guesnerie [7 ] that :

.Such an algorithm can be implemented through the linkage of
infinit esimal changes of taxes and prices, whichystarting from'a given
equitibrium (1, p),meet the following requirements :

a1 € KN Frfalnp)) - {a)

dat
(<, ~ _1 —_ .
dap _ on ' (p).ox{n)., dan (b}

dt gt

An intuitive understanding of the above system can be got through

the following remarks :

. The change in consumption prices is first astrained to be in fr Qlp, n}
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t

l.e to induce a change in demand X ( T } 9T Whose value expressed
gt

' . s , . o t
with production prices is zerc © (p, o X () dn_ _ 0 )
dt
. The change in demand induced by the change in consumption prices
just considered can then be matched by a change of production prices

defined by formula (b} -

. In order to be Pareto improving the change in consumption prices

must be such that the value of all consumption bundles decreases, a
dan
dat

[+3
condition which is expressed in formalized t-rms as € K ()

More precisely, the interest of system 1, lies in the foliowing

precise property (which is Corollary 111 in Guesnerie [7] )

Proposition |

I there exists a solution of system (1 )(T (t }, p(t )}defined on

[ 0, T ]Jand starting from(1{0 }, p (0 )}such that n{pf{o) } = X {1 (0}}, ther

U, (nfe) )) n (p (1,1 (1), p(t)ldefine a tight equilibriumV t € [0, T]

Vi, ({1} ) is a strictly increasing function of t

The rest of the paper is devoted to a compreshensive study of
dynamical processes governed by system 1 or by simitar systems
This study raises the types of questions that are usually considered
in the literature on planning procedures (Heal [ 8 1, Malinvaud [ 117}

and which are twofold s

(1) Do there exist solutions of the system of differential equations
which make it meaningful ?
(2) Given a solution path of the system,does it converge and to which

points 7



These two problems -existence prob%ems and convergrnce problems -
will be examined for a system derived from sysiem { in sectionil,
will be shown that some limit points of paths have undesirable pr'Cvper‘t%es.
A more compiicated system which excludes such undesirable limit points

will then be considered in section i1t . All proofs are in the appendix

- A FIRST DYNAMICAL PROCESS

¥

System | will be slightly modified in order io be defined for all
{n,p) €EP x P ., For that,one will assume that prices remain constant
as soon as the second member of equation {a}becomes empty . This gives

system ( 1%)

9 ¢ &q)n Froalmp)  FKMINFeQine) /¢

= 0 otherwise

dp . ,x-! == an_
dt bn (p} & C.-.;)( (r{' at

11-A Existence problems

Has system (1 *))which is a systam of multivalued differential equatiorny;
a solution ?

The answer to this question rests on mathematical results sometimes
directly initiated by problems in cconomic éheory {cf, Cl,.Henry [m '} i.
A view of these results is given in Champsaur Dreze Henry [3].

Here, a way of approaching existence is to consider an auxiliary
system obtained by building an upper hemi -continuoUus convex compact
valued correspondence M which is extracted from ‘< (01N Fe Q (1, pl wher

it is non empty.
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To this end let us consider

v t

olmp)={acr" /pox).'a=0, n.'a=0, llall1}

f{,p ) = Max { Min { - a. Xh(n))/aEcp(H, p )l
h

° I3
Let us notice that f(I1, p )} =0 if andoniy ifK mNFrainp) =g

M(H,p)={a€cp(H,p}/f(n,p)=Min(-a.Xh(ﬂ))}
h :

(2) is :
B} | .
a“%" € M(T, p)

(2) 4t o t
dp_ _ , o -1 T an

§§f~

From an economic point of view, system (2 } has the following characteristic

. the speed of change of consumption prices is bounded : lall =1
. the norm of the consumption price system remains constant along
any solution path {as does ths norm of p }.

. the change in prices are designed in order to maximize the

smallest speed of decrease in the value of agents! consumption bundies,

The following theorem holds §

Theorem 1 :

Under assumptions H1 - H7 and (A}, for all {1i°, peleEP x P

such that 1 {(p°)} =X(11°]), there exists a solution {f{t ), plt})

o %

of system [2), defined on [0, +co{ and starting from (11°, p° j.

Coroliary 1

The same statement is true for system {1t

in other wards with vocabulary on general dynamical proces:

there exists atrajectory for systems {t et 2, L.et us recal!l that accordin:

i

proposition 1, along this trajectory utilities increase and equilibriaremsa. .

tight .



A solution T (t), p(t)on [0, +oo[ of system 2,if any, allows to

define a solution T (t ), p (t) of system 1t on [0, +oo[ in the following way :

0 until the first time T where f (Il Ty, p(T))=0, Tt) =t

Y =T (T), D W) =p (T} (%)

Fromt =
Ppl)=plt), t€ [0,T];fort>T

This allows to prove Corollary |

11 B - Quasi -~ Stability

Let us recall first some definitions relative to a general dynamical

process (P} governed by the systiem of multivalued differential equations :

dX ¢ Fix) (S)

% is an equilibrium of Py ifoeF (x)

A tralectory of (P) is a solution of (S } defined on [0, +© [.

We will say that % is a limit point of a trajectory x(t} if there

existsA a sequence tn — OO such that : X (tn) —_— X
nggg+ o0 n?+oo

Process (P) is quasi stable iff any limit-point of a trajectory is

an equilibrium ,

For the systems we consider,the following propositions which are

proved in the appendix hold :

Proposition 2 @

System 2 is quasi-stable

i
it

o e St g s v e ST et s 2 St
e Im TR SN IR Im RIS

%) In system 2, we obtained the upper hemi-continuity of M when it passes

through 0, to the cost of introducing vectors 3—?— which were not

allowed by system 11,
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Theorem 2 :

For any trajectory of system 1! such that : ¥ h (1., H )
Vit=0, - g . th (1) =k f{nity, p i) Jwherek is
dt

a sirictly positive number (smaller than one ), every limit

point is an equilibrium .

Remark :

An obvious requirement for.a limit point of a trajJectory to be an
equilibrium for systems like {11} and (2) is that the speed of change of prices
do not tend to zero 'too fast? on the trajectory.

This requirement is automatically satisfied on a trajectory of
system {2} ~ which then can be proved quasi-stable - but not on any trajec-
toryof system 1!, So, the condition given in theorem2 is intended to assure

that the speed of change of prices does not bacome too small,

Let us now consider a trajectory of system {1 1} where the speed meets
’ . d . .
the requirement --El}. Xh(ﬂ(tﬁ >k (f(n{t), plt} ) - such a trajectory exists
from theorem 1 L.et”ﬁ, Thbe a limit point of this trajectory . According to

-

theorem 2, I, P is an equilibrium of system (11} i,e:
O 7 e . - e
K (mINFr Q,p) =@
What can be said about such an equilibrium ?

An answer is provided by proposition3, which can be seenas a

corollary of proposition 4 in Gyesnerie 71

Proposition 3 :

If 1, P is alimit point of system (1! }
. Either it is a local Pareto equilibrium

-or K{TIN Q(E;E};'égé
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]

Thus, we are faced with four types of possible {imit points @

o - (“ﬂ s .5 } is a global second best optimum

B - (, P )is alocal Pareto optimum

Y - il s P )} is a saddlie type Pareto equilibrium, 1t is such that there exist
Pareto superior points in any neighbourhood of (T, p ) but however the
necessary conditions of second best Pareto optimality are satisfied,
Our algorithm stops in these points because it does not allow, even

temporarily, a null speed of increase of one agentts utility .

[~ - i o
- HKMNQ,p)# @, (I, p)isnot alocal Pareto equilibrium
in the sense of definition 3 . And generally there exist. Pareto superior
equilibria in any neighbourhood of 5] s T }, but they are {or may be )

non tight so that the process associated to system (11 ), which is

constrained to remain in the set of tight equilibria,stops., With the vocabuliare

of Guesnerie [7 ] in which this phenomenon ~which may look strange -
has been studied, thér‘e exist. strictly Pareto improving directions of
price changes but they leac {or at least tend to lead} to non tight equilibria,
In other wards a time path of price. changes inducing a monotonic Iincrease
of all utilities can be exiended only if temporary {¥] inefficiencies are
allowed, which is not the case for systems 1, 1f and 2,

Limit points corresponding to & are particularly unsatisféctor‘y
We would try to rule them out, by censidering in section il a more

complicated system which will allow temporary inefficiencies,

) Inefficiencies are only temporary, in the sense that the attainment of a

global second best optimum would remove them ,
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111 ~ - A dynamic process with temporary inefficiencies

. . 3 n ==t \
Defining @ (Tl,p, A} = {a€Rr /p.oX{uh a=s ripl}
where L\ is a parameter belonging tc R, we will be interested in ¢his

section by the following system (3 }

o

_a_l'{__‘ € KmNa{n, p, A} if this set is not empty .
——Ltl-= 0 otherwise
dp_ . I TE dll gl. t dll
ax _ p.ﬁ(nélp . fdn

t ¢ dt

p. Il
dTi
ar =1

Solutions of this system {if any}, have the monctonicity property thai
we expect and possibly display temporary inefficiencies, as stated in

Eropositicn 4 (%)

If there exists T (t}, plt), A (t}, a solution of system (3} starting
from ‘n (0 },p (0), A (0) and defined on [0, T ] with X (0) t1140) =nipl(0))-x(niu},
and A (0) = 0 then :

JA)z=o0 vie€ [o0,T]

CX @)+t = (), Vi e [0,T]

. V(0 {t) ) is a siricly increasing function of t,

Vh=1,,, H, foralit wrere K (11 (1)) NQ (), plt), 1 (1)) £ &
The proof of proposition 4 is given in the appendix and rests upon i«
d A

fact that 2 {t) < 0 would imply ( m)(t) >0 {which implies i {t} cannot becom:

negative )

=o= 3 P oy s sy ot e e o e e e

(% ) The reader will fruitfully compare this proposition with coroclliary =

in Guesnerie [7 |



As in sectionli we introduce an auxiliary system, Let be

. / L )
ol p, N =la €g tp. 3 X (1) ta<alipll
< nta=0 »
Hall <1
J

\..
f i, py A = max { min(-a, xh(n} ), a€o (p,h}}
h

M, b, M) ={ a €pl,p, x) F Py M) = min{-a, X (M) )}
h

System (4} is the following @

4 - .
SLoem @, o0 )
t

t t
dp. -1, al g}\ dj]
<dr T o)~ [9"’{&‘ I TR TR
@) far_ p b Uiirp. 'ax
at

Ldﬁ paun

Theorems similar to those of sectionll can be stated

Theorem 3 ¢

-

Under assumptions Hi-H6-H71 and A for all {0} ploY) e Px P

such that 1 {p{0}). = X (1 {0}), there exists a solution .cefined

on [ 0, +o [ starting from {1l {0}, pfC}, O} for systems {3) and {4)

Theorem & :

System {4) is quasi-stable

§

¥’

For any tralJectory of (3 ) such that :¥ h {1,,, H

viz0, - 0 oc i )z k£, pl), A1), k €Jo,1]

every limit point is an equilibrium,
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Corollary 2

Fos; any trajectory of {3 ) meeting the above speed condition, every
limit point is a local Pareto equilibrium, .
Thus with the vocabulary of sectionlil, we proved that the limit points of a
traJectory of(3) meeting the speed requirements are either second best
Pareto optima {1} or local second best Pareto optima (8) or saddle type
Pareto equilibria {y).
Obviously, one would wish to design process for which limit points fall in
case’ (). It is clear from the basic non convexity of the set of equilibria

that such a property cannot be expecaéd for processes which only consider

local information on the feasible states,

If limit points of type B cannot be excluded, can one:a\t!east rule out

case (v} which is particularly unsatisfactory, by defining an appropriate
process ? |

In the state of art, it does not seem clear that such processes can be
designed without looking at second order conditions, This is certainly a

provisional conclusion, which let open a door for future research ,
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APPENDIX |

Section |

Proof of proposition 1

(1 {t), p{t) ) being a solution of system (1}, one has :

t t
Yol o X &L

g_E:_: A o
at - °m at
= g ‘== tar
hence 3T {pl. 5% = X (). E‘EL

Andthus Yt €[0,T] qnlp (t) ) = X (1 {t}) (because of the initial condition)
i. e the equilibium remains tight,

if Vh is the indirect utility function

dvh(n (t}) n 9Vh di,
= =
dt k=1 “onk dt

and a classical calculus shows that there exist o, >0, h=1,,.H such that :

e}
tdn

ca tn e XX mu)) — = s (mu X (), — .
y . n h at h h dt

dvhm(t}) arl

at K

ne13a

t
X . an
but : ¥ h:t ... H X,, (1 (t)) . g <0 .

and thus Vh is strictly increasing Yh {1,.. H 1},

Section 1l

Proof of theorem 1

The proof has two steps : in the first step, we prove that there is a

local solution ; in the second step, the solution is extended to [0,+ o [



- 20 -~

Step 1

t
System {2} can be written | g% R %%) € F(n,pl

) . P =
where F (I, p} = {{a,d7 (p)abX(H).ta}, a € M{m,pl}
To prove local exisience,we will refer to Castaing!s theorem stated

below {sce appendix 11}, which requires that Fbe a compéct convex valued

upper hemi continuous correspondence and adequately bounded,

Letbe T={(Lp)lePxP| p.a X =0} -

i

i

S=PxP\T

One can prove :

I - F is a compact convex valued upper hemi continuous correspondence
on S, We note that ® is continuous (it is upper hemi continuous as inter-
section of upper hemi continuous correspondences, and lower hemi continuous
by an ad hoc argument,cf.theorem 5 in appendix {1} and that

.

Min {~a, X 1) } is a continuous function in (1, p, a). The maximum theorem
h h
then implies that M is upper hemi continuous and compact valued,

foud .

Letbe z:{m,pl € S-oam el » X (1)
Vel e t ) ny .. '
G GANER x££ R Ix, A" x) (where £ (R} is the set of all
linear functions from R to R7 )
g and @ are continuous and F = &, {M, g} implies that F is upper hemi continuous
and compact valued, .

The fact that F is convex valued results from the concavity of the maximized

funciion Min { -a, Xh(ﬁ)} .
B

2- F is bounded on any compact set K of S, as a consequence of the

upper hemi continuity of F ,
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Hence, from Castaing's theorem one can infer that :

For all compact K © S there exists T, >0, such that for all (n°,p°) € K,

K
there is a solution {1 (t) p{t})) of system (2} starting from {[1°, p°) and defined

on | O,TK] . )

{Take an open set containing the compact K and apply the theorem ),

Step 2
et {n° p°} be such that N {p°) = X {°) and let us

. . =
consider a non decreasing sequence of compact setsC ~ such that

s = uck,
e

k{0)

l.et C be the smaliest compact set of the family containing

(me,p° . 3 T} >0 and 1 oft) ,po(t}) a solution of system (2) starting

o o N T -
from (11°, p°) and defined on [0, ‘k{0)3

k(1)

i R
Let be 11, (Tk(o}) =T, P (Tk(o}) =p , and let C be the

smallest compact set of the family containing (ﬂl,p]) ; etc ...

k{n}

Thus we build sequences C s T nn(t), pn(t) such that

k{n)?

k{n} . . .
! 1 3 SO {
C is the smallest compact set containing mn—-l 'Tk(n-ﬂ)’pn-t(.rk(n-—‘i)) ),

\ F 131 £ o afs
and (nn(t,, pn(i)} is a sojfution path of system (2) defined on [O’Tk(n)]

and starting from Kn—?(TK{H'—‘ );: pn-i(Tk(n——‘i )) *

{%) - One must notice that the theorem gives more than a local existence
statement which alone could be obtained by more elementary method

cf, Guesnerie {7] but would be insufficient for the following.
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We have then got a solutionon { 0, § Tk(n)] starting from 11°,p°
n

it

“and such that : 1) Jip () I = 1l p@ll, lim el =W el

it

2} X (nn(t} ! (pn(t) } (from proposition 1)

It remainstoprove that & T ) is a divergent series ,

k{n
f 1 :
From (11 ‘Tk(n)} . Pl rk(n)” one can extract a subsequence (1, P,
converging to 0 ,5} .

We will prove that (T ,p ) & S\S.

fp, - p €P , it would follow from H 3 , that [In (p JIl »+
(cf. Artzner Neuefeind [ 1 ] theorem 1} But H1 - H3 - imply that the .
set of tight equilibria of the model is contained in a compact set
(cf. Debreu [4] ) which leads to a contradiction,
ifn - I €P, assumption {A) would imply either that
X (nn)u - + o , -which is impossible for the reason Just stated-
or Uh (Xh(nn) )+ 0 for some h, which contradicts the strict monotonicity

of the process in terms of utility,

M ,p )+, B ET, X )0 b)) (X, nfp ) ) such that

X (@) =n{p) which contradicts H 7,

Hence, there is a compact set Ck containing an infinity of points of

tre sequence (Hn (Tk{n})’ pn(Tk{h)) x

et T =Min{T°,., ,Tk } >0 which ensures that for an infinity of

n:Tk(n} >T ., This terminates the proof of this step.

Proof of Proposition 2 and Theorem 2

Step 1
Let be E i, k,, 1y, eoory ) = {plePxP I Til=k,, lipll=Kk,, n{p)-X(n)=0,

U X (ml=r e >0,V R},

h* h
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i_et us consider a sequence (nn, ph) in E, One can extract a
subsequence converging to (ﬁ;; ) (because of the boundedness of the norm ).
An argument similar to that of step 2 above shows that (E, B)e PxP and hence,

by the continuity of 1, X, uh, to E, Hence E is compact,

et now T (t}, p{t) be a traJectory of system (2), starting from
(n°,p°) EP x P, Let (n‘%5 p*) be a limit point,
(X, 55 ) is an equilibrium if and only if :

0€F (", p¥le 0 eM(n*, ) e fa¥, p¥r=0

For proving the statement, we shall show that f (n*, p*) >0 is

impossible ,

Step 2

Let f (n*, p*) = ¢ be strictly positive, An easy argument shows

that from a time t, on, there exist r _ >0, such that the trajectory lies

h

in the compact set E { {{1°l], Hp"%{,{r‘h}} qef

K , on which f is uniformly

continuous, Furthermore {r{*, P eEK .,

The continuity of f implies :

n>0:ll(n,p) -, pXlll<n » fln,p)> £ .

Let 1 (tn} s P (tn) be a sequence of points of the trajectory converging

to (1%, p* ), when t,
3ng: Vn>n,, L@l et ) ) - ¥, e < n

Hence : f (H(tn),p(tn) ) > % for n>n,

On the other hand, f being uniformly éontinuous on the trajectory
n ),pthfor t =t}
3 6>0: ¥ n=n,, llnt), plt) —-(H(tn),p(tn)m < &= fn{t),plt)) > 2—
t t ‘
o tt)=m (¢ ) 1 = Hf c%& ar | < | J Wl ar| < |t -t ]

t dor g 9T
n n
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t t
Ipt-pte) =11, g2 ariis L) I o |

t * —_— t — .
As g% = a " pte)) 0 R Elt)) '3’?’ and 5% ~p(t)), oX (nle)) is continuous

on K and hence bounded, there exists k such that :
I h=k vre [y,t]
ar T n?
= I pl)-plt ) I k [t-t ]
< & = M implies :
{1+x2

I (ned, p(t)) - (H(tn),p(tn) Yl <8

1t follows that ¢ | t ~ th |

and hence f (11{t),p(t) } > -2

oA
Now the function Vh(t) = uh (Xh (n{t}) is continuous non decreasing.

SViw o+ v =u o0 a®) Yh{l...H
t A4 oo

Y3

av’ t
Xt an
dth(t} ~o (il X mw) . 5

oy {1 (t}} is bounded from below, uniformly in t (¥ } by oy e
‘X"

Lavy |
= -a-;:-*(!)?..ah f (n(t), plt)).

buh
(%) o, )= —&;“ / e k {1...n)

[n ou

[z [ o, m1? .
= ah(n) =Y k=1 K which is bounded on K

ol “

bya, >0 (H 2)
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¥
c 4o dV

¥ h

\/h-—vh (0)+JO 5t (t} at

It is easy'to see that there exists a sequence un such that :

. U is a subsequence of t,.. n.,..

. Uy =ng
¥nit +u< ot -
un un+?
Hence ; ' ,
tnc—-p. v tu-s-g av
ol n
Vﬁz Vi, (o}«;—f -—afgl(t)dt + 5 f dth {t) at
O n tu—p
n
t, tu
N
>Vt -tz J o, FII(t), p(t)) dt
h''n, nt -y P
u

This is impossiblie which proves proposition 2

A straignt forward modification of the above argument proves theorem 2.

Proof of Proposition 3

"« From Proposition 1 a limit point (I‘T.: E) of system (1 f)satisﬂesn(g)-z X(H)

. Furthermore a limit point is such that the linear sysiem
-y 1
X, (@m. a <o vhelt.,. H]
poxXm.'la=0
is inconsistent, It is equivalent to say that the system of inequalities
-t
( x, @ a<o
poxXimia<o
e T e t
- poXlg) aso

is inconsistent,
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From Rockafellar [ 12 } theorem 22,2, there exists :

W20 1ShsH

such that , at least one of the numbers {i, ... My is non zero

and . £ p X ) + (v -vpOX (@) =0
h

it is impossible that v - v! = 0 because of H4 and the

{H 4} assumption of specialized commodities H 1,

Hence either v - VP> 0 and (E R S } is a local Pareto eduilibr‘ium.
Or Vv -vi <0 and p,d X (m) ta < 0 is then a consequence of
X (@ .la<o vnelt... H ]

_In other words K (I natn,p) # 9

Section i

Proof of x:mope}sit‘i'on 4

A ot t
First we verify that U {p, 11 ,\) = o X{m) %% + g—){‘- tn + A %ItL

belongs to A p} so that g‘t& is well defined ,
=== d . OX A d
b, Utp, 1, 3) = p. 53X GL _pty PoOXMWAAR AL 4y gL

T
p I
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Thus we have :

- t — t
pF o)) L oW @n) Eor & an) 'nw))

= (p(t)) = X (nft}) + 1(t) th) + C

»

where C is a constant which is in fact zero because of the initial conditions

-

> vie[0,T] :n ) =X @) +al) 't ., | .

so we have proved the second assertion,

. .
The third one is simply a consequence of :%?—- e K(m(t))

In order to prove the first one, let us suppose that 3 tl :Mtl) <0,

Since A (0}= 0, there exists t, = 0 such that A (to) =0

V]
and for t E[to, t‘i] Altl= o,

From the definition of @ {11 ,p, A\) we have :

t t

< , gl i diL
paxX(m - Al el an -AMipll + 0 5
- & — =
p.t'H p.t 1l at p. tII

n [t())ti ] we have - 1= 0 . We always have p.tﬂ >0

The Cauchy Schartz inequality proves that

t
d
lpll +p. = ©

i N N i ~ =dicts 5 <
Thus on [tgst, 17 G Z 0 which contradicts i (t,) <0,
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FProof of theorem 3

The sketch of the proof is as in theorem 1 but one has to deal

with the additional variable A ¢ [ 0, + « [,

Step 1

System {4} can be written :

an dp dh
(dt ‘dt * dt )EG(H}p,)\.)Q

where :

G{n,p, ) ={(a, b?ﬁ't(p).b?{(n). ta—m& . ta.bgq(p).tn-!-kbﬁ%l(p). ta ,
p. 1

L RRXUBR tay aemMn,p,A) )

p. 0

In order to apply Castaing's theorem we will prove that :

. for any open, relatively compact set K C Ssuch thatK < S, there exists

g such that © is continuous on Kx | - ¢, + [, anc hence M is u,h.c on this set,

. hence, all compact set in S x [0, + [ Is contained in an open

set where G isuhC and bounded,

1-VKES, 3e>0:v@,p, e Kx J-¢, +oof oli,p, ) #0 .
it is obvious for A= 0,

when A <0 :

!
vaecaln,p,\} llall= el

llp. X}
20 (,P, A £P ¢ ‘Lm‘;%‘lmé 1
e Xt}

&< o, 2X(m1I
el
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LQX{
el

but on K the continuous function (1, p) » has a minimum ¢ > 0

And hence,

Cp(ﬁ,pﬂ\)ié¢ V(Hsp))\)e Kx]—e 9+°°[‘

Note now that ¢ is continuous on K x |-¢, + [ : it is upper hemi
continuous as intersection of upper hemi continuous correspondences and

lower hemi continuous {see theorem 6 in éppendix i),

The maximum theorem then implies that M is upper hemi continuous
and compact valued on K x } -gyF 00[, and hence G is uhc , compact

valued and clearly convex valued,

2 - For any compact set C in S x [ 0,+ [, there exists an open, relati-
vely compact neighbourhood K x ]-g,c { of C such that KC S and G is

upper hemi continucus and bounded on K x ] -¢, C [

Hence by Castaing'!s theorem, there exists Tc> 0 such that
for all (1°,p°,\°) € C there is a solution (11{t}, p(t), A(t)) of system (4)

defined on [O,Tc] and starting from (n°,p°,A°) .

Step 2
Let be (11°,p°,A°) € S x[0,+ oof
As in section Il we consider a sequence of non decreasing compact

sots C* such that S x [0,+] = U c®
K
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kin} T

We then build sequences C , o nn(t), pn(t), Xn(t)

k{n
such that : Ck(n) is the smallest compact set containing ([ (T ),
n-1"" k{n-1)
T H ’ H
Prct Txine1))s 2ot Trmer)? ) @10, p (), A 1) ) is a selution path

= e BT . H '8
of system (4) defined on [O’Tk(n)z and starting from Hn»l ‘Tk(n—l))’

‘Dﬂ-—iwk{n—%}} 4 hn«’éq‘rk{n'«l); *

Now, we have to prove that the sequence kn{Tk(n}) is bounded,

According to proposition 4, we have :

vielo, 'rk(n)] P e () = X (t)) + xn(t).trzn(t)

)\HM >0
and Mn{tﬂl = |||
fip, () = lipel]

3
= lix, e n G = linte () J- X(n () ) |

Inip, ) ) - X (0, ) )]

o, i

= Rt
=4 f\n(;

linte, () ~ X{n_tt) )i
il el

but for all n}(xmn(t}), n(pn(t)i is a feasible state, hence is in a compact

and thus bounded set,
= ),ﬂ{'t} iz bounded {uniformly),
Hence one can exiract a convergent subsequence from An(Tk(n))
anc the end of the proof goes on as in step 2 of theorem 1, '
When one has a trajectory for system (4) it is possible to build

a trajectory for system {3} in the same way as in section Il ,
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“Proct of theorem 4

The proof is a straight forward modification of the proof of
proposition 2 using the uniform continuity of f {1, o, A} on the compact set :

E€k§;§<zg bgguovﬁH) = s{iﬁ:\pa}\) é pxp X [0,+Q°E < ﬁn” —k"‘%p” ak

2
nip) = X} + Atn

u O e, v

where all f;h are strictly positive , -
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APPENDIX 1

The theorem on which our proof of trajectories! existence relies

is the following :

Castaing's Theorem [ 2]

- Let be the multivalued differential equation

(1) «g—’tf-— € Flt,x) tefo, a] x €8 non empty open set of R”

we suppose that @

1° - F {t,x} is a non empty convex compact set of R, Vt €[0,a],Vx€Q.

2°-V1tE€ [O,aj, x - F{t,x} is upper hemi continuous on §
30 ¥ x €9, 1 = F{t,x} Is Lebesgue measurable on{l,

4° . There exists a function g Integrable on {Q,a:i such that © .

lullsgtt), VYueFi,x) , Yie[o,a],Vx¢€Q

A solution-of the differential equation {1} Is a function X from [0,t,]
{with éog a } to 0 such that X is absclutely continuous and

. S8 e, X)) ace on[0,t.] .

. at .

i.et be M any non empty convex compact set infl, and t, € ]O, a]

tc
such that f glsijds< a(M,CG])
G

Theorem
For any £ € M, there exists at least one solution X of the differential

equation [1) en [0, t,] such that X (€] =E . The set S, of all solutions

X such that X (0) = & is compact hire Barech space C " (o, ioj <)
R

e i o S e ot g SN ST I DR INNSSrIn SOt I STAN NGRS —F-sd g oo pSepaes SrsksEmaronRIIATSIEND IS Lo b5 asEnEmITEN

(%} Where CR“ [0,1,] is the set of all continuous functions from [0,t,] to r",
endowed with the topology of uniform convergence,

'1
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Furthermore, the correspondence £ - Sg is upper hemi continuous
on M, '

Hére , we use only the first part of the theorem, Our function F does not
depend on tise that we need not verify 3“}, and we can take for g any

constant such that ¢

Hullsk,¥x€nQ

Theorem 5
et ¢ and ¥ be {non empty)} correspondences defined by
Vx€Q otd={veR :alxly=bix)}

Yixdb={yeR":clxly = alx} |

where 1 is a set in k¥

. s ')
a and ¢ are continuous functions fromQ to R

b and d are continuous functions-from i to R

and a{x) and ¢{x} are independent vectors of ‘Rn , for ali x €0

then: o) Y is a lower hemi continuous correspondence on(l ,

Proof of theorem 5§

Cne has to show that :

For ali sequence x% InQ converging to x € , for all
y € Ged N ¥ Ix) ) thére exists a sequence yk € (xk) Ny (xk')
converging to ; R

y is a solution of the system ¢

x % : Ty =blx

) ayixloy, +a, (x va +oo.4a By, =blx }
% % -~ {x A, = “‘

cyixloyy + e, Ix i Yo Feuot “'n{")' v, =dbd

T

4
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As a(x) and c(x) are independent there exists a matrix of order 2

in ai{i; reeees an{i} which is of full rank 2
Cylxt vooeas € (X)

For example, let us suppose that :
o ai‘i;f:} aZ(;Z?
Dix} =] ° 1 # 0
c,lx}  c,ix)
System (S} can then be written 3
a;fxly, +a,x) .y, =blx)- agldle yz3=oeue -8 Iy,

cigx’n f‘! 'i' CZ(X) «Yz = d(x; - ca(x). }'3 “ s e e e -"Cn(x)‘.yn.
l.et us danote 'E'(x, Yaes- yn) = b{x)~a3b«:;. Yg =eeo -—an(X). Yn

’C‘{ (xs Y3-a LY yn) = d(x)“C3€X}6 y3 ez e "cn{x)c Yn
Betd i
et d are clearly continuous,

And one knows that y , as a solution of system S}, can be

weritien @
g(}(’ y39 ‘o @ e g }'ni az(X}
PRV - e,
0 Ygyeae,Y,) colx

Yi m —
D {x)

— -~ (-u — -
a;€><} b(}(, yscocyn}

N B A
H

=

¥ —
2 D (x!}

As D [x}# 0 andD is a continuous function, there exists a

neignbournood W of X such that ¢

¥ X eV 'D(;{k} # G



H
L&
iR
§

Then iet yé< = {yf’; s y§ s §33 ssag S}; } be gefined by @

TR - i
Bﬁx:,_,yg,”gyﬁ? a,(x }

| - 24
[&J{x g;ygptcsyn) {:eygx E
K | <
Yy = -
D ix}
d!(X} b (x’v : %’3,0.0?5,“)
k ~ K e -
c,(x7) d{x" Vaseoes ¥y, )
K ~ )
yz -

D (x?}

Then yk is a soiution of a(xk}?.y = b(xk) - yk € cp(x?s} Ny (in
z:ﬁxkhy = a(x™)

and y© o ¥ , by the continuity of ail functions b , ;8 84582:C15Cy and D .

Theorem 6

Letp and ¥ be {non empty) cbrrespondemces gefined by @
Yx€EQ:o(xl=ly eR™:alxl.y =bix)}

¥ ix) =iy € " ielxly < dix) }
where(l, a, b, ¢ and d are as in theorem 5 ,

Thenwm (1Y is a lower hemi continuous correspondence,

Proof of theorem 6

Let x* be a sequence in {} converging to some x € (} and

y Eplx} MY x)

C an



